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Preface 
This research paper is a compulsory part of the Master’s program Business Analytics at the VU 
University Amsterdam. Its requirements concern the inclusion of the different aspects of the study: 
Business, Mathematics and Informatics (former name) and the practical value of the research. 
Furthermore, completing the research within a predefined period is another valued requirement. 
 
The goal of this research is to help DonorChoose.org identify (predict) school funding requests that 
deserve an A+. In other words, which funding requests are, based on certain criteria, the most exciting 
and most likely to raise money. This problem was made available at Kaggle.com as one of their many 
Data Mining competitions.   
 
Based on thorough literature research, different models and techniques were selected in order to 
make the best possible predictions.  Problems faced and decisions made while putting theory into 
practice are reported in this paper. These include: time constraints, computation- and software 
limitations as well as problem- and model-specific issues. This paper can be viewed as a step by step 
report based on my practical work. It tries to explain decisions made by providing theoretical 
background.  
 
The intended audience ranges from anyone ever faced with problems concerning putting Data Mining 
theory into practice to students and teachers interested in specific algorithms like Random Forests and 
problems like imbalanced data.   
 
My thanks go to my supervisor Dr. E. Haasdijk. This work would not have reached its present form 
without his many suggestions and enthusiasm. 

Amsterdam, July 2014 
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Abstract 
Kaggle.com is a website which allows users to participate in Data Mining competitions with actual 
business problems. The goal of the selected classifying problem was ‘to identify school funding 
request that deserves an A+’. This competition was particularly challenging for a number of reasons. 
These include: highly imbalanced data, data containing text, data in relational format (multiple files), 
both numerical and categorical attributes and the attribute levels ranging from 2 to over 9000 levels.  
 
A Random Forest (RF) model proved to accomplish the best results. The imbalanced nature of the 
data was solved by the use of a specific form of down-sampling. Also, some text mining techniques 
were incorporated in the final model.   
 
The final model resulted in a 47th position in the competition (472 competing teams). Therefore, my top 
50 goal in the Kaggle competition was achieved without extensive Data Mining/Machine Learning 
experience. This paper shows that a complex classifying problem can be solved with simple 
techniques and good understanding of the data. Many of the techniques and skills were acquired 
throughout the process (text mining, down-sampling techniques etc.).     
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1. Introduction 
One way in which the United States (U.S.) differs from many western-European countries, is the gap 
between rich and poor. Recent studies have shown that in the U.S. the achievement gap between rich 
and poor children is widening. This development threatens to dilute education’s levelling effects (New 
York Times, 2012). Educational inequity due to parents income has received far less attention than 
gaps in student accomplishment by race. This makes the problem of educational inequity and its 
causes an interesting research area and, more importantly, a research area with social relevance.  
 
The website DonorsChoose.org, according to their website, “engages the public in public schools by 
giving people a simple, accountable and personal way to address educational inequity”. 
DonorsChoose.org does exactly what the name suggests. It allows donors to choose which school 
project deserves their financial support. Doing so improves the chances for success of the less 
advantaged children.  
 
DonorsChoose.org is interested in identifying interesting projects early. This is particularly important  
because by identifying and recommending such projects early, they will improve funding outcomes, 
better the user experience, and help more students receive the materials they need to learn. However, 
helping DonorsChoose.org identify these projects may also generate insight into what factors drive 
people to give money to this kind of charity.  
 
This classifying problem was selected as the annual KDD Cup at Kaggle.com. This website allows 
users to participate in Data Mining competitions with actual business problems. The 2014 KDD Cup’s 
goal is ‘to identify school funding request that deserves an A+’. More information about the challenge 
and the advantages of participating in such a competition can be found in the Appendix or on 
kaggle.com1. 
 
The objective of this research paper is to determine whether these exciting projects can be identified 
at the moment they are proposed. Furthermore, issues like imbalanced data, data containing both 
categorical and numerical attributes and text attributes are addressed.  
Strategies to deal with these are proposed and discussed. The theoretical parts of this paper cover 
approaches to the problem based solely on literature. Whereas the more practical chapters report on 
their outcomes.   
 
To sum it all up, this paper attempts to answer a number of questions. First of all, the main question 
this paper tries to answer is “how can DonorCHoose.org identify potentially exciting projects early?” To 
answer this question, it is important to answer some more specific questions first. These include 
finding good approaches to deal with imbalanced data, text attributes to come up with a suitable 
Machine Learning model for the challenge.   
 
Questions: 
- How can DonorsChoose.org identify potentially exciting projects? 
        - How to deal with an imbalanced dataset? 
        - Can basic text-mining techniques be implemented to improve results? 
        - What is the best Machine Learning model for this particular challenge? 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
1 http://www.kaggle.com/c/kdd-cup-2014-predicting-excitement-at-donors-choose  

http://www.kaggle.com/c/kdd-cup-2014-predicting-excitement-at-donors-choose
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2. Data 
This chapter aims to explain the data provided and discusses its most eye-catching properties. Some 
assumptions are made in this chapter to simplify the problem given the time-window of one month. 
This chapter can be skipped but is useful when trying to understand certain decisions made 
throughout the process.  
 
2.1 Data files 
For the challenge, six .csv files were available. These ranged from information per project to a sample 
submission file. The table below shows information about the different files and their contents.  
 

 
 
Table 2.1: Overview of the data and some of its attributes, in relational format. For a complete version 
(including all the attributes), please consult the appendix. Not included: the sample submission file. 
This file is not important when solving the problem. 
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These files contain both training- and test set data. The donations file, for example, is only available 
for the training set. This makes sense, because there is no knowledge about who will donate to what 
future projects. The different files contain almost anything there is to know about donations, resources 
needed, and the teachers making the requests.   
For a full list of the contents of the provided datasets, please consult Appendix I. 
 

File Number of instances (rows) Number of attributes (columns) 

• donations.csv                 3.097.988 21 

• essays.csv                 664.098 6 

• outcomes.csv              619.326 11 

• projects.csv                      664.098 35 

• resources.csv                 3.667.582 9 

• sampleSubmission.csv     44.772 - 

Table 2.2: Summary of the datasets. A total of 8757864 instances and 82 (not all unique) attributes  
 
 
At this point, an important assumption was made. As was stated before, there is no knowledge about 
future donations. However, the donations file could be useful when ‘profiling’ teachers’ donating 
behavior. Because, for any donation, it is logged whether the person making the donation is a teacher 
or not. Again, because of the time constraint, it was decided to postpone the use of the donations.csv 
and focus on the other files first. 
 
To simplify the problem, the resources file was also ignored. This file contains incredibly detailed 
information about the resources needed. However, these are summarized in more general attributes 
already present in projects.csv.  
 
Therefore, this paper focuses on the files: projects.csv, essays.csv.     

 
 
Table 2.3: The two important files. Obviously the outcomes file was also used because without this file, 
supervised learning would be impossible.  
 
 
2.2 Data analysis 
When observing the data, one may notice that many of the attributes are closely related. Examples of 
this are the obviously (cor)related regional attributes and school/teacher attributes. There are many 
more examples of these closely related attributes. This suggests the use of a model capable of dealing 
with correlated attributes. Either that, or paying close attention to feature selection and problems 
arising from using the correlated attributes. Another property of the data worth mentioning, is the fact 
that it is provided in relational format. When only using the projects and essays files however, this can 
be easily solved using merges by “project id”.  
 



 8 

Another distinguishing aspect of the 2014 KDD cup is the highly imbalanced nature of the data. The 
number of exciting projects compared to the number of non-exciting projects is small. Before any data 
preparation or pre-processing steps were carried out, the fraction exciting projects was only 5.927%. 
Finally, the data is mixed (categorical, numerical, text) and there is some interesting overlap between 
training- and test set which is presented in the table below. 
 
 

Attribute Percentage of test set that can also be found 
in training set (overlap) 

projectid  0% 

teacher_acctid  55.19% 

schoolid  89.6% 

school_ncesid  90.2% 

Table 2.4: Overlap between training- and test set. These numbers were computed before any data 
preparation or pre-processing steps were carried out.  
 
Also, the first labeled ‘exciting’ project occurs on 14/04/2010 whereas the first proposed project was 
almost a decade before that. Therefore, all the entries before 14/04/2010 are much less interesting 
than the projects proposed after this date. These entries are also a significant number of years ago, 
and may not be as relevant anymore as more recent data. After removing these entries there are still 
more than enough entries remaining and due to this, the fraction of exciting projects almost doubles to 
around 9%. 
 
Throughout the process, any missing values were replaced by their column means.  
 
In short, the main (complicating) properties of the data are the text attributes, imbalanced data and 
selecting a suitable model based on these properties (and other properties of course). 
 
