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Abstract 

In this paper we will review the paper titled “Extended BIC for small-n-large-P sparse glm” 

(Chen, Jiahua and Zehua, 2012). The situation of small-n-large-P has become common in 

genetics research, medical studies, risk management, and other fields. Feature selection is 

crucial in these studies yet poses a serious challenge. The traditional criteria such as AIC, BIC, 

and cross-validation choose too many features. In this paper, EBIC is shown to be variable 

selection consistent under generalized linear models.  

 First we will introduce the linear model then we will show the needs for the generalized linear 

model with some examples. Feature and model selection is the title of what comes next, then 

how to prepare data and what are the conditions to use the method explained in this paper. 

𝑔𝑙𝑚𝑛𝑒𝑡 in R is the package used  to solve the problem, then we will explain the method using 

two examples of real data.  
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Preface 
 

Writing a research paper is part of acquiring the Master’s degree in Business Analytics at the VU 

University Amsterdam. The purpose of this paper is to give the student the opportunity to gain 

experience in doing research on a topic of interest and use the techniques and knowledge that 

the student has obtained during the study.  

The subject of this paper is to review the paper titled “EXTENDED BIC FOR SMALL-N-LARGE-P 

SPARSE GLM” (Chen, Jiahua and Zehua, 2012). 

My supervisor during this research was Dr. E.N. Belitser of the VU University. I want to thank him 

for all the help and support.   
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Introduction 
 

The most of the statistical methods involve the analysis of relationships between measurements 

made on groups of subjects or objects. Measurements consist of two types of variables: 

explanatory and response variables. In order to analyze data we need first to model these data, 

the structural form of the model gives better look to the patterns of interactions or associations 

in data. Inference for the model parameters can show how and which explanatory variable(s) 

are related to the response variable(s). These variables can be measured in different scales such 

as Nominal classifications, Ordinal classifications or Continuous measurements. 

A model with multiple response variables modeled jointly is called Multivariate Model and if the 

model contains one response variable then is called Univariate Model. 

 

These models (multiple or univariate) could be linear or non-linear models. A model is linear 

when each term is either a constant or the product of a parameter and a predictive variable; a 

linear equation can then be constructed by adding the results for each term. If the equation 

doesn’t meet the criteria above for a linear equation, it’s nonlinear. 

The response variable in these models could be normally distributed which is known as Linear 

Model whilst the Generalized Linear Model is an extension of the linear model that allows the 

specification of models whose response variable follows different distributions.  

On the other hand, a common misunderstanding is between the words multiple and 

multivariate. While the word “multiple” applies to the number of predictors that enter the 

model (or equivalently the design matrix) with a single outcome (Y response), the word 

“multivariate” refers to a matrix of response vectors (how many dependent variables / 

outcomes you have). 

Here we will give a short overview of Generalized Linear Models (GLM). We shall see that these 

models extend the linear modeling framework to dependent (or responses) variables that are 

not normally distributed. 

  

How many dependent / response 
variables? 

>1 Multivariate Model 

1 Univariate Model 
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Linear Models 
 

Before we delve into the GLM model, we will take a fast look at the Linear Model. Linear models 

are those statistical models in which a series of parameters are arranged as a linear combination 

of the parameters which describe the model under consideration. The term ‘linear’ in this 

context does not pertain to the nature of the relationship between the response variable and 

the predictor variable(s) but rather to the linear relation with respect to the parameter. 

 

Assuming that we have a response variable (Y) and explanatory variables (X’s), then we can 

model the responses as a function of the explanatory variables: 

𝑌𝑖 =  𝛽0 + 𝛽1𝑥1𝑖 + ⋯ +  𝛽𝑝𝑥𝑝𝑖 +  𝜀𝑖. 

The response  𝑌𝑖  , i = 1,. . . ,n is modeled by a linear function of explanatory variables 𝑥𝑗  , j = 1, . . 

. , p plus an error term. 

