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1. Introduction 
 
Ever since ships were used to transport goods from one place to another, people have to think 
about the question how to arrive safely at the destination within a reasonable time span. In 
today’s globalised world, transportation of goods at sea is of great relevance: more than ninety 
percent of the global trade is carried over sea [1] by a world merchant fleet that has a 
deadweight of more than 1.12 billion tonnes (beginning of 2008) [2]. Considering the fact that 
the market of sea logistics is very competitive and that the profit margins are small, it is 
important that the ships are optimally used. For example, even medium sized container 
carriers can have daily operating costs of tens of thousands of dollars [3], so suboptimal usage 
can cost a lot of money. 
Ship routeing considers with the problem how to make optimal use of a fleet of ships. There 
are different points of view in this problem. Assigning the ships to different trading routes can 
be viewed as a part of the tactical level of the problem. The determination of the order in 
which different harbours should be visited by a particular ship belongs to this level as well. 
Another problem, which is on a lower level, is to determine the optimal route of a ship at see 
when it is already known what the points of departure and destination are. This is the problem 
of ship routeing on which this paper focuses.  
The shortest path between two points on the planet is along the greatest circle that connects 
these points. For ships, it is not always possible to sail along a great circle in the first place. 
There might be land or other obstacles like oil platforms or offshore windmill parks on this 
path. Shallowness of water or governmental rules can be problems that prevent a ship from 
sailing along a great circle as well. And even if it is theoretically possible to sail along a great 
circle, it is not always optimal to do this. The weather at sea is an important factor when 
considering the routeing of a ship. This kind of ship routeing is called weather routeing. Wind 
and the characteristics of waves are the most important weather conditions that influence the 
speed of a ship [4]. If it is known what these weather conditions are at the predetermined 
route, it can be better to make a small detour and save time and fuel. In this paper, it is 
investigated how to determine the optimal route considering the weather conditions. The 
optimal route depends on the objective that is chosen. In times of an economical boom most 
of the shipping companies want the ships to arrive as early as possible, because there are a lot 
of orders that have to be carried out. In an economical crisis like the one that we are in now, 
the objective can be to sail a route with minimal fuel consumption, within a certain amount of 
time of course. 
The main question that is answered in this paper is: 
Under which weather conditions is it optimal to deviate from the predetermined optimal 
course? 
The predetermined optimal course is defined here as the optimal course under ideal weather, 
that is sailing along the great circles as much as possible, with respect to the obstacles that 
may lie on these circles as described above. Ideal weather means that there is no wind and that 
there are no waves. 
To arrive at an answer to this problem, the paper is structured in the following way. In chapter 
two, four common solution techniques for the ship routeing problem are briefly described and 
discussed. The chapter ends with a conclusion about which technique is best suited for the 
problem stated in this paper. This technique is explained in greater detail in chapter three, 
where the implementation of the chosen technique is described as well. The results of 
different practical cases using real weather data are shown in chapter four. The investigation 
of the main question is also done in this chapter, by synthetically varying the parameters of 
the weather and see the results on the optimal route. The paper ends with a conclusion in 
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chapter five, where the main question is answered and suggestions for future research are 
given.   

2. Different methods of weather routeing 
 
The problem of how to route a ship from its departure point to its arrival point based on 
weather conditions, is investigated for years. When summarizing the literature, there are four 
main solution techniques for this problem: calculus of variations, dynamic programming, the 
isochrone method and Dijkstra’s algorithm. All of the methods rely heavily on a good weather 
forecast.  

Calculus of variations 
The technique which uses calculus of variations is an analytical method that views ship 
routeing as a continuous optimization problem. It assumes that a function which assigns travel 
time according to the severeness of the weather conditions to different positions and points in 
time. The positions of departure and arrival are boundary conditions. The course, position and 
time are assumed to be deterministic.  
The method starts with an arbitrary guess of the optimal route. The real optimal route is found 
by refining the gradients of the objective function, such that the error at the end point is 
reduced. Of course, this is done under some constraints which make sure that the route is a 
realistic one. 
The solution can be found in two ways: with a set of linear differential equations or the Euler 
Hamiltonian equations that need to be solved. 
 
Advantages 
Calculus of variations is a mathematically elegant method, since its objective is to solve the 
problem exactly. 
It is a quite general method, so it can be used for a lot of applications. 
 