3. Literature 
Based on the observations of the previous chapter, this chapter covers the theoretical background of 
the main complicating properties of the data and discusses which models handle these properties 
best. The chapter assumes some basic knowledge of different Machine Learning models. However, 
any models proposed as a final model for the competition are explained thoroughly.  
 
The chapter consists of three subchapters. The first of these provides theory on imbalanced data and 
discusses different ways to cope with this. Based on several scientific papers a suitable method to for 
imbalanced data problems is proposed for the Kaggle competition. The second subchapter provides 
theory on text mining in a similar manner. The final subchapter proposes, solely based on literature 
research, a suitable model (Random Forest) for the given problem.  
 

3.1 Imbalanced Data 
“A dataset is imbalanced if the classification categories are not approximately equally represented.” 
Chawla (2005)2 
 

                                                 
2 Nitesh V. Chawla  (2005), Chapter 40 - DATA MINING FOR IMBALANCED DATASETS: AN OVERVIEW, 
Department of Computer Science and Engineering, University of Notre Dame, IN 46530, USA, 2005, pp 853-867 
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Figure 3.1: Number of publications on imbalanced learning (He & Garcia, 2009)3. This graph shows the 
increasing interest in improving imbalanced learning methods. This graph was included to emphasize on the 
relevance of this research area. 
 
As mentioned earlier, the data sets for this classification task are highly imbalanced. The number of 
exciting projects compared to the number of less exciting projects is very small. This problem, known 
as the problem of imbalanced data, is very common in classification. The stumbling block, as Provost 
(2000)4 calls it, is the notion that an inductive learner produces a black box that acts as a labeling 
function. This causes problems when confronted with imbalanced class distributions. Provost (2000) 
continues by stating that most algorithms have two built-in assumptions that cause these problems: 
1. the goal is maximizing accuracy, and 
2. the classifier will operate on data drawn from the same distribution as the training data.  
This results in, if no action is taken, unsatisfactory classifiers for unbalanced data sets. This is exactly 
what could happen when predicting exciting projects in the DonorChoose competition. Especially the 
first assumption influences the results because high accuracy is achieved by the trivial classifier that 
labels everything with the majority class. In other words, each new project is classified as not-exciting, 
this results in an impressive accuracy. 
However, an algorithm predicting only no-instances is, without a doubt, useless. Therefore, this 
paragraph discusses multiple approaches to solve the imbalanced data problem. Also, a different 
evaluation method, other than accuracy, is discussed.    
 
3.1.1 Accuracy  
As the research in the Machine Learning area advanced, the limitation of the accuracy as the 
performance measure was soon recognized. ROC curves soon became a popular and more 
successful alternative (Fem et al., 2004 as cited in Chawla 2005).   
 
Usually, a classifier is evaluated using a confusion matrix. This matrix contains information on the 
number of (mis)classified projects. There are four measures in the confusion matrix: True Negatives 
(TN)  represent the number of negative examples correctly classified. The False Positives (FP) on the 
other hand, represent the number of negative examples incorrectly classified as positive. The False 
Negatives (FN) and True Positives (TP) respectively, represent the positive examples incorrectly 
classified as negative and the number of positive examples correctly classified (Chawla, 2005). The 
commonly used performance measure accuracy is calculated from these measures. 
                                                 
3 Haibo He, Member & Edwardo A. Garcia (2009), Learning from Imbalanced Data, TRANSACTIONS ON 
KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 9, SEPTEMBER 2009. 
 
4 Foster Provost  (2000), Machine Learning from Imbalanced Data Sets 101 - Extended Abstract, , New York 
University.  
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Accuracy = (TP + TN) / (TP + FP + TN + FN) 
 
Based on a confusion matrix: 

 
Table 3.1: Confusion matrix, from McCarthy et al. (2005)5. 
 
As stated earlier, accuracy is not a suitable measure for the imbalanced DonorChoose data. Another 
example often used to illustrate the imperfection of accuracy as a performance measure, is the 
classification of pixels in mammogram images (cancer detection). “A typical mammography dataset 
might contain 98% normal pixels and 2% abnormal pixels. A simple default strategy of guessing the 
majority class would give a predictive accuracy of 98%” (Chawla, 2005).  
 
3.1.2 ROC curve 
According to Chawla (2005) in “Data mining for imbalanced datasets: an overview”:  “The Receiver 
Operating Characteristic (ROC) curve is a standard technique for summarizing classifier performance 
over a range of tradeoffs between true positive and false positive error rates (Swets, 1988). The Area 
Under the Curve (AUC) is an accepted performance metric for a ROC curve (Bradley, 1997)”. 
Intuitively, an ROC curve makes sense. The x-axis represents the percentage of false positives (%FP 
= FP/[TN + FP] )and along the Y axis there is the percentage of true positives (%TP = TP/[TP + FN] ).  
An ideal point on this curve would be (0,100), which means that all positive and negative examples are 
classified correctly. The curve illustrates the performance of a binary classifier as its discrimination 
threshold is varied.  

                                                 
5 Kate McCarthy, Bibi Zabar & Gary Weiss (2005), Does Cost-Sensitive Learning Beat Sampling for Classifying 
Rare Classes?, Fordham University, UBDM '05 Proceedings of the 1st international workshop on Utility-based 
data mining, Pages 69 - 77  
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Figure 3.2: Source: Chawla, 2005: the line y=x represents the scenario of randomly guessing the class.  
 
One of the most commonly used performance measures for a ROC curve is the Area Under the Curve 
(AUC). While ROC is a two-dimensional representation of a model’s performance, the AUC distils this 
information into a single scalar (Kaggle wiki6). The AUC is literally the area under the ROC curve. 
Therefore,  In the scenario of randomly guessing the classes, the ROC curve will be a diagonal line 
stretching from (0,0) to (1,1) with an AUC of 0.5. The ideal point on the curve (0,100) on the other 
hand, results in an AUC of 1.   
 
The Kaggle wiki on AUC confirms the advantages of AUC and also states a second advantage: 
“Its main advantages over other evaluation methods, such as the simpler misclassification error, are: 
1. It's insensitive to unbalanced datasets (datasets that have more installeds than not-installeds or vice 
versa). 
2. For other evaluation methods, a user has to choose a cut-off point above which the target variable 
is part of the positive class (e.g. a logistic regression model returns any real number between 0 and 1 - 
the modeler might decide that predictions greater than 0.5 mean a positive class prediction while a 
prediction of less than 0.5 mean a negative class prediction). AUC evaluates entries at all cut-off 
points, giving better insight into how well the classifier is able to separate the two classes.” 
Source: Kaggle wiki 
 
Kaggle offers the possibility to make submissions throughout the duration of the competitions. For this 
competition, the evaluation method also used the AUC of a ROC curve (on 45% of the final data). The 
final ranking would be based on the AUC of the ROC curve on 100% of the data. 
 
 
3.1.3 Up sampling, down sampling and cost-sensitive learning.  
Since a highly-skewed class distribution usually causes predictions of the majority class only and 
therefore makes the natural distribution very often not the best distribution for learning a classifier 
(McCarthy et al., 2005), various techniques to deal with imbalanced data, have been introduced. 
Various resampling techniques are an example of this. These include: random over-sampling with 
replacement, random under-sampling, focused over-sampling, focused under-sampling, over-sampling 
with synthetic generation of new samples based on known information and combinations of the above 
techniques (Chawla et al., 2004b as cited in Chawla, 2005).  
 

                                                 
6 https://www.kaggle.com/wiki/AreaUnderCurve 

https://www.kaggle.com/wiki/AreaUnderCurve
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McCarthy et al. (2005) generalize these methods to two basic methods for achieving a more balanced 
class distribution: up-sampling and down-sampling (also referred to as over-sampling and under-
sampling). “In this context, up-sampling replicates minority class examples and down-sampling 
discards majority examples” (McCarthy et al., 2005). In other words, either some data is thrown away 
to balance the dataset, or data is added by copying from existing entries.   
 
Another technique is cost-sensitive learning. Cost-sensitive learning is, according to McCarthy et al. 
(2005), the most direct method for dealing with highly skewed class distributions with unequal 
misclassification costs. When using cost-sensitive learning, a cost matrix represents the costs 
associated with the four outcomes in the confusion matrix. In other words: costs are assigned to the 
different outcomes. These are referred to as: CTP, CFP, CFN and CTN (C = cost). A close reader 
might notice there is an equivalency between cost-sensitive learning and sampling techniques. This 
subject, even though interesting, is beyond the scope of this paper. 
 