This can be written in a more general form 

𝑌 = 𝑋𝛽 + 𝜀. 

Where  

𝜀 ~ 𝑁 ( 0 ,  𝜎2𝐼 ). 

𝑌 is the 𝑛 𝑥 1 vector of expectations, and 𝑋 is so called the design matrix1. Errors 𝜀𝑖  are assumed 

independent and identically distributed such that: 

𝐸(𝜀𝑖) = 0, 𝑎𝑛𝑑  𝑣𝑎𝑟(𝜀𝑖) =  𝜎2. 

Some examples of the application of the linear models are: Simple linear regression, multiple 

regression, one-way ANOVA and two-way ANOVA. 

A regression with two or more explanatory variables is called a multiple regression (the term 

was first used by Pearson, 1908). Rather than modeling the mean response as a straight line, as 

in simple regression, it is now modeled as a function of several explanatory variables. The 

general purpose of multiple regression is to analyze the relationship between several 

independent or predictor variables and a dependent or criterion variable. 

The computational problem that needs to be solved in multiple regression analysis is to fit a 

straight line (or plane in an n-dimensional space, where n is the number of independent 

variables) to a number of points. In the simplest case - one dependent and one independent 

variable - we can visualize this in a scatterplot (scatterplots are two-dimensional plots of the 

scores on a pair of variables). 

                                                             
1  Is a matrix of values of explanatory variables, often denoted by𝑋. 
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The function lm can be used to perform multiple linear regressions in R and much of the syntax 

is the same as that used for fitting simple linear regression models.  

𝑙𝑚(𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 ~ 𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦_1 +  𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦_2 + … +  𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦_𝑝) 

R uses 

+ To combine elementary terms, as in 𝐴 + 𝐵. 

: For interactions, as in𝐴: 𝐵; 

* For both main effects and interactions, so 𝐴 ∗ 𝐵 =  𝐴 + 𝐵 + 𝐴: 𝐵. 

Here the terms 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 and 𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦_𝑖 in the function should be replaced by the names 

of the response and explanatory variables, respectively, used in the analysis. 

In general, the purpose of analysis of variance (ANOVA) is to test for significant differences 

between means. Elementary Concepts provides a brief introduction to the basics of statistical 

significance testing. If we are only comparing two means, 𝐴𝑁𝑂𝑉𝐴 will produce the same results 

as the 𝑡 − 𝑡𝑒𝑠𝑡 for independent samples (if we are comparing two different groups of cases or 

observations) or the t test for dependent samples (if we are comparing two variables in one set 

of cases or observations). 

Example2: 

A data file containing information on three variables for 20 countries in Latin America: 

 Setting Effort Change 
Bolivia        46 0 1 

Brazil         74 0 10 

Chile          89 16 29 

Colombia       77 16 25 

Costa Rica      84 21 29 

Cuba           89 15 40 

Dominican Rep   68 14 21 

Ecuador        70 6 0 
El Salvador     60 13 13 

Guatemala      55 9 4 

Haiti          35 3 0 

Honduras       51 7 7 

Jamaica        87 23 21 

Mexico         83 4 9 

Nicaragua      68 0 7 

Panama         84 19 22 
Paraguay       74 3 6 

Peru           73 0 2 

Trinidad Tobago 84 15 29 

Venezuela      91 7 11 
Table 1 information on three variables for 20 countries in Latin America 

                                                             
2 http://data.princeton.edu/wws509/datasets/effort.dat 
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This small dataset includes an index of social setting, an index of family planning effort, and the 

percent decline in the crude birth rate between 1965 and 1975. 