Disadvantages 
The first disadvantage of this method lies in the fact that it assumes a lot of variables to be 
deterministic, while they are not in reality. As is often the case for an analytical method, a lot 
of simplification is needed. 
It is not possible to deliberately decrease sailing speed with this method. Sailing at the 
maximum possible speed, may not always be optimal, especially when the main objective is 
to save as much fuel as possible and the time of arrival is only a constraint.  
If there are errors in the predicted weather conditions –and it is assumable that there are- the 
use of differentials might result in inaccuracies in the solution. 
The partial derivatives of the ship’s speed with respect to the position of the ship might have a 
dependency relationship on each other which will result in a convergence problem. 
The initial route has to be chosen carefully, otherwise the method can converge to a local 
optimum. [5][6] 

The isochrone method 
One of the older techniques for solving the ship routeing problem is the isochrone method [7]. 
This method is based on the distance that a particular ship can cover within a time unit. A 
distance boundary is created at each time unit, where the starting point of a possible 
movement of a ship in a new time unit is the boundary of the previous time unit. A time front, 
the boundary where a ship can be after a certain amount of time, is iteratively created in this 
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way. The shape of this time front depends on the weather conditions of the considered sea. It 
is obvious that the distance that a ship can cover in a time unit is smaller in case of a severe 
storm than in case of friendly weather. To prevent routeing over land or other obstacles, the 
speed of a ship at land should be chosen to zero. Figure 1 visualizes the algorithm. 
 
Figure 1 First two isochrones [8]  

 
 
The first time front shows the boundary where the ship can be after the first time unit. This 
depends on the direction of the waves relative to the course of the ship. To generate the 
second time front, some points on the first time front are chosen and a perpendicular line to 
the tangent of the first time front, with a length that represents the maximum distance that a 
ship can cover in the respective part of the sea is drawn. The next time fronts are generated in 
the same manner. When the arrival point is reached, the optimal route is found and the 
procedure can be stopped. 
 
Advantages 
An advantage of the isochrone method is that it can be used manually. Although this was an 
important feature a few decades ago, in the modern, computerized world it is not feasible to 
do these kinds of calculations by hand. 
Another advantage is the fact that changes in weather conditions during a travel can 
dynamically be updated in this algorithm. 
When implemented in a modified way, this algorithm can be relatively fast.  
 
Disadvantages 
A disadvantage is that the basic isochrone method does not work flawlessly when 
implemented in a computer programme. When computing many isochrones, which is 
desirable and can be done with the help of a computer programme, there is a significant 
probability that ‘isochrone loops’ appear. It is possible that an isochrone does not have a 
regular shape at a certain point due to the non convexity of the speed characteristic of weather 
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situations. Such an irregularity is called an isochrone loop. New isochrones cannot come out 
of a loop and there is no realistic time front created in that particular direction.  
Other problems are concerned about avoiding land. The algorithm can get stuck when there is 
a small water way between two coasts. If there is only one point generated within this straight, 
it might be difficult for the algorithm to find a passage. This problem can be solved by 
generating more points that represent a time front, but this will increase the amount 
calculation power significantly. 
The other problem with landmass is that if a part of the time front is assigned to a point on 
land, new isochrones will not be created from this part. It is possible that an optimal route 
surrounding the land cannot be found. 
As for the method of calculus of variations, a disadvantage of the isochrone method is that it 
is assumed that the ship will always sail at maximum speed if this is possible.  
It is possible to deal with some of these problems by modifying the algorithm. There exists 
literature about this ([8] ,[9]) and the number of problems were reduced, but it turned out that 
it is still not feasible to fully rely on this method to find a solution to the proposed ship 
routeing problem. 

Dynamic programming 
A method that relies on a recursive algorithm is dynamic programming. It is based on 
Bellman’s principle of optimality. The algorithm makes use of a grid that represents the 
geographical position and its weather conditions in a given sea. Based on this grid, a discrete 
optimization problem is formulated and can be solved by a recursive equation. 
The position can be specified with two variables: degrees longitude and degrees latitude. 
Since the position is continuous and the algorithm can work only with discrete variables, a 
grid is built that discretizes the position. 
Also the time has to be discretized and the same problem arises of defining how many time 
steps should be taken.  
The state that is used in this method has to contain the geographical position of the ship in the 
grid and the time. The distance that can be covered within a time unit depends on the state of 
the sea and how a particular ship responds to this factor. This can be specified by the heading, 
the power output of the ship and a constraint vector which reflects the sea keeping 
characteristics of the ship; the maximum motions that the ship can handle. The state of the sea 
can be represented by a random vector and is assumed to be constant within each part of the 
grid. 
The objective is to find a path from the starting point to the target location, while minimizing 
the costs, which can be divided in the costs of the ship arriving late at the target location and 
the costs of travelling which are largely fuel costs inflicted by time and weather conditions. 
The constraints should be met, of course. Note that there is no time of arrival constraint when 
posting the problem in this way, only costs of arriving late. 
This problem can be solved by carrying out a recursive computation procedure based on 
bellman’s Principle of optimality. Other possibilities to solve the problem exist as well, like 
linear programming and successive relaxations. 
 
Advantages 
An advantage of using dynamic programming as a way to solve the ship routeing problem is 
that it tries to capture the randomness of the weather when formulated as a stochastic 
optimization problem. 
Another advantage is that is faster than the analytical method of calculus of variations. 
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Unlike the method of calculus of variations, a decision mechanism can be implemented in the 
technique. It can be decided to wait on the grid point for better weather conditions or maybe 
sail slower instead of not sailing at all.  
Like calculus of variations, dynamic programming can be used for a lot of problems. 
 