It is not surprising that the discussed methods are not the only possibilities. There are many more 
techniques in the ever evolving field of machine learning. This paragraph however, focuses on up- and 
down-sampling in relation to cost sensitive learning because these methods are proven to deliver and 
are not too complex to implement. This is confirmed by McCarthy et al. (2005): “because these [cost-
sensitive learning, up- and down-sampling] are the only methods available to most practitioners”. 
Based on the study by McCarthy et al. (2005) they are compared and their findings are used to 
determine which method is most suitable for the DonorChoose competition.  
 
A clear disadvantage of down-sampling is that it discards potentially useful data. Up-sampling on the 
other hand increases the size of the training set, resulting in increased training time. Up-sampling is 
also sensitive to potential overfitting because it creates exact copies of existing entries. Therefore, it 
seems there are more disadvantages to sampling methods than to cost-sensitive learning. This is not 
entirely true, the disadvantage of down-sampling is indeed true for small datasets but not so much for 
bigger datasets. Since datasets have become bigger in size over the last couple of years, it has 
become common practice to down-sample balanced data as well (for computation time purposes). 
Therefore, discarding data has become much less of a problem than say, a decade ago. Luckily, the 
DonorChoose data is sufficiently large to attempt down-sampling. Up-sampling however, will increase 
training time and may cause overfitting.  
 
For each of the three methods, finding ideal costs or sampling ratios is the stumbling block of solving 
an imbalanced data problem. In their study McCarthy et al. (2005) compared the three methods for a 
range of different datasets using a tree based learner. Before carrying out their research, their 
conjecture was that cost-sensitive learning should be preferred unless there are practical (computation 
time) or algorithm specific reasons not to. Their results however, showed otherwise. There is no clear 
“winner” when comparing the three techniques over a range of different datasets. Their datasets 
ranged from small in size to 20.000 rows. The DonorChoose data on the other hand, contains much 
more entries. This rules out up-sampling for practical (training time) reasons. Between down-sampling 
and cost-sensitive there is no clear underperformer. However, if down-sampling is used, there is the 
risk of throwing away potentially useful data. 
 
3.1.4 Balanced Random Forest 
It is worth researching whether there are ways to use down-sampling without the loss of potentially 
useful information. One could think of multiple samples and multiple runs of algorithms (with or without 
replacement). However, these runs will be time consuming which was the reason to rule out up-
sampling in the first place. Luckily, there are Machine Learning algorithms that generate multiple 
bootstrap samples of training data in their training process. Normally speaking, when learning 
imbalanced data, there is a significant probability that a bootstrap sample contains few or even none 
of the minority class. It gets interesting when these bootstrap samples are modified. Chen et. al. 
(2005)7 describe the process of doing so and come up with a Balanced Random Forest (BRF) 
algorithm which modifies the bootstrap samples. They state: “As recent research shows (e.g., Ling & 
Li (1998),Kubat & Matwin (1997),Drummond & Holte (2003)), for the tree classifier, artificially making 
class priors equal either by down-sampling the majority class or over-sampling the minority class is 
usually more effective with respect to a given performance measurement, and that downsampling 
seems to have an edge over over-sampling. However, down-sampling the majority class may result in 

                                                 
7 Chao Chen, Andy Liaw, Leo Breiman (2004), Using Random Forest to Learn Imbalanced Data. 
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loss of information, as a large part of the majority class is not used. Random forest inspired us to 
ensemble trees induced from balanced down-sampled data.” 
 
The distinguishing factor in their algorithm works as follows:  “For each iteration in random forest, draw 
a bootstrap sample from the minority class. Randomly draw the same number of cases, with 
replacement, from the majority class.” (Chen et. al, 2005). 
 
In their study, Chen et. al (2005) focus on using Random Forest to learn imbalanced data. The BRF is 
compared to a Weighted Random Forest (WRF, based on const-sensitive learning). Thus, down-
sampling (2.0) is again compared to cost-sensitive learning. This research also concludes that there is 
no clear winner between a down-sampling approach and a cost-sensitive approach (using Random 
Forest). It is concluded though, that these approaches have performance superior to most existing 
techniques that were researched by Chen et al. (2005). The study also establishes that BRF is 
computationally more efficient with large imbalanced data, since each tree only uses a small portion of 
the training set to grow, while WRF needs to use the entire training set. It is also concluded that WRF 
is possibly more vulnerable to noise than BRF.  
 
To sum it all up, there are three widely used techniques to deal with imbalanced data: cost-sensitive 
learning, up- and down-sampling. Imbalanced data can not be evaluated using accuracy as a 
performance measure. A widely used alternative is the AUC of the ROC curve. This alternative is also 
used to calculate the ranking for the Kaggle competition.  
Between cost-sensitive and sampling techniques, recent research has not been able to distinguish 
clearly which method has an advantage over the others. However, discarding potentially useful data in 
small datasets when down-sampling can be harmful. On the other hand, overfitting is a possible result 
of up-sampling due to exact copies of data entries. Algorithms like BRF do not discard data and are 
computationally more efficient than their cost sensitive alternative (WRF). Based on this research 
(Chen et al., 2005) a BRF or any other algorithm that uses bootstrap samples could be a candidate for 
the DonorChoose competition.     
 
 
3.2 Text Mining / Text summarization 
“Text Mining is the process of analyzing text to extract information that is useful for particular 
purposes”. (Witten et al., 2011)8. 
 
Broadly interpreted, all natural language processing comes under the ambit of text mining.”  
(Witten et al., 2011). 
 
The provided data for the Kaggle competition contains a number of text attributes that can not be 
included without converting them to a more acceptable form. This is where text mining comes in. 
When following the definition of data mining by Witten et al. (2011), who formulated that data mining 
“is the extraction of implicit, previously unknown, and potentially useful information from data”, one 
could argue whether text mining is a form of data mining. Because with text mining, the information to 
be extracted is clearly and explicitly stated in the text. The problem is that the information is not 
couched in a manner that is amenable to automatic processing (Witten et al., 2011). This is exactly 
what text mining tries to achieve, converting texts to a form which is suitable for consumption by 
computers. There is no real consensus about what text mining covers. A general definition is that all 
natural language processing (NLP) tasks are a part of text mining. In practice, text mining often comes 
down to summarizing possibly interesting properties from a large body of text (text summarization). 
This chapter adapts the definition of text mining by Witten et al. (2011) in their book “Data Mining, 
Practical Machine Learning Tools and Techniques”. Other definitions would require the name of this 
chapter to be changed to Information Retrieval (IR) or Natural Language Processing (NLP).  
 
Since the text attributes in the problem at hand represent only a small fraction of the total number of 
attributes (numerical, categorical, text), this chapter focuses on a range of basic techniques that can 
be useful when a classifying problem contains a fraction of text attributes that in their current form can 
not be fed to a computer (or included in a model). 

                                                 
8 Ian H. Witten, Eibe Frank, & Mark A. Hall (2011), Data Mining, Practical Machine Learning Tools and 
Techniques, 3rd edition, 2011 
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3.2.1 Pre-processing  
3.2.1.1 Basics 
When viewing text mining as a number of techniques to convert text into a summarization of 
interesting properties which are suitable for consumption by computers, a pre-processing step seems 
a logical starting point. Punctuation, numbers, capital letters and function words (also known as stop 
words) sabotage a successful application of summarization techniques (not always!). Stop words are 
words that are usually filtered out before processing natural language data (text). There is no definite 
list of the words, but some of the most commonly known are: “the”, “is”, “at”, “which” and “on”. Usually, 
these words have no significant value. Removing stop words can improve performance of search 
engines (or machine learning algorithms) dramatically. However, problems arise when search terms 
include stop words, like: “The Who”, “Take That” or “The The”. 
 
In particular cases, removing capital letters or numbers could result in a loss of information. For 
example, when analyzing twitter feeds, a tweet with much use of capitals may or may not be likely to 
be retweeted. Therefore, it is important to be careful during the pre-processing.  
 
3.2.1.2 Document stemming 
Another, commonly used pre-processing method is document stemming. The main purpose of 
stemming is to reduce different grammatical forms of a word like its noun, adjective, verb and adverb 
to its root form. Because the meaning of different grammatical forms is usually the same, each word 
form has to be identified with its root (or base) form. The most common stemming algorithms remove 
any attached suffixes and prefixes (affixes). It is important to realize that stemming is language 
dependent. Also, most of the stemming experiments done so far are for English and other west  
European languages (Jivani, 2011)9.  
 
3.2.1.3 Porter’s algorithm 
Even though proposed back in 1980, Porters stemmer is still one of the most popular stemming 
methods. “It is based on the idea that the suffixes in the English language (approximately 1200) are 
mostly made up of a combination of smaller and simpler suffixes” (Jivani, 2011).   
 