To fit an ordinary linear model with setting and effort as predictors and change as the response 

variable, we will use the following model: 

lmfit < − lm(change~setting + effort) 

>  𝑙𝑚𝑓𝑖𝑡 

 𝐶𝑎𝑙𝑙: 

𝑙𝑚(𝑓𝑜𝑟𝑚𝑢𝑙𝑎 =  𝑐ℎ𝑎𝑛𝑔𝑒 ~ 𝑠𝑒𝑡𝑡𝑖𝑛𝑔 +  𝑒𝑓𝑓𝑜𝑟𝑡) 

 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠: 

(𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡)      𝑠𝑒𝑡𝑡𝑖𝑛𝑔       𝑒𝑓𝑓𝑜𝑟𝑡   

   −14.4511       0.2706       0.9677 

The output includes the model formula and the coefficients. To get a hierarchical analysis of 

variance table corresponding to introducing each of the terms in the model one at a time, in the 

same order as in the model formula, try the 𝑎𝑛𝑜𝑣𝑎 function: 

> 𝑎𝑛𝑜𝑣𝑎(𝑙𝑚𝑓𝑖𝑡) 

𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑜𝑓 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑇𝑎𝑏𝑙𝑒 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒: 𝑐ℎ𝑎𝑛𝑔𝑒 

𝐷𝑓  𝑆𝑢𝑚 𝑆𝑞 𝑀𝑒𝑎𝑛 𝑆𝑞 𝐹 𝑣𝑎𝑙𝑢𝑒    𝑃𝑟(> 𝐹) 

𝑠𝑒𝑡𝑡𝑖𝑛𝑔    1 1201.08 1201.08  29.421 4.557𝑒 − 05 ∗∗∗ 

𝑒𝑓𝑓𝑜𝑟𝑡     1  755.12  755.12  18.497 0.0004841 ∗∗∗ 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 17  694.01   40.82 

− − − 

𝑆𝑖𝑔𝑛𝑖𝑓. 𝑐𝑜𝑑𝑒𝑠:  0  ` ∗∗∗ ′  0.001  ` ∗∗ ′  0.01  ` ∗ ′  0.05  `. ′  0.1  ` ′  1 

Alternatively, we can plot the results using 

>  𝑝𝑙𝑜𝑡(𝑙𝑚𝑓𝑖𝑡) 
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Figure 1 plot(lmfit) 

Furthermore, we can extract much information from our 𝑙𝑚𝑓𝑖𝑡 model such as: 

𝑓𝑖𝑡𝑡𝑒𝑑 (𝑙𝑚𝑓𝑖𝑡)    : extracts the fitted values. 

𝑐𝑜𝑒𝑓 (𝑙𝑚𝑓𝑖𝑡)    : To extract the coefficients. 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠(𝑙𝑚𝑓𝑖𝑡)  : to get the residuals. 
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Generalized Linear Model 
 

The ordinary linear models are, in fact, special cases of generalized linear models (GLMs). Both 

generalized linear models and ordinary linear models investigate the relationship between a 

response variable and one or more predictors. Both techniques estimate parameters in the 

model so that the fit of the model is optimized. But what if the data follows probability 

distributions other than the Normal distribution, such as the Poisson, Binomial, Multinomial, 

and etc.? GLM can deal with such situation; also, the GLM can be used for a non-linear relation 

between the expected responses and the parameters of the model. GLM’s include a link 

function that relates the mean of the response to the linear predictors in the model. In a GLM 

model there are three components: 

1. The random component (the outcome), specifies the distribution of 𝑌𝑖  which it was 

assumed to be normally distributed in the ordinary linear model, 

𝑌𝑖 ~ 𝑓𝑖 . 

2. Systematic component (the design matrix multiplied by the parameter vector), it 

specifies the way in which the explanatory variables come into the model. 

𝜂𝑖 = 𝑥𝑖
𝑇 𝛽. 

3. Link function, denoted by𝑔(. ), a function that links the systematic component to the 

random component.  

𝜂𝑖 = 𝑔( 𝜇𝑖  ). 

Where𝜂𝑖 =  𝛽0 + 𝛽1𝑥1𝑖 + ⋯ + 𝛽𝑝𝑥𝑝𝑖 . 