Disadvantages 
The possibility to include the randomness of the weather is an advantage of dynamic 
programming. However, it is assumed that the weather changes according to a Markov chain. 
When modelling this in a realistic way, the complexity of the method is increased. At every 
grid point, a weather condition has to be defined and the transition probabilities have to be 
chosen in a way that the process of the waves over time and space are sufficiently 
approximated.  
A disadvantage of this method is that it still requires a lot of calculation power. The accuracy 
of the solution is based on the fineness of the grid. If the accuracy is to be increased, the grid  
should be finer which results in a greater demand of calculation power and time. 
[10][11][12] 

Dijkstra’s algorithm 
Apart from the techniques that are discussed above, younger attempts to solve the ship 
routeing problem seem to use Dijkstra’s algorithm (1959) more often. The algorithm was 
designed to find the shortest path of a network which consists of directed arcs that have 
known positive weights that indicate the resistance (or length) of an arc. Actually, it is a 
simple form of dynamic programming as it relies on a recursive procedure. In the rest of this 
paper, the term ‘dynamic programming’ is used for the more sophisticated dynamic 
programming methods and the method that uses Dijkstra’s algorithm is viewed as a separate 
technique. 
If the ship routeing problem is viewed as a deterministic problem where the weather 
conditions do not change, this algorithm can be used. The geographical space has to be 
discretized, which results in a grid. Each smallest rectangle of the grid represents an area in 
which the weather conditions are assumed to be constant. A weight that represents the added 
resistance due to the weather conditions is given to each of these rectangles. Dijkstra’s 
algorithm can now find the shortest path from the starting point to the end point, by 
considering the distance between the centres of the rectangles and the added resistance given 
by the weights. 
 
Advantages 
An advantage of this method is its simplicity which makes it very appealing people that 
should use the results of the method. It can be implemented without great difficulties as well. 
 
Disadvantages 
A disadvantage of this method is that it assumes that the weather conditions do not change, 
because they do.   
This method requires the generation of a grid, which is a discretization of reality. An issue 
concerning the grid is its fineness. Dijkstra’s algorithm gives better approximations if the grid 
is finer, but this also requires more calculation power. 
The disadvantage that it is not possible to deliberately reduce speed applies also for this 
method. 
[13][14][15] 
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Conclusion of the discussion of the different techniques 
Each technique has its advantages and disadvantages. The only real analytical method is the 
method of calculus of variations, the rest of the methods give approximations to the optimal 
solution. But because of the fact that the objective function of the calculus of variations 
method is based on empirical data and on simplifications, the added value of the analytical 
concept is reduced. A lot of problems can be encountered when using this method. The other 
methods are faster alternatives. 
The isochrone method is faster, but still has a lot of pitfalls. The biggest is that problems are 
encountered when implementing this technique in a computer programme. 
The two grid based methods remain. They both share the disadvantage of the usage of a grid. 
The method of dynamic programming is somewhat more sophisticated than the method which 
uses Dijkstra´s algorithm. In dynamic programming, it is tried to deal with the randomness of 
the weather. But if this is to be correctly done, the method becomes rather complicated which 
makes it hard to solve. The strength of the method that uses Dijkstra´s algorithm lies in its 
simplicity. It can be easily implemented and probably easier adapted by people who have to 
work with its results. Understandable methods are usually better adapted in practice. Because 
the aim is that the method is going to be used in practice, this paper will focus on Dijkstra´s 
algorithm and how it can be used for the ship routeing problem. 

3. The solution method and its implementation 
 
When using Dijkstra’s algorithm for the described ship routing problem, an important 
question is how to arrive at the needed weights and the grid. This chapter gives an answer to 
the following main questions: 

- How should the weights be assigned to the different parts of the sea? 
- How should the grid be built? 

 
After a more precise description of the algorithm, these questions are described and answered 
in the subparts of this chapter. It ends with a few important implementation issues. 
 
Dijkstra’s algorithm needs a directed graph with nonnegative weights as input. The output is 
the shortest route from a starting point to any other node in the graph. The algorithm consists 
of a number of iterations. In each iteration, it is known which nodes can be reached by taking 
one step. The node that has the shortest route (the smallest sum of weights) from this node to 
the starting point is determined, the predecessor of this node and the value of the route (the 
sum of the weights) is memorised. If the destination point is reached, the procedure can be 
stopped and the route can be found by tracking the predecessors while the value of the route 
was already memorised.  
 