It is a rule-based algorithm consisting of 5 steps, and within each step, rules (60 in total) are applied 
until a passing condition is fulfilled. When the condition is fulfilled, the word is changed accordingly and 
the next step is performed. The final stem at the end of the last step is returned. Porter also designed 
a framework, called Snowball, which allows programmers to develop their own stemmers for other 
character sets or languages (Jivani, 2011).   
 
 

 

                                                 
9 Anjali Ganesh Jivani (2011) , A Comparative Study of Stemming Algorithms, Department of Computer Science & 
Engineering - The Maharaja Sayajirao University of Baroda - Vadodara, Gujarat, India  
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Figure 3.3: A sample of the rules from step 1-3 in Porters algorithm and an example of stemming using the 
algorithm. All steps are performed after which a final stem is returned after step 5. (*v*) = vowel 
Source: NLP Stanford video lecture Dan Jurafsky10. 
 
Porters stemmer may be one of the most popular stemmers, but not the only one. Other popular 
stemmers are: Krovetz-, Xerox-, N-Gram-, HNN-,Dawson-, Paice / Husk -, YASS- and Lovins 
stemmer. Jivani (2011) conducted a comparative analysis of 9 different stemmers. In this research 
Porters algorithm was praised for producing the best output, having a small error rate and creating a 
language independent approach to stemming (Snowball). However, there are also some 
disadvantages to this algorithm. One being that it is time consuming. Each word goes through all the 5 
steps and 60 rules. A second disadvantage is that the stems produced are not always real words. For 
machine learning purposes this does not have to be a problem. However, if more advanced NLP 
techniques are to be applied, like semantic analyses, this could be problematic.  
 
Once stemmed, an analysis of a document’s lexical diversity or a term frequency matrix is more 
reliable and hopefully more valuable in a machine learning model. Therefore, stemming is a very 
useful technique in NLP and equivalently in text mining.  
 
3.2.1.4 Stemming versus lemmatization. 
A similar technique to stemming is lemmatization. The idea behind both techniques is the same: 
reducing a word variant to its ‘stem’ in stemming and ‘lemma’ in lemmatizing. Stemming however 
ignores the context of the word. In other words, it is a simpler technique to apply. “In stemming, 
conversion of morphological forms of a word to its stem is done assuming each one is semantically 
related” (Jivani, 2011). In practice this works quite well, for languages with relatively simple 
morphology. However, this often results in non-existent words.  
 
In contrast, lemmatizing deals with the complex process of first understanding the context. Eventually, 
the word is reduced to its ‘lemma’.  
 
 
Stemming 
introduction, introducing, introduces – introduc 
gone, going, goes – go 
 

 
Lemmatizing: 
introduction, introducing, introduces – introduce 
gone, going, goes, went – go 

Table 3.2: Difference between stemming and lemmatizing (Jivani 2011). Lemmatizing results in existing words 
and can even convert past simples (‘went’) to its root.   
 
3.2.1.5 Synonyms 
Though beyond the scope of this paper. Another interesting pre-processing option in NLP is synonym 
detection. There are many thesauri available with synonyms that can be easily implemented. 
However, according to Wei et al. (2010)11 most of these synonyms have the same or nearly the same 
meaning only in some senses. Synonym discovery is highly context sensitive. Replacing all synonym 
occurrences in for example Web search can therefore be tricky. It could ultimately lead to search intent 
drifting. When ‘predicting funding requests that deserve an A+’ and focusing on the text attributes, 
synonym replacement can be just as difficult. Ultimately, this can lead to valuable information being 
lost. Wei et al. (2010) explain this with the synonyms “baby” and “infant” which are treated as 
synonyms in many thesauri, but “Santa Baby” has nothing to do with an infant. “Santa baby” is actually 

                                                 
10 Natural Language Processing video lectures from Stanford University on coursera.org by Dan Jurafsky and 
Christopher Manning https://class.coursera.org/nlp/lecture 
11 Xing Wei, Fuchun Peng, Huishin Tseng, Yumoa Lu, Xuerui Wang, Benoit Dumoulin, Search with Synonyms: 
Problems and Solutions, - Yahoo! Labs, 701 First Avenue, Sunnyvale, California, USA, 94089, International 
Conference on Computational Linguistics 2010 

https://class.coursera.org/nlp/lecture
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the title of a song, and the meaning of “baby” in this entity is different than the usual meaning of 
“infant”. Therefore, synonym discovery is highly context sensitive. The context can not only limit the 
use of synonyms (“baby” and “infant”). It can also broaden the definition. Examples of these are 
“dress” and “attire” or “free” and “download”. In some contexts these word combinations are practically 
synonyms. In a Web search query for example, “free cd rewriter” may carry the same intent as 
“download cd rewriter” (Wei et al., 2010). Lastly, especially on the web, many new synonyms develop 
over time. “Mp3” and “Mpeg3” were not synonyms 20 years ago. However, manually updating 
synonym lists is extremely expensive. Therefore, when applying synonym detection methods, it is 
important to be aware where the texts come from. When analyzing books for example, synonym 
detection may be difficult when analyzing “The Merchant of Venice” and “The Da Vinci code”. Written 
in different times synonym detection could be difficult to apply.  
 
There are however, automatic synonym discovery systems. In practice, they turn out to be a bit too 
advanced for the job at hand (the Kaggle competition). Based on this small research about the current 
state of synonym detection, it is not advisable to incorporate such advanced methods for such small 
tasks. The fraction of text attributes is relatively small compared to the other types of attributes. Also, 
when we are analyzing things like lexical diversity replacing synonym occurrences makes no sense. 
Without synonym detection and only using basic summarization techniques a lot of information about a 
text can be stored in numerical and categorical attributes.     
   
3.2.2 Basic Summarization 
This paragraph describes some basic summarization techniques and gives intuitive examples of their 
usefulness. These are by far not the only summarizing features. This paragraph however, is intended 
to give an idea of some commonly used basic summarization techniques. With some surprisingly easy 
features, one can (indirectly) include entire texts into a machine learning model.   
 
The goal of summarization is to generate categorical or numerical features that give information about 
the text at hand. A good example is the problem of assigning a category to books in a library. Lets say 
there are four categories: short stories, children’s books, romantic novels and adult literature. Using 
the text in all the books available one could come up with measures like average word length, number 
of words, author, term frequency and lexical diversity. It makes sense that knowing the author of a 
book will help classifying the book. The number of words in the story might help assigning a book to 
the short story category. On the other hand, lexical diversity as well as average word length can help 
distinguishing between children’s books and adult literature. Lastly, a term frequency matrix can help 
recognizing which books belong to the romantic novel category. These books typically contain words 
like “love”, “romance”, “relationship” etc. This example illustrates how some simple features can 
enable the use of machine learning models based on text documents.  
 
Often used features are: average word/sentence/paragraph length and number of 
words/sentences/paragraphs in the text. Lexical diversity, similarity, term frequency and latent 
semantic analysis are a little more advanced techniques and are therefore described in the 
paragraphs below.   
 
3.2.3 Lexical Diversity 
Many studies have shown that, in the field of automatic essay scoring for second language (L2) 
learners of English, essay length and lexical diversity are strongly correlated with essay ratings 
(Mellor, 2011)12. This suggests that both essay length and lexical diversity are not only often used in 
this field but this also makes them interesting attributes in a machine learning model. Lexical diversity 
is a measure of the number of different words used in a text (Johansson, 2008)13. The measure is 
easy to  implement and practical to apply in computer analyses of large data corpora. In other words, 
“the more varied a vocabulary a text possesses, the higher the lexical diversity” (Johansson, 2008). 
After all numbers, capitals and punctuation is removed in pre-processing steps and the words have 
been stemmed, this ratio becomes an even more powerful measure. Traditionally, the lexical diversity 

                                                 
12 Andrew MELLOR (2011), Essay Length, Lexical Diversity and Automatic Essay Scoring, ,Department of Media 
Science, Faculty of Information Science and Technology, Memoirs of the Osaka Institute of Technology, Series B, 
Vol. 55. No. 2(2011) pp.1-14 
 
13 Victoria Johansson (2008), Lexical diversity and lexical density in speech and writing: a developmental 
perspective, Lund University, Dept. of Linguistics and Phonetics, Working Papers 53 (2008), 61-79 
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measure is the ratio of different words (types) to the total number of words (tokens). This is the so-
called type-token ratio, also known as TTR. When text size increases, TTR values decrease and vice 
versa. This has to do with reusing several function words in order to produce one new (lexical) word. A 
consequence of this is that TTR is only useful when comparing texts of equal length, because TTR 
penalizes longer essays (Mellor, 2011). Many alternatives have been proposed, the vast majority of 
them are adjusted alternatives to standard TTR trying to get around the effect of essay length. 
However, for the Kaggle competition, all text fields are limited to a maximum number of characters 
which allows the use of standard TTR.   
 
