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Abstract

Previous research on the Tray Optimization Problem(TOP) focused on the cre-
ation and improvement of algorithms. Researchers had to work with limited
data, or they had to create data themselves. Solutions were also evaluated
solely on cost. The goal of this research is to provide an environment where
TOP-instances can be generated and where solutions can be properly evalu-
ated. In order to create new instances, characteristics of provided data sets
were found by means of graphical representations and statistical test. Four
different methods were used to evaluate solutions on costs and failure rates,
(perturbed) historical sampling and (perturbed) historical frequencies. These
methods were applied to a solution that was in use while the data was gath-
ered, the starting solution of a genetic algorithm, and the solution of the genetic
algorithm. Previous research only evaluated solutions on the costs they incur.
However, this research shows that it is also important to include the failure rate
under changing circumstances in this evaluation, as the reduction in cost can
come at a steep increase in the rate of failure. This information is essential to
make a balanced decision about the practical usefulness of a solution.
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Chapter 1

Introduction

Reducing costs in health care facilities is a more pressing concern now than ever
before as health care costs continue to show an incredible yearly increase. In
2012 the Netherlands spent 11.8% of their Gross Domestic Product(GDP) on
health care, second only to the United States of America within the organization
for economic co-operation and development [OECD, 2014]. Research by van der
Horst et al. [2011] has shown that these costs are expected to rise to anywhere
from 19 to 31% of the GDP by 2040. These trends have shown the need for
reduction of costs within health care facilities. One of the areas that are being
looked into is the management of the sterile inventory within hospitals.

The sterile inventory within hospitals consists of an inventory for disposable
sterile instruments and a separate inventory for reusable sterile instruments.
The focus of this paper lies on the management of the inventory of reusable
sterile instruments. The reusable sterile instruments are part of a return cycle
within the hospital. They flow from the sterile inventory to the Operating The-
atre(OT), from which they go to the Centralized Sterilization Department(CSD)
and finally they return back to the sterile inventory. This cycle takes about 8-12
hours and instruments can therefore only be used once a day, but all instruments
will always be available at the start of the day.
However, the instruments are not stored separately, but they are grouped in
trays. Within a hospital there are different tray types, these types have a fixed
composition and there can be more than one tray of each type. Each surgery
requires a fixed combination of tray types. Determining the composition of tray
types, the quantity to keep in stock of each tray type, and the allocation of
tray types to surgeries is known as the Tray Optimization Problem(TOP). An
alternative name for this problem is the Net Optimization Problem(NOP).

The first research into this problem was done by Fineman and Kapadia
[1978]. The first notable research after this comes from Reymondon et al. [2008]
and van de Klundert et al. [2008]. After which research into the subject picked
back up with for example Florijn [2008], Glorie [2008], and more recently Kam-
phorst [2012], and Glorie and Dollevoet [2013]. These researches all focused on
creating solution algorithms for the TOP. However, most of the researches had
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problems with a lack of data. Some had to create their own data set in order
to be able to test their solutions, while others did not have data to evaluate the
solution given by the algorithm. Some researchers did a sensitivity analysis into
the input parameters, for example costs and the maximum tray size. However,
none of the researches evaluated what would happen if circumstances changed
after their solution was implemented.

Therefore this research seeks to create a program where TOP-instances can
be generated based on real data and where solutions can be evaluated under
changing circumstances. The generated instances have to be of generic sizes, so
the user will be able to choose the number of instruments and surgeries. In this
paper the following four methods of evaluation will be used:

• Historical sampling

• Perturbed historical sampling

• Historical frequencies

• Perturbed historical frequencies

The structure of the paper will be as follows. First the theory behind the
statistical tests used in this paper will be discussed in chapter 2. After which
insight will be provided into the available data sets and characteristics will be
discussed in chapter 3. New instances with most of these characteristics will
be created in chapter 4. In chapter 5 a currently used net composition will be
evaluated alongside two other solutions. And finally in chapter 6 some closing
remarks and advice for future research will be given.
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Chapter 2

Methods

Statistical tests were used in order to test for underlying distributions, or signifi-
cance in differences. This chapter describes the statistical tests used throughout
the paper. Section 2.1 describes the Pearson’s chi-squared test statistic, used in
section 3.2.2 to determine whether observed data comes from a Poisson distri-
bution. Section 2.2 focuses on the Shapiro-Wilk test for normality, this test is
used in chapter 5 to determine if the Welch’s t-test, described in section 2.3, can
be used. If normality is not met, the Wilcoxon–Mann–Whitney test, described
in section 2.4, will be used.