This dynamic programming algorithm can be described mathematically as follows: 
Let  
  be the starting node 
  be the set of visited nodes in the i’th iteration, where . So  
 denote the distance from node y to a, with the information of  
 denote the distance from node x to y, where y can be reached from x in 1 step 
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Then the recursive step is described by: 
 

 

How should the weights be assigned to the different parts of the sea? 
As described in the previous chapters, there can be different objectives for ship routing. If the 
demand for transportation is greater than the supply, it is very important to make sure that a 
ship arrives as soon as possible, so that it can handle a next assignment quickly. If the demand 
is not so high, fuel costs become more important. Although the safety of the crew, ship and 
cargo are also important factors, these safety issues are not considered in this paper, because 
they are more difficult to quantify and depend on the sailing style of the captain. The 
objective of finding the minimum sailing time is investigated in this paper. The minimal fuel 
consumption objective is more complicated to analyse, because beside the weather conditions 
of the sea, the time constraint which is imposed on a ship is also an important factor. This 
factor depends on each transportation order individually and also on the possibility of arrivals 
of new orders for the ship. In this paper, the focus is on the impact of the weather conditions.  
Let us now consider the objective where the sailing time of a ship is to be minimized. In 
reality, a ship can cross an ocean in infinitely many ways. When using Dijkstra’s algorithm, 
the continuous space of the sea is discretized into a grid where it is assumed that a ship can 
only sail from one centre point of a grid to another. This means that the ship can sail to the 
centre points of the eight different neighbouring rectangles, see figure 2.  
 
Figure 2  Different possible directions 
 
 
 
 
 
 
 
 
 
 
 
 
 
The time that it takes for a ship to travel such a path is determined by the speed of the ship 
and the distance between the two centre points. In the case of minimum sail time as the 
objective, the power of the engine is held constant at a maximum power. The fuel 
consumption per unit of time is constant, independent of the weather conditions that the ship 
encounters. The speed of the ship is constant between two centre points, because the 
weather conditions are assumed to be constant within the part of the sea that has to be 
traversed.  
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The time that a ship needs to travel from one centre point to another is calculated by: 

 

where  is the time needed to sail from point i to point j in hours,  the distance between 
point i and point j in nautical miles and  the speed of the ship between point i and point j in 
nautical miles per hour (knots). 
The total time that a ship needs to get to the destination is the sum of the ’s from the 
departure point to the destination point. This sum is minimized with Dijkstra’s algorithm, 
which considers the ’s as weights.  
 
Distance between two centre points 
The distance between the two centre points is smallest along a great circle, since our planet is 
a sphere. This distance in nautical miles can be calculated with the help of the haversine 
formula: 

,  

Where 
 is the distance between two points on a sphere in nautical miles 
 is the radius of the sphere in sea miles 

The radius of the earth is approximately 3440 nautical miles. 
 is the latitude of the position of the starting point in radians 
 is the latitude of the position of the destination point in radians 
 is the longitude of the position of the starting point in radians 
 is the longitude of the position of the destination point in radians 

 
This formula is chosen over other formulas that can be used to calculate distance on a sphere 
because of its sufficient accuracy and relative simplicity. 
 
Speed between two centre points 
The weights, which represent the sailing times between the different centre points, also 
depend on the speed of the ship and therefore on the weather conditions. This means that it is 
necessary to know the weather conditions of different parts of the considered sea and how a 
ship responds to these conditions to define the different weights. These questions are not 
trivial, since the weather conditions as well as the ship’s response can be described in great 
detail. Ocean currents, fog, precipitation, wind and waves are examples of factors that 
influence the speed of a ship. But according to literature [4], if one only takes wind and wave 
characteristics into account, a good approximation to the optimal route is obtained because 
these factors add by far the most resistance. The goal of the model that is used in this paper is 
not to find a solution that is as close to the truth as possible, but to find a good approximation 
that is still efficient and simple. Therefore, it is reasonable to include only characteristics of 
the wind and waves. 
Wind adds resistance when it hits the surface of the ship. It is obvious that the relative 
direction of the wind compared to the direction of the ship matters. If the wind blows in the 
opposite direction of the ship’s course, the speed reduction is greater than in case of a side 
wind. 
But the wind has even more impact: it is the cause of the generation of waves. Although there 
are different kinds of waves, most of the added resistance can be described by the wave height 
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and the wave direction relative to the ship’s direction. And because of the fact that the 
relationship between the wind and the wave height is linear, the sum of the influence of waves 
and wind can be shown in a single graph where the speed loss is related to the wave height. 
[16] 
When a ship crosses an ocean, the weather conditions obviously change during the voyage. 
The dynamic character of the weather is not included in the model of this paper. The data of 
the wave height and wave direction that are used are satellite observations of the actual 
conditions in the North Atlantic Ocean as they were on the following days: 
January the 4th, the 6th, the 8th and 10th in 2004. The data are obtained by the courtesy of the 
Dutch maritime research organization Marin. The data can be found in appendix A. For each 
day, the wave height in metres can be found in the different rectangles. The position of the 
rectangles is defined by the degrees latitude and longitude of the centre of the rectangle. 
These can be found in the y-axis and the x-axis respectively. Note that only degrees are used, 
not minutes or seconds. Half a degree equals 30 minutes. Negative values on the x-axis 
represent the number of degrees west longitude while positive values represent degrees east 
longitude. The wave direction is shown in the grid below the first one in the same appendix. A 
direction of 0 degrees means that the waves come from the North and 180 degrees that the 
waves come from the south. Any values in between indicate that the waves have a direction 
coming from the west. Negative values represent directions coming from the east. NaN means 
that there is landmass in the centre of the particular rectangle in both tables. Appendix C 
shows the wave height in the different parts of the ocean graphically. The centre points of the 
rectangles from appendix A are now represented as the intersection of the lines. The parts that 
are coloured black are on land. 
Each ship responds differently to the weather conditions. The research in this paper is carried 
out for a Panamax container vessel of 200 metres long and 32.2 metres wide, capable of 
sailing approximately 22.1 knots. This ship frequently crosses the Northern Atlantic Ocean 
from New York to Le Havre and back. The relation between the ship’s speed and the wave 
height for five different relative wave directions can be found in table 1 and figure 3 on the 
next page. The direct influence of waves to the ship’s speed as well as the influence that the 
wind has when such waves are observed are included in this figure. The wave directions 
relative to the ship’s direction are shown in figure 4. The ship is symmetrical: the speed loss 
values for the directions on portside are the same as those for starboard, where the directions 
on portside correspond to 360˚ minus the direction on starboard. The use of more directions 
does not add much to the accuracy of the model. In fact, in literature often only three 
directions are used: head seas (180˚), beam seas (90˚) and following seas (0˚) [12] [13] [14]. 
 