The first two components come from the fact that statistical models contain both systematic 

effect and random effect, while the third component is what links them together. 

Assuming that the observations come from a distribution in the exponential family with 

probability density function (or probability mass function): 

𝑓𝑖(𝑦) =  𝑓𝑖(𝑦, 𝜃𝑖) = exp (
𝑦𝜃𝑖−𝑏(𝜃𝑖)

𝜙 𝐴𝑖⁄
+ 𝑐(𝑦,  𝜙 𝐴𝑖⁄ )). 

Where  

 𝑏 is an arbitrary monotonic, differentiable function. 

 𝜃𝑖  is the one parameter of the exponential family specific to 𝑌𝑖  . 

 𝜙 is a (possibly known) scale parameter. 

 𝐴𝑖denotes a known weight constant. 

If 𝑌𝑖has a distribution in the exponential family then it has mean and variance:   

𝐸(𝑌𝑖) =  µ𝑖 =  𝑏′(𝜃𝑖) ,   𝑣𝑎𝑟(𝑌𝑖) =  𝑏′′(𝜃𝑖) 𝜙 𝐴𝑖⁄  ,  For i = 1,…,n. 
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Where 𝑏′(𝜃𝑖) and 𝑏′′(𝜃𝑖) are the first and second derivatives of𝑏(𝜃𝑖). The link function 𝑔 

describes how the mean, 𝐸(𝑌𝑖) = µ𝑖   depends on the linear predictor here 𝑔 expresses 𝜂𝑖as a 

function of𝐸(𝑌𝑖).  

Examples of Generalized Linear Models 

 

You construct a generalized linear model by deciding on response and explanatory variables for 

your data and choosing an appropriate link function and response probability distribution. 

Explanatory variables can be any combination of continuous variables, classification variables, 

and interactions.  

Logistic regression 

In the classical framework, we were interested in modeling a continuous response variable 𝑦 as 

a function of one or more predictor variables. 

Example: Modeling Binomial Data 

 Suppose    𝑌𝑖~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑛𝑖, 𝑝𝑖). 

 And we wish to model the proportions  𝑌𝑖/𝑛𝑖  , then  

𝐸(𝑌𝑖 𝑛𝑖⁄ ) =  𝑝𝑖, 

𝑣𝑎𝑟(𝑌𝑖 𝑛𝑖⁄ ) =  
1

𝑛𝑖
 𝑝𝑖 (1 − 𝑝𝑖). 

Link function must map from(0,1) → (−∞ , ∞). A common choice is: 

𝑔(𝜇𝑖) = 𝑙𝑜𝑔𝑖𝑡 (𝜇𝑖) = log( 
𝜇𝑖

1−𝜇𝑖
). 

Poisson regression 

The Poisson probability distribution is perhaps the most commonly used discrete distribution for 

modeling count data. 

Example: Modeling Poisson Data 

Suppose    𝑌𝑖~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆𝑖). 

 Then     𝐸(𝑌𝑖) =  𝜆𝑖, 

𝑣𝑎𝑟(𝑌𝑖) =  𝜆𝑖. 

 Our link function must map from(0, ∞) → (−∞ , ∞). A natural choice is 

𝑔(𝜇𝑖) = 𝑙𝑜𝑔(𝜇𝑖). 
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Feature and model selection 

 

Researchers try to find the relation between explanatory features and a response variable. This 

includes the challenge of feature selection especially the case of small sample (𝑠𝑚𝑎𝑙𝑙 − 𝑛) and 

extremely large features (𝑙𝑎𝑟𝑔𝑒 − 𝑃) and then its sparsity, in which only few unidentified 

features affect the response variable.  

There are a wide range of traditional model selection criteria. However, in the case of small-n-

large-P, these criteria often fail to serve the purpose of feature selection. To solve this 

limitation, scientists propose AIC, BIC, the extended Bayes Information Criteria (EBIC) and other 

methods. Under the ordinary linear model, EBIC is shown to be selection consistent in the small-

n-large-P situation. However, its validity under other regression models is still unsolved. 