2.1 Pearson’s chi-squared test

The Pearson’s chi-squared test was first introduced by Pearson [1900] and is
a statistical test that can be used to determine whether a set of observations
significantly differs from a theoretical distribution. The idea behind this test is
to divide the observations into bins and to compare the number of occurrences
per bin to the expected number of occurrences under the theoretical distribution.
In this paper we will be using the null-hypothesis, H0 : the data comes from a
Poisson distribution. In order to test this hypothesis, the following test statistic
has to be computed:

χ2 =
n∑

i=1

(Oi − Ei)
2

Ei
(2.1)

Where:

• χ2 = the Pearson’s cumulative test statistic, which approaches a χ2-
distribution with n− 2 degrees of freedom under H0

• n = the number of bins

• Oi = the number of observations in bin i
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• Ei = the number of expected observations in bin i under H0

The corresponding p-value can then be calculated by comparing the value
of the test statistic with the χ2-distribution with n − 2 degrees of freedom. If
the p-value is below the significance-level of 5%, the null-hypothesis is rejected.

2.2 Shapiro-Wilk test

The Shpairo-Wilk test was first introduced by Shapiro and Wilk [1965] and is
a statistical test used to test whether a set of observations belongs to a normal
distribution. There are several different tests for normality, however, research
by Razali and Wah on the most popular normality tests has shown, that the
Shapiro-Wilk test has the best power for a given significance. This test will be
used in chapter 5 in order to test the normality assumption made by the Welch’s
t-test. The null-hypothesis is, that the data belongs to a normal distribution.
In order to test this hypothesis the following test statistic has to be computed:

W =
(
∑n

i=1 aix(i))
2∑n

i=1(xi − x̄)2
(2.2)

Where:

• n = the number of data points

• ai = the Shapiro-Wilk coefficients

• x(i) = the i-th smallest data point

• xi = the i-th data point

• x̄ = the average over all data points

The p-value is then calculated based on the value of the test statistic. If this
p-value is below the significance-level of 5%, the null-hypothesis is rejected.

2.3 Welch’s t-test

The Welch’s t-test was first introduced by Welch [1947] and is a statistical test
used to test whether two sets of observations have equal means. The advantage
of Welch’s t-test over the Student’s t-test is, that the Welch’s is more accurate
when the two samples have different variances and sizes. An assumption made
by this test is, that both data sets come from a normal distribution. Therefore,
in order to use this test statistic, the Shapiro-Wilk test will be used to test for
normality. This test will be used in chapter 5 in order to test whether the cost
of one solutions is significantly lower than the other. The null-hypothesis is that
the two sample means are the same. To test this hypothesis, the following test
statistic has to be computed:
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t =
X̄1 − X̄2√

s21
N1

+
s22
N2

(2.3)

Where:

• X̄i = the i-th sample mean

• s2i = the i-th sample variance

• Ni = the i-th sample size

Under the null-hypothesis the value for this test statistic will come from a
t-distribution with a number of degrees of freedom approximated by:

ν ≈
(
s21
N1

+
s22
N2

)2

s41
N2

1 (N1−1) +
s42

N2
2 (N2−1)

(2.4)

Since we want to know if one of the solutions is significantly cheaper than
the other, we use a one-tailed test to test the null-hypothesis. If the p-value is
below the significance-level of 5%, or if the p-value is above 95% depending on
what we choose for sample 1 and 2, the null-hypothesis is rejected and there is
a significant difference between the two sample means.