An interesting observation is that the waves that come from an angle of 45 degrees result in a 
greater speed reduction than waves that come from an angle of 90 degrees. The reason for this 
is that waves on the quarter make the ship pitch, while waves from the side do not. Pitching 
has a negative influence on the speed of the ship. [13 ] 
 
The relative direction of the waves -and thus the weights- depend on the course of the ship. A 
ship can enter a certain rectangle of the grid from various positions. For each of these 
positions, the speed of the ship and as a consequence the sailing time between the 
neighbouring centre points have to be calculated to be able to use Dijkstra’s algorithm. There 
is only data for the five directions that are shown in table 1 and figure 3. The relative of the 
waves have to be assigned to one of these directions. That is done in such a way that the 
nearest value of the five directions is chosen. A relative direction of 22 degrees, for example, 
is closest to 0 degrees, so the ship will get the speed that belongs to the wave height and a 
relative wave direction of zero degrees. Also the wave heights are divided in such a way: the 
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wave height of a rectangle is compared to those in table 3 and the closest value is used for 
further analysis. 
 
Table 1 Ship speed in knots for different wave heights and relative wave directions [Marin] 
 Relative wave direction 
Wave 
height in 
metres 0 deg 45 deg 90 deg 135 deg 180 deg 

0,5 22,12 22,11 22,12 22,1 22,1 
1,5 22,12 22,025 22,08 21,93 20,8335 
2,5 22,1 21,82 21,97 21,54 19,386 
3,5 22,06 21,465 21,85 20,87 17,7395 
4,5 21,98 20,865 21,72 19,75 15,8 
5,5 21,86 19,98 21,57 18,1 13,575 
6,5 21,69 19,04 21,37 16,39 11,473 
7,5 21,52 18,07055 21,15 14,6211 9,503715 
8,5 21,36 17,0782 20,96 12,7964 7,67784 
9,5 21,25 16,08465 20,88 10,9193 5,6551 

10,5 21,12 15,05645 20,84 8,9929 3,6054 
 
Figure 3 Ship speed in knots for different wave heights and relative wave directions  [Marin]  

 
 
Figure 4 Wave directions relative to ship’s direction [Marin] 
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How should the grid be built? 
Before building the grid, it is important to determine the number of reachable neighbouring 
centre points and also the fineness of the grid. These two characteristics influence both the 
accuracy and the complexity of the model. The number of reachable neighbouring centre 
points can also be viewed as the number of different directions a ship can sail. If only two 
centre points that lie in the direction towards the destination point can be reached, the result 
will not be very realistic. Each extra direction will increase the accuracy, but this has the 
consequence that the needed calculation power increases exponentially, since there is an extra 
option at each step.  
A same kind of argument applies for the fineness of the grid. The finer the grid, the better 
reality is approximated, but at a cost of more calculation power. In fact, an infinitesimal fine 
grid would be an exact representation of reality, but this cannot be done in practice.  
The model is chosen to be as accurate as possible with the data that is available. Each 
rectangle has a width of 1.25 degrees longitude and a length of 1 degree latitude. The position 
of New York is approximately 40.5 degrees north latitude and 74 degrees west longitude 
while the position of Le Havre is approximately 49.5 degrees north latitude and 0 degrees 
west longitude. So there is a difference of approximately 60 rectangles in width and 10 
rectangles in length. Of course, some clearly infeasible routes in the opposite directions are 
also computed, but still the optimal route can be found in a reasonable amount of time. 