In the paper we are reviewing “EXTENDED BIC FOR SMALL-N-LARGE-P SPARSE GLM” (Chen and 

Chen 2012); the researchers used tailor-developed technical results for the exponential family 

distribution. This is for the purpose of proving the uniform consistency of the maximum 

likelihood estimates of the coefficients in the linear predictor of all GLM models containing 

causal features and the selection consistency of EBIC under GLM with canonical links. Under 

some technical conditions, extended BIC (EBIC) shows variable selection consistency under GLM, 

as the paper of Chen & Chen (2012) demonstrates. 

Because we are here concentrating on the applications of this paper, we will not delve in the 

technical details which is far from the purpose of this review.  

Let 𝜒 be the set of all features under consideration. Let 𝑠 be a subset of 𝜒, 𝑣(𝑠) the number of 

features in 𝑠, and 𝛽(𝑠) the vector of the components in 𝛽 that corresponds to the features in 𝑠.  

Let 𝛽0 be the unknown true value of the parameters. The components of 𝛽0 other than those in 

𝑠0 are zero. Let 𝑥𝑖(𝑠) be the vector of the components of 𝑥𝑖  that correspond to 𝛽(𝑠). 

 Let A0 = { 𝑠 :  𝑠0 ⊂ 𝑠; 𝑣(𝑠) ≤ 𝐾},  𝐴1 =  {𝑠 :  𝑠0 ⊄  𝑠;  𝜈(𝑠) ≤  𝐾}.  

Th1: Under some technical conditions on the model, 

  max
𝑠 ∈ 𝐴0

 ‖�̂�(𝑠) − 𝛽0(𝑠) ‖ = 𝑂𝑃(𝑛−
1

3),    as   𝑛 →  ∞. 

This theorem gives the uniform consistency of the maximum likelihood estimates of the 

coefficients in the linear predictor of all generalized linear models (GLM) containing causal 

features. 

There are too more theorems in the paper of Chen & Chen (2012).  

• The first theorem shows the selection consistency of EBIC under GLM with canonical 

links. 
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• The second theorem shows that the EBIC selects almost surely the model that exhausts 

all K retained features. 

 

Data Preparation 

 

Before starting, one needs to check the technical conditions listed in the paper, which briefly 

are: 

• No two collinear features exists (typical condition in compressed sensing). 

• Features are assumed to be standardized. 

• The square of a feature does not have a severely skewed distribution. 

 

 

𝒈𝒍𝒎𝒏𝒆𝒕 in R: 

𝑔𝑙𝑚𝑛𝑒𝑡(𝑥, 𝑦,  𝑓𝑎𝑚𝑖𝑙𝑦,  𝑎𝑙𝑝ℎ𝑎,  𝑝𝑚𝑎𝑥, … ) 

Fit a generalized linear model via penalized maximum likelihood. 

−𝑙𝑜𝑔𝑙𝑖𝑘/𝑛𝑜𝑏𝑠 +  𝜆 ∗  𝑝𝑒𝑛𝑎𝑙𝑡𝑦 

The regularization path is computed for the LASSO or elastic net penalty at a grid of values for 

the regularization parameter lambda. 

LASSO: is a shrinkage and selection method for linear regression. It minimizes the usual sum of 

squared errors, with a bound on the sum of the absolute values of the coefficients.  

Choosing alpha in the model is the way to determine which penalty family we will use: 

(1 −  𝛼)/2||𝛽||2
2  +  𝛼||𝛽||1 

•  𝛼 =  0  Ridge Regression which shrinks correlated variables toward each other. 

• 𝛼 =  1  LASSO does feature selection. 

• 0 <  𝛼 <  1  Elastic net can deal with grouped variables. 