2.4 Wilcoxon–Mann–Whitney test

The Wilcoxon-Mann-Whitney test was first introduced by Mann and Whitney
[1947] and is a similar statistical test to the Welch’s t-test. The difference is,
that this test does not make the normality assumption made by the Welch’s
t-test. Therefore it will be applied in chapter 5 in situations where normality
has been rejected. The null-hypothesis is that the two samples have the same
location. In order to test this hypothesis we have to follow the following steps:

1. Combine both samples and assign a rank to each of the observations. If
there is an n-way tie, all unadjusted ranks will be added up and each
observation will be given a value equal to this sum divided by n.

2. Add up the ranks for both samples separately

3. Calculate the test statistic for the sample with the smallest sum of the
ranks according to:

U = Ri −
ni(ni + 1)

2
(2.5)

Where:

• Ri = the smallest sum of ranks
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• ni = the sample size belonging to the data set with the smallest sum of
ranks

The p-value is then determined based on the value of this test statistic.
Depending on the alternative hypothesis, we then decide whether the difference
is significant and the null-hypothesis can be rejected. The alternative hypothesis
that will be used are if the location of sample 1 is bigger than sample 2 and vice
versa.
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Chapter 3

Data

The goal of this chapter is to provide inside into the data sets provided and to
show why certain decisions were made in the benchmark. Section 2.1 gives a
description of the contents of the data sets and the decisions that were made
because of them. And section 2.2 will focus on the analysis of the data and the
factors that have to be taken into account when creating new data sets.

3.1 Data Description

In order to create realistic instances for the benchmarking tool, real hospital
data was used. This data was provided by three major Dutch hospitals and
therefore consists of three separate data sets. The hospitals will be referred to
as hospital 1(H1), hospital 2(H2), and hospital 3(H3) for anonymity purposes.

Table 3.1 shows the contents of the data sets for each hospital. Here we
can see that H2 has the most complete data set, followed by H3 and finally H1.
The surgery planning contains the surgeries performed per day for a period of
#Days days. The surgery frequencies are the overall number of times a specific
surgery was performed during that period of time. Instrument demand con-
tains the instruments required per surgery. The current net composition, which
is only available for H2, describes the composition of the current nets and the
quantities in which they are available.
In order to create instances for the static simulation, a surgery planning is re-
quired. However, this planning is not available for H1 and therefore the decision
was made not to include H1 in the static simulation.
Data missing from the data sets was data on the weight and volume of the in-
struments, and data on the duration of the surgeries. This made it impossible
to take the total weight and volume of a tray into account. It was furthermore
decided that the length of a surgery day would be expressed in the number of
surgeries performed and not the amount of time elapsed.
From the data sets for H2 and H3 data was missing on the sterilizations costs
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of the nets and instruments. The decision was made to copy the costs that
were given for H1. This sets the instrument sterilization costs to 1 and the net
sterilisation and handling costs to 20.

H1 H2 H3
Surgery planning - yes yes
Surgery frequencies yes yes yes
Instrument demand yes yes yes
Current net composition - yes -
#Surgeries 15 16 174
#Instruments 195 87 1125
#Days 365 365 337
Annual net depreciation 500 475 500
Max #instruments per net 65 60 65

Table 3.1: Characteristics of the three data sets

3.2 Data Analysis

The goal of the data analysis is to find useful characteristics in the data and
to find underlying distributions that can be used to create instances of general
sizes. In order to achieve this, we must first understand what is required for an
instance. An instance consists of a surgery planning, an instrument demand,
the maximum number of instruments per net and several cost parameters. The
values for the last two are inherited from the hospital the new instance is based
on. An instrument demand contains the instruments required per surgery. The
data needed to create an instrument demand is further analysed in section 3.2.1.
Lastly the surgery planning is a plan which describes the number of times each
surgery is performed on a specific day for a predetermined amount of days.
Section 3.2.2 will focus on the data analysis concerning the surgery planning.