Implementation issues 
To obtain results, the programming language C++ is used to implement Dijkstra’s algorithm. 
The programme is tailored to the data from appendix A. 
 
In the implementation of the algorithm, the rectangles with landmass get the maximum 
possible value of the programming language for the wave height. Then, it is infeasible for a 
ship to cross landmass. Another thing that has to be considered during the implementation is 
the fact that a ship crosses two rectangles when sailing from one centre point to another. This 
is implemented in such a way that the distance between the centre points is calculated first, 
and then half of this distance has to be traversed in the weather conditions of the first 
rectangle and the other half in the conditions of the other. The two sailing times are added to 
arrive at a sailing time that is needed for the travel between the two centre points. This is not 
completely correct, since the grid is built for a flat surface and not for a surface on a sphere 
like the earth, which has the consequence that the borders of the rectangles are slightly 
misplaced. Because of the fact that weather conditions in two neighbouring states do not 
differ that much, the resulting error will be very small and it is chosen not to change the 
solution method for this. 
 
As mentioned above, the particular ship investigated in this paper frequently sails between 
New York and Le Havre. This route is taken as a test case for the programme. The 
approximate position of New York (40.5˚ latitude, -74˚ longitude) should be the starting point 
for an eastbound travel. However, the grid is a discretization of the space, so the nearest 
rectangle has to be found. There are two nearest options: (40˚ latitude, -73.75˚ longitude) and 
(41˚ latitude, -73.75˚ longitude). The second option has a centre point on land mass, which is 
not unlogical since New York is built on land. But the first option is chosen, because the ship 
has to be able to reach the centre of the rectangle. The same applies for Le Havre, which has 
an approximate position of (49.5˚ latitude, 0˚ longitude). The rectangle in the grid has to be 
the one with centre point (50˚ latitude, 0˚ longitude). It should be noted that this means that 
the route that is calculated does not actually lead the ship to the harbour of the city, but rather 
to the nearest possible point in sea that is available in the obtained data. This is not a problem, 
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since the ship cannot sail at full speed when leaving the starting harbour or approaching the 
destination harbour. So, the waiting time and the sailing time that is needed to leave or enter 
the harbours should be added to the sailing time that the programme presented in this paper 
calculates.  
The code of the resulting programme can be found in appendix E.  

4. Results 
The obtained programme can be used to find the optimal routes for the different days. These 
routes can be found in appendix B. The yellow route represents the travel from New York to 
Le Havre, the red route represents the travel from Le Havre to New York and the turquoise 
route represents the route that best approximates the great circle route, which is the same in 
both directions and for all the different days. If the three routes go through the same 
rectangles, the respective rectangles are coloured green. If the great circle route crosses one of 
the other routes, the numbers in the rectangles representing wave height or direction are 
coloured turquoise. The route that best approximates the great circle route (later referred to 
simply as ‘great circle route’) is found by choosing all the waves to have a height of zero 
metres. This means that there is no influence of the weather, so the ship has to sail the shortest 
possible route, which is the route that lies on the great circle connecting the beginning and end 
point. Of course, if there is landmass on the great circle, this land is avoided.  
 
The sailing times of the different routes can be found in table 2. The route under Ideal 
weather has been added. Ideal weather means that there are no waves at all. The result is the 
great circle route. Under Optimal route, the sailing time that the programme found is shown.  
The number under Great circle route is the sailing time that would be needed if the great 
circle route was sailed under the weather conditions of that day. 
 
Table 2 Sailing times of the routes in hours 
Sailing time in 
hours 

Optimal route Great circle route 

 New York – Le 
Havre 

Le Havre – New 
York 

New York – Le 
Havre 

Le Havre – 
New York 

Ideal weather 145.638 145.584 145.638 145.584 
4 January 2004 160.608 148.013 162.565 148.114 
6 January 2004 163.321 151.482 174.18 152.414 
8 January 2004 190.3 148.494 242.809 148.494 
10 January 2004 187.849 150.21 211.455 153.099 
 
The small difference between the sailing times of the different directions under ideal weather 
is caused by the fact that the programme considers waves with a height from 0 to 0.9 metres 
the same. So the ship is still subject to a small resistance. But on the whole journey, a 
difference of 0.054 hours is negligible. 
 