The authors choose to use Elastic net to obtain regression models with various levels of sparsity.   
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Example 1: Prostate cancer data set Singh et al. 2002 

 

To show the importance of this method, we used the same data used in the paper which is the R 

pre-loaded dataset Singh et al. (2002). The dataset contains high-quality expression profiles 

were successfully derived from 52 prostate tumors and 50 healthy prostate samples from 

patients undergoing surgery. The goal here is to classify tumor and healthy samples. The 

number of gene expression levels is 6033 genes as shown in Figure 2. 

 

Figure 2  Prostate cancer data set Singh et al. 2002 

The dataset can be loaded after installing the required library in𝑅: 

# 𝑙𝑜𝑎𝑑 𝑠𝑑𝑎 𝑙𝑖𝑏𝑟𝑎𝑟𝑦 

𝑙𝑖𝑏𝑟𝑎𝑟𝑦("𝑠𝑑𝑎") 

# 𝑙𝑜𝑎𝑑 𝑆𝑖𝑛𝑔ℎ 𝑒𝑡 𝑎𝑙 (2002) 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡 

𝑑𝑎𝑡𝑎(𝑠𝑖𝑛𝑔ℎ2002) 

The first step is to examine the correlation of the gene data, then by choosing 𝐾 = 20 and 

𝛾 = 0.5 for the EBIC. Using 𝑔𝑙𝑚𝑛𝑒𝑡 in R, we were able to identify the most ten effective 

features among the 6,033 feature. 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑔𝑙𝑚𝑛𝑒𝑡(𝑥, 𝑦, 𝑓𝑎𝑚𝑖𝑙𝑦 = "𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙", 𝑎𝑙𝑝ℎ𝑎 = 0.99, 𝑝𝑚𝑎𝑥 = 𝐾) 
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Figure 3 visualization of the coefficients 

Figure 3: shows the visualization of the coefficients, each curve corresponds to a variable. It 

shows the path of its coefficient against the ℓ1-norm of the whole coefficient vector at as 𝜆 

varies. The axis above indicates the number of nonzero coefficients at the current𝜆, which is the 

effective degrees of freedom (𝑑𝑓) for the LASSO. 

Next step we examine the output using cross validation of 𝑔𝑙𝑚𝑛𝑒𝑡 (included in the package) 

𝑐𝑣𝑓𝑖𝑡 < − 𝑐𝑣. 𝑔𝑙𝑚𝑛𝑒𝑡(𝑥[, 𝑎𝑎[[𝑘]] ], 𝑎𝑠. 𝑛𝑢𝑚𝑒𝑟𝑖𝑐(𝑦), 𝑓𝑎𝑚𝑖𝑙𝑦 =  "𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙", 𝑛𝑓𝑜𝑙𝑑𝑠 =  5, 𝑡𝑦𝑝𝑒. 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 
=  "𝑐𝑙𝑎𝑠𝑠", 𝑎𝑙𝑝ℎ𝑎 =  0.99) 

When plotting (Figure 4) the 𝑐𝑣𝑓𝑖𝑡 cross validation model (red dotted line), we can see the 

upper and lower standard deviation curves along the 𝜆 sequence (error bars). Two selected 𝜆’s 

are indicated by the vertical dotted lines, 𝑙𝑎𝑚𝑏𝑑𝑎. 𝑚𝑖𝑛 is the value of 𝜆 that gives minimum 

mean cross-validated error, and 𝑙𝑎𝑚𝑏𝑑𝑎. 1𝑠𝑒 which gives the most regularized model such that 

error is within one standard error of the minimum. 
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Figure 4 Cross validation 

Using 𝐸𝐵𝐼𝐶𝛾=0.5 we were able to identify the most ten effective features among the 6,033 

feature, last step is to order them in importance using 𝑔𝑙𝑚𝑝𝑎𝑡ℎ. 