3.2.1 Instrument demand

The difficulty in creating a new instrument demand based on another instance,
is the fact that not only the number of instruments may change, but also the
number of surgeries and the ratio between the two might not stay the same.
The creation of an instrument demand can therefore be subdivided into the
following four problems:

1. The number of instrument-types a surgery requires

2. The number of surgery-types an instrument is assigned to

3. The specific assignment of instruments to surgeries

4. The amount of an instrument-type that is required by a surgery-type
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In order to solve problem one and two, an assumption has to be made. Be-
cause when the ratio between the total number of surgeries and instruments
changes, either the number of surgeries per instrument, or the number of in-
struments per surgeries has to change. Therefore the assumption was made that
the number of different instruments per surgery does not depend on the size of
the instance. So in other words, increasing or decreasing the surgery to instru-
ment ratio does not change the number of different instrument-types required
by a surgery. This means that the number of surgery-types an instrument is
assigned to depends on the ratio between instruments and surgeries.

In order to find a solution for problem three, we have to look at the data
to see if there are any patterns that have to be preserved. First the number
of different surgeries an instrument is assigned to will be analysed. Figure 3.1
shows the number of different surgery-types an instrument is assigned to for H2.
We can see that there are three major peaks in the plot, one around 2 surgeries,
one at 7 and one at 15. If all instruments had an equal probability of being
assigned to a surgery, we would expect to see a histogram corresponding to a
binomial distribution. However the data suggests that there is a distinction in
instrument-types, some instruments are used very rarely, some are used more
frequently and others are used for almost every single surgery. This shows that
assigning instruments randomly to surgeries does not fit the data.
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0
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15
25

Figure 3.1: Histogram of the number of surgeries per instrument for H2

Next we will see if the division of instruments over surgeries is similar for H3.
Figure 3.2 shows again the number of surgery-types an instrument is assigned
to and the number of times this happens. The figure is cropped in order to be
able to show the frequently assigned instruments, because the number of instru-
ments that are assigned to a low number of surgeries is so high, that this would
not have been possible otherwise. The histogram shows that there can again be
made a distinction into three groups of instrument-types based on peaks seen
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in the graph, however they are less pronounced than the peaks found in Figure
3.1. But the graph again shows that the spread of instruments over surgeries
does not occur equally, nor with equal probability.
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Figure 3.2: Histogram of the number of surgeries per instrument for H3

Now that we have seen that the spread of instruments over surgeries is not
equal among instruments, we have to look at how the surgeries are spread over
the instruments. In order to do this, we will divide the instruments in three
groups based on the peaks seen in Figure 3.1 and 3.2, the division boundaries
are specified in 3.2. Group 1 contains the rarely used instruments, group 2 the
more frequently used instruments and group 3 contains the most frequently used
instruments. What we want to test now, is whether every surgery requires an
equal amount of instruments from each group. Or in other words, we want to
know if the instruments from a particular group are used by all surgeries, or if
they are mostly used by a small group of surgeries.

Group 1 Group 2 Group 3
H2 0-5 6-8 8-16
H3 0-40 40-100 101-152

Table 3.2: Boundaries for the different groups of instruments

We will start by looking at H2. For each of the groups the relationship
between the cumulative percentage of surgeries and the cumulative percentage
of instruments is shown in Figure 3.3. These figures are similar to the Lorenz-
curve of income distribution in economics. The diagonal shows the line of equal
distribution, if the plot follows this line closely, the distribution is close to even.
Figure 3.3a shows that only a little over 20 percent of the surgeries use the rare
instruments. So this means that some surgeries use a lot of rare instruments,
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while the majority does not use them at all. If we look at Figure 3.3b, we see
that the distribution is more even, but still 50 percent of the surgeries do not
use these instruments. However if we look at Figure 3.3c, we can see that the
distribution of frequently used instruments is close to being even. Generally it
can be concluded that the distribution of instruments within groups is not even
and a distinction has to be made between surgeries that use a lot of instruments
from a particular group and surgeries that don’t.