One thing that can be noticed is that the travel from New York to Le Havre (eastbound) takes 
more time in all the cases than the same journey in the other direction (westbound), apart from 
the ideal weather case of course. If one considers the fact that for all of the days the majority 
of the wave directions in the rectangles in the area of the great circle route have negative 
values (coming from an eastern direction), this is not a surprising observation. It can also be 
seen that the sailing time of the westbound optimal route does not differ much from the 
sailing time of the westbound great circle route. For January 8, it is even the same value. 
Appendix B shows that for all the days the great circle route (turquoise) does not differ much 
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from the optimal westbound route (red). The small waves of January 4 do not make much of a 
difference for this observation compared to the bigger waves of January 8 and 10. So if the 
wave direction is largely the same as the direction of the ship, it seems that it is not optimal to 
deviate from the great circle route a lot. This is in line with the data from figure 3, which 
shows that the graph representing a relative direction of zero degrees does not drop quickly 
for bigger wave heights. But if the wave direction is in the opposite direction of the ship’s 
direction, which generally is the case for the eastbound journeys, then the wave height has 
more impact. The yellow route in appendix B is far more north for the last two days than the 
one for the first two days where the waves are lower. In the north, the waves do not directly 
come from the opposite direction and the waves are lower than on the great circle route or 
south of this route. So it seems that if the wave direction is largely the opposite than the ship’s 
direction, higher waves make it more feasible to deviate from the great circle route. This is 
also in line with figure 3, which shows a graph that quickly drops when the wave height gets 
bigger for the relative direction of 180 degrees. The sailing time for the eastbound optimal 
route is clearly less than the eastbound great circle route, especially for the days which 
showed higher waves. The greatest difference can be found for January 8, where more than 52 
hours can be won on the journey from New York to Le Havre by deviating from the great 
circle route. The optimal routes together with the wave height in different parts of the ocean 
are visualized in Figure 5. Note that intersections in this figure represent the centre points of 
the grids that can be found in appendix B.  
 
Figure 5 The eastbound route avoids high waves 

 
 
Again, the westbound route is red and the eastbound route is yellow. The black parts are 
landmass or irrelevant sea. For a graphical overview of the wave directions in the Atlantic 
Ocean on January 8, 2004, see appendix D.   
The last part of the route is the most interesting when considering deviation from this route. 
This part can be found in figure 6, where the upper table represents the wave heights and the 
lower table the wave directions. Figure 7 combines the information about the wave height, the 
direction of the waves (the arrows) and the optimal routes for the same part of the route as 
figure 6. The arrows can have eight different directions in the figure: only multiples of 45 
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degrees. The arrow that has a direction closest to the real wave direction is shown. Note again 
that the intersections in figure 7 represent the centre points in figure 6. 
 
Figure 6 Eastern part of routes in numbers 
Wave height 

lat/lon -13,75 -12,5 -11,25 -10 -8,75 -7,5 -6,25 -5 -3,75 -2,5 -1,25 0 1,25 
57 6,60 6,70 6,60 6,30 5,70 4,50 NaN NaN NaN NaN 3,10 3,40 3,60 
56 6,80 6,90 6,70 6,20 5,50 4,00 NaN NaN NaN NaN 3,20 3,70 3,70 
55 6,90 7,00 6,80 6,00 4,30 NaN NaN NaN NaN NaN 2,50 3,80 3,90 
54 7,00 7,10 6,80 5,60 NaN NaN NaN NaN NaN NaN NaN 2,90 3,70 
53 7,30 7,10 7,00 5,70 NaN NaN NaN NaN NaN NaN NaN NaN 2,40 
52 7,50 7,40 7,20 NaN NaN 2,70 3,40 3,00 NaN NaN NaN NaN NaN 
51 7,60 7,50 7,40 7,10 6,80 6,30 5,80 4,30 NaN NaN NaN NaN NaN 
50 7,70 7,60 7,50 7,40 7,30 6,90 6,70 5,10 4,00 3,90 3,70 3,50 NaN 
49 7,70 7,60 7,60 7,50 7,30 7,00 6,80 6,20 4,70 2,80 NaN NaN NaN 

Wave direction 
lat/lon -13,75 -12,5 -11,25 -10 -8,75 -7,5 -6,25 -5 -3,75 -2,5 -1,25 0 1,25 

57 -132 -130 -128 -126 -123 -119 NaN NaN NaN NaN 149 160 169 
56 -126 -124 -123 -120 -116 -109 NaN NaN NaN NaN 142 154 167 
55 -121 -119 -118 -113 -105 NaN NaN NaN NaN NaN 133 147 162 
54 -115 -114 -114 -103 NaN NaN NaN NaN NaN NaN NaN 140 153 
53 -109 -109 -109 -102 NaN NaN NaN NaN NaN NaN NaN NaN 148 
52 -105 -105 -105 NaN NaN -139 -126 -122 NaN NaN NaN NaN NaN 
51 -100 -101 -101 -102 -104 -106 -108 -106 NaN NaN NaN NaN NaN 
50 -96 -97 -97 -99 -101 -102 -105 -108 -118 -127 -136 -148 NaN 
49 -93 -94 -94 -95 -100 -103 -105 -106 -104 -109 NaN NaN NaN 

 
 
Figure 7 Vizualization of all the information for the eastern part of the routes 

 
 