 
 
                                     # unique words in essay  
Lexical Diversity    =    ---------------------------------- 
                                           # words in essay 
 
Formula 3.1: Lexical diversity of an essay. When the lexical diversity is equal to 50%, this means that every other 
word is a unique word. 

3.2.4 TF*IDF 
The TF*IDF term weight algorithm is widely applied into language models to build NLP Systems and is 
the most widely used weight algorithm nowadays( Xia & Chai, 2011)14. It consists of two parts. TF, the 
term frequency, also called Local Term Weight because it does not take other documents in 
consideration, is defined as the number of times a term (word) in question occurs in a document. For 
documents, the frequency for each term may vary greatly. Therefore , frequency is an important 
attribute of term to discriminate itself from other terms ( Xia & Chai, 2011). 
“IDF (inverse document frequency) assumes that the importance of a term relative to a document is 
inversely proportional to the frequency of occurrence of this term in all the documents” (Zhang et al., 
2010)15. In other words; IDF is based on counting the number of documents in the collection being 
searched that are indexed by the term (Xia & Chai, 2011). IDF is also known as Global Term Weight, 
because it takes all the documents into consideration.  
 
TF*IDF was evolved from IDF with the heuristic intuition that a term which occurs in many documents 
is not a good discriminator (Zhang et al., 2010). TF*IDF is therefore used as an indicator of the 
importance of a term in representing a document. (Xia & Chai, 2011).   
    

 
Formula 3.2: classical formula for TF*IDF weighting (Zhang et al., 2010) 
 
In the classical formula of TF*IDF, as depicted above, wi,j represents the weight for term I in document 
j, N is the number of documents in the collection, tfi,j is the term frequency of term I in document j and 
dfi is the document frequency of term i in the collection. According to Robertson (2004) as cited in 
Zhang et al. (2011) “the basic idea of TF*IDF is from the theory of language modelling that the terms in 
a given document can be divided into two categories: those words with eliteness and those words 
without eliteness”. In other words, TF*IDF is a measure to show the importance of a term in the 
document collection.   
 

                                                 
14 Tian Xia, Yanmei Chai (2011), An improvement to TF-IDF: Term Distribution based Term Weight Algorithm, 
JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 
15 Wen Zhang, Taketoshi Yoshida, Xijin Tang  (2010), A comparative study of TF*IDF, LSI and multi-words for text 
classification, Expert Systems with Applications, Elsevier 2010 
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As with almost any algorithm in the field of text mining, there are some drawbacks to this algorithm as 
well. Some of the criticisms are that it is too ‘ad hoc’ because TF*IDF is not directly derived from a 
mathematical model. Another problem is the size of the feature set (dimensionality). The size of a 
document term matrix (a sparse matrix) is based on the size of the vocabulary across the entire 
dataset. This brings about a huge computation on weighting all these terms (Christopher & Hinrich 
(2001) as cited in Zhang et al. (2011). Xia & Chai (2011) also state that even though stop words are 
often removed the problem of empty and function terms, including conjunctive, preposition, some 
adverbs, auxiliary term, modal particles that are usually present with a high frequency cannot be 
completely resolved. Despite these drawbacks, TF*IDF remains the most popular weight algorithm 
nowadays.  
 
In conclusion, TF*IDF is another technique used to transform text into numerical vectors, i.e. text 
representation. For the Kaggle competition however, with the few text attributes present, one might 
need to consider the trade-off between model improvement and computation time.      
 
3.2.5 Conclusion 
Since one of the main themes in text mining is text representation, which is fundamental and 
indispensable for text-based intelligent information processing  (Zhang et al. 2010), this chapter 
focused on text representation techniques. There is no real consensus to what domains the different 
aspects of NLP actually belong to. However, whether transforming text into numerical vectors falls 
under text mining or a different field, the problems to be solved remain the same. This chapter 
attempted to explain some popular and simple techniques to help extract information from the text 
attributes in the Kaggle competition. Using these techniques results in a number of new features that 
can be easily implemented in a Machine Learning model (Random Forest, Support Vector Machine, 
Neural Network, Decision Tree etc.). Whether these actually improve the model is to be determined by 
trial and error. 

3.3 Random Forest 
Before justifying the selected final model, Random Forest, This chapter starts with some preliminaries 
about Random Forest. Doing so, basic knowledge about constructing single classification trees is 
assumed.  
 
3.3.1 Ensemble Learning: Random Forest  
Ensemble learning is a popular technique within supervised learning to obtain better predictive 
performance than with constituent algorithms. “Ensemble methods are learning algorithms that 
construct a set of classifiers and then classify new data points by taking a (weighted) vote of their 
predictions” (Dietterich, 2000)16. Ensembles can often perform better than any single classifier 
(Dietterich, 2000). There are many different and commonly used ensemble learning algorithms like 
bagging, boosting, AdaBoost and Stacked Generalization. Deciding between these algorithms can 
often be dictated by trial and error and applicability (e.g. computation time).    
 
Random Forest is an ensemble learning method for classification (and regression). It operates by 
constructing a multitude of decision trees. In order to classify a new object from an input vector, the 
input vector passes through each of the trees in the forest. This results in a classification by each of 
the trees. Like with any ensemble learning method, a data point is classified by a vote of the 
classifications. Since each tree gives a classification, they are said to “vote” for a particular class 

                                                 
16 Thomas G. Dietterich  (2000), Ensemble Methods in Machine Learning, Multiple Classifier Systems, Lecture 
Notes in Computer Science Colume 1857, 2000, pp 1-15. 
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(Breiman, 2001)17. Obviously, the classification having the most votes (over all the trees in the forest) 
is selected. Random Forests (like any forest) can consist of thousands of trees. Each tree is grown 
according to the following scheme: 
 

Lets assume the number of cases in the training set is N and there are M input variables. Now for 
every new tree: 
1. With replacement, sample N cases at random from the training set. This sample will be the training 
set for the single tree. 
2. Specify a number m<<M such that at each node, m variables are selected at random out of the M 
and the best split on these m is used to split the node. This value m is held constant during the forest 
growing. 
3. There is no pruning involved. Each tree is grown to the largest extent possible.                                                           

Table 3.3: Tree growing scheme for a tree in a Random Forest based on website by Breiman & Cutler18.     
 
Due to sampling with replacement in step 1, all the N sampled cases can have duplicate data records 
and can be missing several data records from the original dataset. This is called bagging, the “out of 
the bag” values (or examples) turn out to be an important measure to decrease forest error rate. 
 
3.3.2 OOB: out of bag 
Breiman (2001) shows that the forest error rate depends on two things. First of all, there is the 
correlation between any two trees in the forest. Increasing the correlation increases the error rate. 
Secondly, the strength of each individual tree obviously influences the error rate. A tree with a low 
error rate is a strong classifier. Increasing the strength of individual trees decreases forest error rate. 
When m is reduced, both the correlation and the strength is reduced. Consequently, increasing m will 
increase correlation and strength. There is clearly a trade-off between maximizing strength and 
minimizing correlation between any two trees. A value m within an optimal range, usually quite wide, 
can be found using the so-called Out Of Bag (OOB) error rate (Breiman & Cutler). According to this 
website, m is the only adjustable parameter (apart from number of trees) to which Random Forests are 
somewhat sensitive.  
 
When the training set for the current tree is drawn with replacement, about one-third of the instances 
are left out (Breiman, 2001). This is due to sampling with replacement. The one-third of instances that 
are left out, are not used in the construction of the kth tree. “This OOB data is used to get a running 
unbiased estimate of the classification error as trees are added to the forest. It is also used to get 
estimates of variable importance” (Breiman & Cutler). This works as follows, each case is left out in 
the construction of the kth passes through the kth tree to get a classification. Doing so, a test set 
classification is obtained for each case in about one-third of the trees. When we take j to be the class 
that got the most votes every time case n was OOB. Then the OOB error estimate is equal to “the 
proportion of times that j is not equal to the true class of n averaged over all cases” (Breiman & 
Cutler). The out-of-bag estimates are unbiased and because of the above, Random Forests do not 
require cross validation or a separate test set to get an unbiased estimate of the test set error 
(Breiman, 2001). “Strength and correlation can also be estimated using out-of-bag methods. This 

                                                 
17 Leo Breiman (2001), RANDOM FORESTS, Statistics Department, University of California, Berkley, CA 94720, 
January 2001 
 
18 Leo Breiman & Adele Cutler, Random Forests,  
[Website] http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm  
Theoretical underpinnings of page are laid out in paper “Random Forests” (Breiman, 2001) 

http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
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gives internal estimates that are helpful in understanding classification accuracy and how to improve it” 
(Breiman, 2001). For details about this approach, please consult: RANDOM FORESTS, Leo Breiman, 
2001.  
 