Now if we look at the same plots for H3 in Figure 3.4, we can see a similar
pattern that is less pronounced. However it is still there and has to be taken
into account when instruments are assigned to surgeries.
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Figure 3.3: Equality graphs for the instrument groups for H2
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Figure 3.4: Equality graphs for the instrument groups for H3

Now that the allocation of a certain instrument-type to a surgery-type has
been addressed, the amount has to be determined. There are three main pos-
sibilities. One, the amount depends on the instrument type. Two, the amount
depends on the surgery type. Or three, the amount follows a pattern, like a
probability distribution.
Figure 3.5a shows the sorted variance of the non-zero amounts of instruments
per instrument-type for instruments with more than one allocation. We can
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see that the variance is zero for almost every instrument, which means that the
amount heavily depends on the instrument-type. If we look into Figure 3.5b,
we see the variance of non-zero amounts of instruments per surgery-type. The
higher variance in this figure combined with the almost all zero variances for
the instrument-types, means that the amount of instruments per allocation for
H2 depends on the instrument-type and not the Surgery-type.
Looking at H3 in Figure 3.6, we can see a similar pattern for the instruments.
And even though the variance for the surgery-types is different from H2, it is
still mostly non-zero. This leads to the same conclusion, the amount of instru-
ments per allocation depends on the instrument-type.
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Figure 3.5: The sorted instrument variance per instrument and surgery for H2
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Figure 3.6: The sorted instrument variance per instrument and surgery for H3

3.2.2 Surgery plan

In order to build a new surgery plan based on another instance, the data has
to be studied. The first thing that was done, was looking for patterns. The
first pattern that was analysed, was the pattern between different days of the
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week. Figure 3.7 shows the total number of surgeries performed per day for two
different types of surgery. The first surgery-type can be classified as an elec-
tive surgery, because the surgery is mostly performed on weekdays. The second
surgery-type can be classified as an emergency surgery, as the number remains
almost constant throughout the week. This pattern is so much different per day
of the week for elective surgeries, that this has to be taken into account when
making the surgery plan.
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Figure 3.7: Examples of week-patterns for different types of surgery

The next pattern that was studied, was the year pattern. Figure 3.8a shows
the year pattern for H2. The pattern appears to be random. If we look at
Figure 3.8b, we see the year pattern for H3. This pattern appears to be more
pronounce, with a valley just before week 20 and again around week 30 and 40.
These correspond to the spring holiday, summer holiday and autumn holiday in
the Netherlands. In the end it was decided that the pattern was not pronounced
enough and would not be taken into consideration when creating the data set.
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Figure 3.8: The number of surgeries per week for H2 and H3

Now that the patterns have been studied, the number of surgeries that are
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performed per day of each surgery-type have to be analysed. Surgeries in an
operating theater can be seen as arrivals, especially when it concerns emergency
surgeries. A large number of people all have a very small probability of re-
quiring a certain type of surgery. Therefore we expect a number of surgeries
to follow a Poisson distribution, while others do not because of planning. In
order to determine if a surgery-type can be modeled as a Poisson process, the
week patterns have to be removed. In order to do this, we will replace the daily
demand in the surgery planning with the weekly demand per surgery. This will
not influence instances that can be modeled as a Poisson process as the sum of
Poisson processes is again Poisson distributed with the sum of the rates.
Figure 3.9a shows the histogram of the weekly intensities of a surgery-type with
corresponding Poisson distribution in the background in blue. The Poisson
distribution closely matches the histogram and therefore this instance can be
classified as a Poisson instance. Figure 3.9b however, shows a histogram that is
much further away from the corresponding Poisson distribution with a peak at
lower values that should not be there if it was a Poisson instance. This instance
can therefore not be classified as a Poisson instance.
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Figure 3.9: Histograms of the arrivals per week against the Poisson distribution

In order to classify these instances in a non subjective way, a statistical test
was chosen make this decision. The test used was the Pearson’s chi-squared test,
described in section 2.1. The null-hypothesis is that the data is from a Poisson
distribution and only when the null-hypothesis is rejected will we classify an
instance as non Poisson. The significance level used to make this decision was
five percent. The results are shown in Table 3.3 and show that the majority of
cases can be classified as Poisson instances.