Figure 6 shows that the first part of the westbound route (red) is indeed simply the great circle 
route (turquoise numbers). The eastbound route comes from far more north than the great 
circle route. It can be seen that the directions on the great circle route are less favourable for a 
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ship heading east than is the case in the north. In the part where the ship is heading south, the 
waves come only from the side, which does not result in such a great reduction of speed. In 
the part where the ship is heading east near the British coast, the waves come from the front 
diagonally. The same applies for the part where the ship is heading southeast. Figure 3 
showed that waves coming from the front diagonally result in less speed reduction than waves 
that come directly from the front. The fact that the waves are lower at the coast is also an 
important factor. 
So although the ship has to sail a greater distance, its increased speed more than compensates 
the lost time.  
 
The question now rises when it is optimal to sail around a specific rectangle. The programme 
can be used to get an answer to this question. A point on the great circle route is chosen 
(50, -27.5) where the wave directions and heights are synthetically altered, while the waves of 
all the other rectangles are defined to be zero. Of course, this is not a realistic situation. It is 
extremely unlikely that the wave heights in one rectangle are negligible while the wave 
heights in the neighbouring rectangle are 10 metres higher. But the results can give insight in 
the influence of weather conditions on the optimal route of a ship. These results can be found 
in table 3 and figure 8. 
 
Table 3 
Relative direction of waves Lowest height that results in difference  

with great circle route in metres 
180 5.5 
135 7.5 
90 - 
45 10.5 
0 - 
 
Figure 8 

 
 
The wave heights for the relative directions of 0˚ and 90˚ are left out of figure 8, since even 
waves with a height of 12 metres do not have an impact on the optimal route. These results 
are in line with the observations that were made earlier: waves coming from the same 
direction as the ship do not make the ship sail a different route than the great circle route and 
if the waves are coming from the opposite direction, higher waves will lead to a deviation 
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from this route. The table also makes clear that waves coming from the front diagonally can 
lead to deviation as well, only higher waves are needed. Waves coming from the back 
diagonally have less impact and waves coming from the side not at all when considering one 
rectangle. Of course, in reality there are greater parts of the sea that have similar weather 
conditions and then it could be better to sail around such areas even when there are smaller 
waves. This can be seen in Appendix B or figure 5, where the yellow route, where the ship 
generally sails in the opposite direction as the waves, clearly surrounds the largest waves. 

5. Conclusion 
This paper started with a discussion about the concept of weather routeing and why this is 
important for charterers of cargo ships. Four main techniques that are used in weather 
routeing for ships were then analysed and compared based on their effectiveness. Although 
the isochrone method, methods based on calculus of variations and dynamic programming all 
have their advantages, it was decided to use the method that uses Dijkstra’s algorithm for the 
implementation because of its simplicity. This algorithm was described in more detail and 
was used to build a programme which is able to find the time shortest route of a ship that sails 
at full speed between two points that lie near the coast of the Atlantic Ocean where weather 
conditions in this ocean are known. The main considerations about the implementation were 
described. Important issues were the discretization of the ocean, the conversion of weather 
conditions and distances to weights that are needed for the algorithm and how to deal with the 
fact that the earth is a sphere. As weather conditions, only the main factors that have an 
influence on a ship’s speed are considered, which are the wave heights and wave directions. 
The code is programmed in C++. 
The resulting programme was used to find the optimal routes between Le Havre and New 
York for both directions for four days in the past: January 4, 6, 8 and 10 in the year 2004. 
These routes and the needed sailing time were shown, discussed and compared with the routes 
that a ship would sail under ideal weather conditions. This optimal route is referred to as the 
‘great circle route’, which follows the great circle between the two cities as much as possible; 
land is avoided. 
It is shown in this paper that it can be optimal to deviate from the great circle route. 
Depending on the direction of the waves, the wave height can have a lot of influence. 
Deviation from the great circle route can lead to reductions in sailing time in cases where the 
waves generally come from the opposite as the ship’s direction. Higher waves on the great 
circle route lead to higher reductions of sailing time when avoiding this route. The influence 
of wave direction and wave height was further investigated by synthetically creating a calm 
ocean and varying direction and height of waves in one particular part of the ocean which lies 
on the great circle route. The minimal wave heights that led to deviation from the route are 
reported and compared for different wave directions. 
In this paper, the stochastic character of the weather was not taken into account. This would 
make the problem far more complicated and would require a different solution technique, for 
example dynamic programming. Another interesting question is how to optimally route a ship 
when total costs have to be minimized. Fuel consumption plays an important role here. The 
complexity of the problem will increase dramatically, since a lot of other factors need to be 
considered. Examples are the question if the terminal in the destination harbour is available at 
the moment that the ship would arrive, or even at a higher level, if there is enough new 
demand for the ship after arriving at the destination harbour. These are examples of questions 
that could be a subject for future research. 
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