3.3.3 Balanced Random Forest 
As was discussed in the chapter about imbalanced data, Chen et. al. (2005)19 describe the process of 
doing modifying bootstrap samples and come up with a Balanced Random Forest (BRF) algorithm. 
The distinguishing factor in their algorithm works as follows:  “For each iteration in random forest, draw 
a bootstrap sample from the minority class. Randomly draw the same number of cases, with 
replacement, from the majority class.” (Chen et. al, 2005). Assume K is the number of minority cases 
in a training set N. Instead of sampling N cases at random from the training set (step 1 in the Random 
Forest scheme), sample K cases, with replacement, from the minority class. Continue by sampling K 
cases, with replacement, from the majority class. This results in a balanced training set to build a tree 
in the forest. The Balanced Random Forest scheme  

Lets assume the number of cases in the training set is N and there are M input variables, also there 
are K cases of the minority class. Now for every new tree: 
1. With replacement, sample k<K minority cases at random from the training set. Also sample k<K 
majority cases at random from the training set. Together, these samples will be the training set for 
the single tree (a balanced training set). 
2. Specify a number m<<M such that at each node, m variables are selected at random out of the M 
and the best split on these m is used to split the node. This value m is held constant during the forest 
growing. 
3. There is no pruning involved. Each tree is grown to the largest extent possible.                                                           

Table 3.4: Tree growing scheme for a tree in a Balanced Random Forest 
 
In their study, Chen et. al (2005) establish that BRF is computationally more efficient with large 
imbalanced data than its counterpart; the Weighted Random Forest (WRF). The reason behind this, is 
that BRF only uses a small portion of the training set to grow, while WRF needs to use the entire 
training set. It is also concluded that WRF is possibly more vulnerable to noise than BRF.  
 
3.3.4 Advantages 
According to Breiman (2001) There are many advantages to using Random Forest. First of all it is 
unexcelled in accuracy among many current algorithms. It is relatively robust to outliers and noise. It 
runs computationally efficiently on large databases and is faster than bagging or boosting. Breiman & 
Cutler expand this list by stating that Random Forests can handle thousands of input variables without 
variable deletion and that they do not overfit. One can run as many trees as desired while the forest is 
generated very fast. Another advantage is, just like with normal decision trees, a Random Forest can 
handle combinations of numerical and categorical data. Also, scaling is not required because Random 
Forest training is invariant to all combinations of monotonic transformations of predictors. Last but not 
least, a BRF solves the problem of dealing with imbalanced data.  
 
There is much more to write about Random Forests. For example, measures for variable importance, 
gini importance, interactions and proximities. However, these are beyond the scope of this paper. For 
more information, again, consult: RANDOM FORESTS, Leo Breiman, 2001. This chapter has tried to 
explain the theoretical basics of Random Forests. The coming chapter will describe why this makes 
Random Forests particularly interesting for the Kaggle competition.  
                                                 
19 Chao Chen, Andy Liaw, Leo Breiman (2004), Using Random Forest to Learn Imbalanced Data. 
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4. Method 
Various techniques to solve data-related issues, like the presence of text and the data being 
imbalanced, have been presented in previous chapters. Therefore, this chapter tries not only to justify 
the techniques selected, but also gives the main reasons for selecting Random Forest as the final 
model. The chapter can be viewed as the summation of previous theoretical chapters resulting in a 
final model and its parameters. Also, the features generated are discussed.  
 
As was stated earlier, an algorithm for this challenge needs to fulfill a few criteria. First of all, it needs 
to be able to handle mixed data and handle large databases with many input variables. More 
importantly however, is the desire for an algorithm that works fast and is computationally efficient. 
Participating in a competition for just one month, requires many runs of the algorithm in a short time. 
Random Forest is clearly not the only model that fulfils these conditions. However, through literature 
research and by simply applying different models to the data, other candidates were eliminated. 
Support Vector Machines (SVM) and Neural Networks were some of the eliminated candidates. 
Because Random Forests are fast, scaling is unnecessary, are insensitive to correlating variables, 
there are many methods to help Random Forests handle imbalanced data, and there is only little 
parameter tuning required, it is an ideal algorithm for the Kaggle competition. 
 
4.1 Balanced Random Forest 
The table below shows the settings for the Balanced Random Forest. These are actually the only 3 
variables that makes sense (see chapter on Random Forests). Number of trees is optimized through 
trial and error since there simply is no optimization for the number of bootstrap replicates. Taking k = K 
makes sense knowing there is small number of minority cases it is preferred to take this sample size to 
as large as possible. The number of variables selected at random from the input variables is often 
calculated by: m = sqrt(M). Optimizing this variable turns out to be difficult. It easily disturbs the 
relation between tree strength and correlation (see chapter on Random Forests).   
 
m = Number of variables 
selected at random from the 
input variables (M) 
m << M 

Number of trees Number of sampled minority 
cases k 

m = Sqrt(M) 5001 k = K 
Table 4.1: Taking m = Sqrt(M) is a widely used size for m. The number of trees is often set to an uneven number 
to break ties. The number of sampled minority cases k=K uses as much minority cases as possible (with 
replacement).   
 
4.2 Feature generation 
Like with any machine learning task, feature generation is the difference between failure and success. 
For this task the feature generation can be divided into three categories: simple adjustments to 
numerical or categorical features, text mining features and features based on the overlapping features. 
For a list of all the features used in the model, please consult the Appendix.    
 
4.2.1 Numerical and categorical 
Many numerical and categorical features were generated. However, the majority of these features did 
not prove to be useful. Some features were even based on external data about education quality per 
state. In the end, only two features turned out to improve the model. These features were calculated 
using two existing features. They are listed in the table below: 
 
Feature: Formula: 
 
total_price_per_student_excl  
 

 
total_price_excluding_optional_support / students_reached 

 
total_price_per_student_incl  
 

 
total_price_including_optional_support / students_reached 

Table 4.2: Two generated formulas from existing features in the data set. 
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4.2.2 Text 
In the theoretical chapters, some text mining techniques were explained. For the Kaggle competition 
however, with the few text attributes present, the trade-off between model improvement and 
computation time resulted in the decision not to use TF*IDF. The data pre-processing techniques like 
stemming and summarization techniques like lexical diversity did prove to be useful. The table below 
shows the generated features using text mining techniques: 
 
After removing punctuation and removing 
numbers: 

After removing punctuation, removing 
numbers and stemming the texts: 

length_title 
words_per_title  
wsize_per_title  
 
length_short_description 
words_per_short_description  
wsize_per_short_description  
 
length_need_statement 
words_per_need_statement  
wsize_per_need_statement  
 
length_essay 
words_per_essay  
wsize_per_essay  
 

num_uniq_words_title  
lex_div_title  
 
num_uniq_words_short_description  
lex_div_short_description  
  
num_uniq_words_need_statement 
lex_div_need_statement  
 
num_uniq_words_essay  
lex_div_essay  
 

Table 4.3: Generated numerical features using text mining techniques 
 
4.2.3 Overlap approach 
In the data exploration chapters it was already concluded that for features like school – and teacher id 
there is overlap. The test set also contains new teacher id’s of which there is no knowledge. However, 
features like “teacher_funding_request_frequency” (how many times did the teacher request funds) 
and what has been their success rate up until that request, are also interesting. The frequency can be 
informative because being successful in requesting funds might be a learning process. A second 
request could be more successful than a first. The success rate shows something similar. How 
successful is a particular teacher (or school). These features can help predicting an exciting project.  
   
The frequency feature can be inserted quite easily. The training- and test set can be adjusted in a way 
that frequencies are included. The success rate on the other hand, is a little more difficult. The table 
below shows the result of what has been explained so far. The training set is adjusted to a training set 
that includes frequency and success rate.   

 
Table 4.2: Including teacher_frequency and teacher_success_rate in the training set.  
 