𝑔𝑝𝑎𝑡ℎ < − 𝑔𝑙𝑚𝑝𝑎𝑡ℎ(𝑥𝑥[, 𝑎𝑎[[𝑘]]], 𝑎𝑠. 𝑛𝑢𝑚𝑒𝑟𝑖𝑐(𝑦), 𝑓𝑎𝑚𝑖𝑙𝑦 =  "𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙", 𝑚𝑖𝑛. 𝑙𝑎𝑚𝑏𝑑𝑎 =  𝑐𝑣𝑓𝑖𝑡$𝑙𝑎𝑚𝑏𝑑𝑎. 1𝑠𝑒) 

>  𝑔𝑝𝑎𝑡ℎ 

𝐶𝑎𝑙𝑙: 

𝑔𝑙𝑚𝑝𝑎𝑡ℎ(𝑥 =  𝑥𝑥[, 𝑎𝑎[[𝑘]]], 𝑦 =  𝑎𝑠. 𝑛𝑢𝑚𝑒𝑟𝑖𝑐(𝑦), 𝑓𝑎𝑚𝑖𝑙𝑦 =  "𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙", 

    𝑚𝑖𝑛. 𝑙𝑎𝑚𝑏𝑑𝑎 =  𝑐𝑣𝑓𝑖𝑡$𝑙𝑎𝑚𝑏𝑑𝑎. 1𝑠𝑒) 

𝑆𝑡𝑒𝑝 1 ∶   𝑉610 

𝑆𝑡𝑒𝑝 2 ∶   𝑉1720 𝑉332 𝑉364 𝑉1068 𝑉914 𝑉3940 𝑉1077 𝑉4331 𝑉579 

This will give us the best order according to most effective gene: 

Gene No.  610 1720 332 364 1068 914 3940 1077 4331 579 
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Example 2: Detecting heavy metal pollution in soils 

 

In this example we used a dataset from a research was conducted by the VU University and 

published in 2010. Scientists would like to use the genes in “Folsomia”, which is a small 

millimeter–size insect that lives in the soil, to detect heavy metal pollution in soils. Data contains 

small-n=62 observations and large-P=5070 genes. 

 

Figure 5: Detecting heavy metal pollution in soils 

as it shown in Figure 5, the table is more informative and gives more details about the pollution 

material, but for the simplicity we will convert it to binomial table (polluted or not). 

Applying the same steps in (Example 1); First step is to check the conditions. Then by choosing 

𝐾 = 20 and 𝛾 = 0.5 for the 𝐸𝐵𝐼𝐶𝛾. Using 𝑔𝑙𝑚𝑛𝑒𝑡 in R, and the 𝐸𝐵𝐼𝐶𝛾 criterion we were able to 

identify the most ten effective features among the 5070 features.  

In Figure 6, when plotting the 𝑐𝑣𝑓𝑖𝑡 cross validation model (red dotted line), we can see the 

upper and lower standard deviation curves along the 𝜆 sequence (error bars). Two selected 𝜆’s 

are indicated by the vertical dotted lines, 𝑙𝑎𝑚𝑏𝑑𝑎. 𝑚𝑖𝑛 is the value of 𝜆 that gives minimum 

mean cross-validated error, and 𝑙𝑎𝑚𝑏𝑑𝑎. 1𝑠𝑒 which gives the most regularized model such that 

error is within one standard error of the minimum. 
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Figure 6 cross validation model 

Using 𝑔𝑙𝑚𝑝𝑎𝑡ℎ to order the result which will give us the following features order: 

𝐶𝑎𝑙𝑙: 

𝑔𝑙𝑚𝑝𝑎𝑡ℎ(𝑥 =  𝑥_𝑝𝑜𝑙[, 𝑎𝑎_𝑝𝑜𝑙[[𝑘_𝑝𝑜𝑙]]], 𝑦 =  𝑎𝑠. 𝑛𝑢𝑚𝑒𝑟𝑖𝑐(𝑦_𝑝𝑜𝑙), 

    𝑓𝑎𝑚𝑖𝑙𝑦 =  "𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙") 