The missing values in the success rate column can be replaced with the mean success rate on the 
first request. In the test set however, a new teacher id may occur more than once (a teachers first, 
second and third request can occur). Therefore, for the test set success rate, at frequency N, the 
success rate is replaced by the mean success rate at request N. 
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This results in the following new features: 
 
Features 
Teacher_Frequency 
Teacher_Success_Rate 
School_Frequency 
School_Success_Rate 
State_Frequency 
State_Success_Rate 
County_Frequency 
County_Success_Rate 
Table 4.3: Overlap features 
 
4.3 Variable inclusion 
Variable inclusion is an important aspect. For this particular assignmment, a typical trial-and-error 
method is advisable. This is due to the many different variables and time being scarce. This trial-and-
error method starts with a basic solution with a few variables (selected by intuition). From there on new 
variables are included and the leaderboard score is evaluated. If the attribute(s) improve the score, 
they should be included. Optimizing leaderboard scores like this, is a good alternative to advanced 
variable importance measures which consume more time.      
 
5. Results and Discussion 
Over the duration of this project many different models were attempted. The previous chapters have 
already shown why a BRF is a suitable model for this particular problem. However, in the early stages 
of the project different possibilities were also investigated. The graph below shows the increasing 
leaderboard score on Kaggle.com with the corresponding modeling attempts.  
 

 
Figure 5.1: Increasing leaderboard score on Kaggle.com with the corresponding modeling attempts. The final 
leaderboard score: 0.61545 
 
A Random Forest was not the only possible model. Neural Networks (NN) seemed an interesting 
option as well. However, a Neural Network is not as computationally efficient and fast as a Random 
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Forest. Also, finding optimal parameters is an important aspect of a Neural Network. Random Forests 
are more user-friendly (faster, less parameter tuning). An SVM also proved to be too slow for the task 
at hand.  
In the early stages, the down sampling (see graph) approach was different. Before applying any 
model, entries were deleted until the data was balanced (50/50). Doing so, means throwing away 
valuable data. However, when the first BRF and the text features were included around submission 
10, a giant increase in score was achieved.   
At that point (submission 20) a linear model also proved to be fast and with promising results. 
However, when more and more features were introduced the Balanced Random Forest worked much 
better. The “overlap approach” eventually eliminated any remaining doubt and showed that BRF was 
the best algorithm for the job. Furthermore, it turned out that date features performed poorly  and an 
attempt to include external data about education quality and economic measures per state performed 
poorly. The final result of this competition is a 47th position on the Kaggle leaderboard: 
 

Figure 5.2: The final leaderboard position (47th).     
 
Important variables to achieve this result turned out to be “focus subject” related, price related and 
location related. The generated text mining features and the frequency/succes_rate features also 
improved the model drastically. As was stated earlier, a trial-and-error method was used for variable 
inclusion. Optimizing leaderboard scores like this, is a good alternative to advanced variable 
importance measures which consume more time. However, doing so does not allow a thorough 
analysis about the importance of the variable within the model. There are measures to do so but that is 
beyond the scope of this paper. Nevertheless, for next time, it is an interesting option to change the 
feature inclusion technique. Instead of trial-and-error, one could use different variable importance 
measures for Random Forests (like Mean Decrease Gini). This is definitely something that could have 
been researched more extensively. This could result in a more convincing chapter on variable 
importance.  
  
5.1 Validation 
When it comes to validation and evaluation of the models, Kaggle provided two test sets: a temporary 
test set and a final test set. The final leaderboard ranking was determined using the so-called “final 
test set”. However, throughout the competition, any model could be validated using the temporary test 
set (actually a validation set). This test set consisted of the final test set’s first 40% of entries. Because 
of this, a cross validation method was not really necessary. I simply submitted the classifications and 
both score and ranking (using test set) were computed.  
On the final day of the competition, the final scores for all submissions were revealed. In other words, 
on the closing day of the competition, for each validation submission I made, the performance using 
the final test set was revealed as well. Only two preselected submissions would be used for the final 
ranking.   
The graph below shows how performance of the model using the test sets related to the nth 
submission. Over the different submissions, both sets follow the same pattern. However, the final test 
score is always slightly lower. 
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Figure 5.3: Submission scores in chronological order based on final- and test set.  
 
At submission 28 and between 34 and 36 there are surprising differences. The absolute deviations are 
much higher here than on average. The table below illustrates this:    
 
 
# 

Scores 
Temp 

 
Final 

 
Absolute  
deviation 

28 
34 
35 
36 
 
 

0,5590 
0,6059 
0,5954 
0,5954 

 
 

0,5182 
0,5716 
0,5420 
0,5420 

 
 

0,0408 
0,0343 
0,0534 
0,0534 
 
MAD=0,0126 

Table 5.1: Maximum differences between final- and test set. These submission had in common that  they all 
included date attributes. Therefore, one could say that due to differences between the two sets we can confirm 
that date related attributes are indeed difficult to use.  
 
The different submissions exhibiting these large deviations (compared to the MAD of all the 
submissions) are completely different. Submission 34 for example used a GLM, while the others used 
Random Forests with completely different parameters and attributes. However, they all had one thing 
in common. They all included date related attributes. None of the other submissions contained these 
since they proved to be very hard to utilize. An offline validation method I programmed did show 
improvement when including date related features. However, Kaggle’s online test set showed worse 
and worse results when including more date related features. This confirmed the idea of doing all the 
validation online with the provided temporary test set. Many other competitors also struggled with date 
related attributes. Consulting the competition’s forum reveals that these competitors used the fact that 
throughout a year the number of exciting projects slowly decreases. In other words, in the beginning of 
an academic year people are more likely to donate to school projects. This is often referred to as 
decay. Assuming that teachers who discover DonorChoose.org are likely to make new donation 
requests within the same year, one could say this decay is also (very) mildly included in the BRF. This 
is due to the inclusion of teacher frequency and success rate. Nevertheless, applying a linear decay 
could have improved the final score and allowed inclusion of date related attributes.   
 
Obviously, within a competition like this, many decisions have to be made. Examples of these are: 
How advanced will the text mining models be? How advanced should the missing value techniques 
be? What is the trade-off between a computationally efficient algorithm and an algorithm that could 
maximize the score? Etc. However, it is impossible to substantiate every decision and I think that’s 
what makes the field of machine learning interesting. Sometimes it is just a matter of trial-and-error.   
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7. Conclusion 
Predicting funding requests that are exciting can be challenging. In this research the problem was 
analyzed and based on typical properties of this problem models and techniques were selected. There 
were a number of properties that were taken into account when solving the problem. The two most 
important properties were the imbalanced nature of the data and the presence of text attributes. 
Techniques to deal with these data characters were researched and described in this paper. A proven 
technique to deal with imbalanced data is down sampling. Many Machine Learning algorithms take 
bootstrap samples from the training set. These samples can be modified, resulting in balanced 
samples without loss of information (as is the case with traditional down sampling). Therefore, this 
method was implemented in the final model.  
The second complicating factor was the presence of text attributes. Again, after thorough research, 
text mining techniques were used to summarize text using new numerical attributes like lexical 
diversity, average word length, text length and number of words.  
The fact that the data was mixed (numerical and categorical) also required attention when choosing 
the model. Another important requirement for an algorithm was that it had to be fast. I only participated 
in the competition for one month. Algorithms with extreme running times would cause major problems.  
 
Taking the above into account, Balanced Random Forest (BRF) is an example of a suitable algorithm. 
There are many advantages to using a BRF. For example, BRF does not require scaling, is fast, 
imbalanced data or mixed data is no problem, is robust to outliers and noise and requires little 
parameter tuning. 
 
When it comes to feature generation, some new features were created using the text summarization 
techniques. Other features were created by adjusting existing features. However, one of the most 
important new features was created using the overlapping features (school id and teacher id). This 
method created two new features: success rate and frequency.     
 
By applying these techniques the goal (top 50) for this research was achieved with a ranking of 
47/472. Therefore, BRF is an incredibly effective algorithm for large, imbalanced and mixed data 
problems with some text attributes. In conclusion, sufficient data understanding in combination with 
theoretical understanding of approaches to tackle data related issues does not require advanced 
Machine Learning models. A slightly adjusted Random Forest model showed impressive (suboptimal) 
results. Going through the forums of Kaggle.com shows that many top 50 competitors used more 
advanced techniques.   
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APPENDIX 1 
1.1 Extra Information and Research question as posted on Kaggle.com 
Extra Information 
This Research Paper project started on June 1st (2014) and a final submission to Kaggle was made on 
the 29th of June. The Kaggle contest however, was active from May 16th until July 16th. 
For the competition, an HP Ultrabook with 16 GB RAM was used. Computations were carried out in R, 
a free software environment for statistical computing and graphics.  
 
Throughout July and September parts of this paper were reviewed and rewritten resulting in a final 
paper which was finished at the end of September 2014. 
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1.2 Advantages of competing in a Kaggle competition 
Competing in a Kaggle competition guarantees scientific or social relevance. This is confirmed by the 
amount of money ($2000) that is awarded to the most successful solutions to this particular problem. 
Almost 500 teams competed in this challenge. Therefore, the final ranking in the competition serves as 
an indication of the quality of the research.   
Thirdly, a study20 on the importance of and time spent on different modeling steps states that 
approximately 20% of time is spent on data collection. Since the Research Paper project is 
recommended to be carried out within a month, the already collected and slightly cleaned-up data of a 
Kaggle competition is definitely an advantage. The clearly formulated problem is also an important 
reason for choosing a Kaggle competition. This enables a focus on solving the problem instead of 
formulating it and leaves more opportunity for theoretical background research to substantiate any 
modeling decisions.  
 
Some notes: 
The predefined research period was a single month (June 2014). The Kaggle competition however, 
was open for two months. This means I withheld myself from new submissions after June 30. 
Therefore the final ranking of this model could have been even better. My top 10% ranking proves the 
significance of this paper and suggests that when attempting to remove a number of the practical 
constraints the results could have been even better. In other words: even though limited in a number 
of ways, my top 50 goal in the Kaggle competition was achieved without extensive Data 
Mining/Machine Learning experience. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
20 M. Arthur Munson (2011), A study on the importance of and time spent on different modeling steps,    ACM SIGKDD 
Explorations newsletter, v.13 n.2, December 2011 http://dl.acm.org/citation.cfm?id=2207243.2207253  
 
 

http://dl.acm.org/citation.cfm?id=2207243.2207253
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Appendix 2 
Appendix 2.1-2.4 are directly taken from Kaggle: 

http://www.kaggle.com/c/kdd-cup-2014-predicting-excitement-at-donors-choose/data  

 

2.1 Data 

The data is provided in a relational format and split by dates. Any project posted prior to 2014-01-01 is 

in the training set (along with its funding outcomes). Any project posted after is in the test set. Some 

projects in the test set may still be live and are ignored in the scoring. We do not disclose which 

projects are still live to avoid leakage regarding the funding status.  

2.2 File descriptions 

 donations.csv - contains information about the donations to each project. This is only  

             provided for projects in the training set. 

 essays.csv - contains project text posted by the teachers. This is provided for both the  

             training and test set. 

 projects.csv - contains information about each project. This is provided for both the training  

             and test set. 

 resources.csv - contains information about the resources requested for each project. This is      

             provided for both the training and test set. 

 outcomes.csv - contains information about the outcomes of projects in the training set. 

 sampleSubmission.csv - contains the project ids of the test set and shows the submission  

             format for the competition. 

 

 

 

2.3 "Exciting" Projects 

Exciting projects meet a number of requirements specified by DonorsChoose.org. Note that the term 

"exciting" is meant as a business construct and does not imply that non-exciting projects are not 

compelling to teachers/students/donors! To be exciting, a project must meet all of the following five 

criteria. The name in parentheses indicates the field containing each feature in the data set. 

 was fully funded (fully_funded) 

 had at least one teacher-acquired donor (at_least_1_teacher_referred_donor) 

 has a higher than average percentage of donors leaving an original message (great_chat) 

 has at least one "green" donation (at_least_1_green_donation) 

http://www.kaggle.com/c/kdd-cup-2014-predicting-excitement-at-donors-choose/data
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 has one or more of: 

                       - donations from three or more non teacher-acquired donors           

                          (three_or_more_non_teacher_referred_donors) 

                       - one non teacher-acquired donor gave more than $100          

                         (one_non_teacher_referred_donor_giving_100_plus) 

                       - the project received a donation from a "thoughtful donor"  

                         (donation_from_thoughtful_donor) 

You will find this information summarized in outcomes.csv, including the boolean value for is_exciting. 

2.4 Data fields 
Below is a brief explanation of the provided data fields. Descriptions of self-explanatory names are 
omitted. 

outcomes.csv 

is_exciting - ground truth of whether a project is exciting from business perspective 

at_least_1_teacher_referred_donor - teacher referred = donor donated because teacher shared a 

link or publicized their page 

fully_funded - project was successfully completed 

at_least_1_green_donation - a green donation is a donation made with credit card, PayPal, Amazon 

or check 

great_chat - project has a comment thread with greater than average unique comments 

three_or_more_non_teacher_referred_donors - non-teacher referred is a donor that landed on the 

site by means other than a teacher referral link/page 

one_non_teacher_referred_donor_giving_100_plus - see above 

donation_from_thoughtful_donor - a curated list of ~15 donors that are power donors and picky 

choosers (we trust them selecting great projects) 

great_messages_proportion -  how great_chat is calculated. proportion of comments on the project 

page that are unique. If > avg (currently 62%) then great_chat = True 

teacher_referred_count - number of donors that were teacher referred (see above) 

non_teacher_referred_count - number of donors that were non-teacher referred (see above) 

projects.csv 

projectid - project's unique identifier  

teacher_acctid - teacher's unique identifier (teacher that created a project) 

schoolid - school's unique identifier (school where teacher works) 

school_ncesid - public National Center for Ed Statistics id 

school_latitude 

school_longitude 

school_city 

school_state 
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school_zip 

school_metro 

school_district 

school_county 

school_charter - whether a public charter school or not (no private schools in the dataset) 

school_magnet - whether a public magnet school or not 

school_year_round - whether a public year round school or not 

school_nlns - whether a public nlns school or not 

school_kipp - whether a public kipp school or not 

school_charter_ready_promise - whether a public ready promise school or not 

teacher_prefix - teacher's gender 

teacher_teach_for_america - Teach for America or not 

teacher_ny_teaching_fellow - New York teaching fellow or not 

primary_focus_subject - main subject for which project materials are intended 

primary_focus_area - main subject area for which project materials are intended 

secondary_focus_subject - secondary subject 

secondary_focus_area - secondary subject area 

resource_type - main type of resources requested by a project 

poverty_level - school's poverty level.  

highest: 65%+ free of reduced lunch 

high: 40-64% 

moderate: 10-39% 

low: 0-9% 

grade_level - grade level for which project materials are intended 

fulfillment_labor_materials - cost of fulfillment 

total_price_excluding_optional_support - project cost excluding optional tip that donors give to 

DonorsChoose.org while funding a project  

total_price_including_optional_support - see above 

students_reached - number of students impacted by a project (if funded) 

eligible_double_your_impact_match - project was eligible for a 50% off offer by a corporate partner 

(logo appears on a project, like Starbucks or Disney) 

eligible_almost_home_match - project was eligible for a $100 boost offer by a corporate partner 

date_posted - data a project went live on the site 

donations.csv 

donationid - unique donation identifier 

projectid - unique project identifier (project that received the donation) 

donor_acctid - unique donor identifier (donor that made a donation) 

donor_city 
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donor_state 

donor_zip 

is_teacher_acct - donor is also a teacher 

donation_timestamp 

donation_to_project - amount to project, excluding optional support (tip) 

donation_optional_support - amount of optional support 

donation_total - donated amount 

dollar_amount - donated amount in US dollars 

donation_included_optional_support - whether optional support (tip) was included for 

DonorsChoose.org 

payment_method - what card/payment option was used 

payment_included_acct_credit - whether a portion of a donation used account credits redemption 

payment_included_campaign_gift_card - whether a portion of a donation included corporate 

sponsored giftcard 

payment_included_web_purchased_gift_card - whether a portion of a donation included citizen 

purchased giftcard (ex: friend buy a giftcard for you) 

payment_was_promo_matched - whether a donation was matched 1-1 with corporate funds 

via_giving_page - donation given via a giving / campaign page (example: Mustaches for Kids) 

for_honoree - donation made for an honoree 

donation_message - donation comment/message. Used to calcualte great_chat 

essays.csv 

projectid - unique project identifier 

teacher_acctid - teacher id that created a project 

title - title of the project 

short_description - description of a project 

need_statement - need statement of a project 

essay - complete project essay 

resources.csv 

resourceid - unique resource id 

projectid - project id that requested resources for a classroom 

vendorid - vendor id that supplies resources to a project 

vendor_name 

project_resource_type - type of resource 

item_name - resource name (ex: ipad 32 GB) 

item_number - resource item identifier  

item_unit_price - unit price of the resource 

item_quantity - number of a specific item requested by a teacher 
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Appendix 3 
3.1 Kaggle leaderboard 
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3.2 Text mining graphs 
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3.2 Text mining graphs 
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3.2 Text mining graphs 
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3.2 Text mining graphs 
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3.2 Text mining graphs 

 

 

 

 

 

 

 

 
 

 

 