𝑆𝑡𝑒𝑝 1 ∶   𝐹𝑐𝑐01630𝐶1 

𝑆𝑡𝑒𝑝 2 ∶   𝐹𝑐𝑐05798 

𝑆𝑡𝑒𝑝 3 ∶   𝐹𝑐𝑐03273  𝐹𝑐𝑐03353𝐶1  𝐹𝑐𝑐00246𝐶1  𝐹𝑐𝑐04919  𝐹𝑐𝑐05730  𝐹𝑐𝑐00786𝐶1  𝐹𝑐𝑐01912𝐶1  𝐹𝑐𝑐02691𝐶1 

Thus, what shown above are the most effective genes ordered in importance.   
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Conclusion 

The small-n-large-P situation has become common in genetics research, medical studies, risk 

management, and other fields. Feature selection is crucial in these studies yet poses a serious 

challenge. The traditional criteria such as AIC, BIC, and cross-validation choose too many 

features. In the paper of Chen & Chen (2012) which we have reviewed, EBIC is shown to be 

variable selection consistent under generalized linear models.  

 In the examples, we examined the variable selection problem under the generalized linear 

models. Here we used 𝑔𝑙𝑚𝑛𝑒𝑡 in R which is a powerful package in this situation. The first 

example we examined an R pre-loaded dataset, this is the same example used in the paper of 

Chen & Chen (2012), the reason on why we choose to redo the example is to test and compare 

our results with the results in the paper, some small details were chanced because of the R 

versions difference and computers evolution since 2012 till now, but got the same results and 

we were easily able to identify the most effective genes in the same order importance. 

In the second example, we applied the same technique, very simple and notable fast results. The 

dataset was collected for a research conducted by the Vrije Uneversiteit (VU). Here we were 

also able to identify the most effective genes with which we can determine the pollution in the 

soil. 

Briefly we can say that the paper succeeded to show an effective way to identify the most 

powerful features in the case of small-n-large-P. 
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Appendix 
 

BIC: In statistics, the Bayesian information criterion (BIC) or Schwarz criterion (also SBC, SBIC) is 

a criterion for model selection among a finite set of models; the model with the lowest BIC is 

preferred. It is based, in part, on the likelihood function and it is closely related to the Akaike 

information criterion (AIC). 

AIC: The Akaike information criterion (AIC) is a measure of the relative quality of statistical 

models for a given set of data. Given a collection of models for the data, AIC estimates the 

quality of each model, relative to each of the other models. Hence, AIC provides a means for 

model selection. 

Extended BIC: Mathematically is the classical BIC with an additional penalty term 2γ log P with 

a positive γ. 

LASSO : is a shrinkage and selection method for linear regression. It minimizes the usual sum of 

squared errors, with a bound on the sum of the absolute values of the coefficients. It has 

connections to soft-thresholding of wavelet coefficients, forward stagewise regression, and 

boosting methods. 

LASSO is a regularization technique. Use LASSO to: 

 Reduce the number of predictors in a regression model. 

 Identify important predictors. 

 Select among redundant predictors. 

 Produce shrinkage estimates with potentially lower predictive errors than ordinary least 
squares. 

Elastic net is a related technique. Use elastic net when you have several highly correlated 
variables. LASSO provides elastic net regularization when you set the Alpha name-value pair to a 
number strictly between 0 and 1. 

GLMnet in R: Fit a generalized linear model via penalized maximum likelihood. The 

regularization path is computed for the LASSO or elastic net penalty at a grid of values for the 

regularization parameter lambda. Can deal with all shapes of data, including very large sparse 

data matrices. Fits linear, logistic and multinomial, Poisson, and Cox regression models. 

 

http://nl.mathworks.com/help/stats/lasso.html
http://nl.mathworks.com/help/stats/lasso.html
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