Poisson Non Poisson
H2 10 6
H3 105 69

Table 3.3: Classification of Poisson instances for H2 and H3
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Chapter 4

Instance Generation

This chapter will show how the patterns that were found in chapter 3 were
implemented when creating an instance for the TOP. An instance for the TOP
consists of an instrument demand, a surgery planning, cost parameters and
maximum tray sizes. A new instance can either be based on H2 or H3, as they
are the data sets with all these parameters. The cost parameters and maximum
tray sizes are directly inherited from the hospital the new instance is based on.
In order to create new instances of arbitrary sizes, some assumptions have to
be made. The first assumption is needed to create a new surgery demand.
We assume that the number of different instrument-types required per surgery
does not change when the ratio between instrument-types and surgery-types
changes. This means that the number of surgeries an instrument is assigned
to does change in these situations. The next assumption is that the number
of performed surgeries changes linearly with the number of surgery-types. This
assumption concerns the surgery planning.
Section 4.1 will show how a new instrument demand is created based on an
existing demand and section 4.2 will do the same for the surgery planning.

4.1 Instrument Demand

The instrument demand is a matrix with the instruments as rows and surgeries
as columns. It shows how many of each instrument is needed per surgery. Since
this instrument demand has to be based on an already existing instance, we
would like to preserve information that was in the original data set. First we
will look at the instruments and after that we will talk about the surgeries.

4.1.1 Instruments

The idea behind creating new instruments is that each instrument is based on a
random instrument from the original instance. The problem is that we have to
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decide which characteristics have to be inherited from the original instrument in
order to create the new instrument and eventually instrument demand. Figures
3.1 and 3.2 showed that instruments could be subdivided into three separate
groups, with a different rate of being assigned for each group. Not only do
the groups have different rates of being assigned, even within groups there are
differences. To preserve these differences, the new instrument will inherit the
frequency of the instrument it is based on. This frequency will determine the
group it came from according to Table 3.2 and can be used to determine the
rate at which an instrument should be assigned within groups.
Now that we know to which group each instrument belongs and how frequent
we should assign each instrument within the groups, we would like to know how
many of each instrument to assign when an assignment is made. In other words,
which number should be in the cell of the matrix. This could depend on the
instrument-type, the surgery-type, or on a combination of the two. However, we
have already seen in Figures 3.5 and 3.6 that that number only depends on the
instrument-type and not the surgery-type. So in order to create an instrument
demand, the new instrument also has to inherit the amount the old instrument
was assigned.
So, in order to create a new instrument demand, a new instrument will inherit
the frequency of being assigned and the amount being assigned of a random
instrument from the old instrument demand.

4.1.2 Surgeries

Just like the instruments, new surgeries are based on random surgeries from the
original instance. The last thing left to determine before we can create the new
instrument demand is how to assign instruments to surgeries. As we’ve seen
in 3.3 and 3.4, each surgery requires a different composition of instruments.
Some require a lot of specialized tools, while others only require basic tools.
Therefore the number of instrument-types required per instrument group is a
characteristic of the surgery-type. So when creating a new surgery a random
surgery from the original instance is chosen and for this instance the number of
instrument-types used from group 1, 2 and 3 are determined and passed on to
the new instance.

4.1.3 Creation

Now that we have the number of instrument-types per group required by a
surgery, the relative frequency an instrument should be assigned and the as-
signment amount, we can start to create the new instrument demand.
Let I be the group of all instrument-types. Let J be the group of all surgery-
types. Let Xg be the collection of all instruments belonging to group g. Let Ygj
be the number of instrument-types from group g required by surgery j. Let Z
be the new instrument demand, with Zij the number of instruments i needed
for surgery j. Let fi be the frequency assigned to instrument i. And let ni be
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the amount instrument i should be assigned when it is matched to a surgery.
The instrument demand can then be created using Algorithm 1.

set Z ←− 0
for each j ∈ J do

for each g ∈ G do
set S ←− Xg

for i = 1...Ygj do
compute pi = fi/(

∑
k∈S fk)

draw a random instrument l from S, where every instrument
a has a probability pa of being picked
set Zlj ←− ni
set S ←− S\{l}

end

end

end
Algorithm 1: Creating a new instrument demand

4.1.4 Results

Now that a method for creating an instrument demand has been created, we
would like to know how it compares to the original instance. In order to do
this, a new instrument demand was created for both H2 and H3 of the same
size. Figures 4.1 and 4.2 show a comparison between the original and generated
instances for H2 and H3 respectively. For H2 we see that the distinct peaks in the
original instance are less pronounced in the generated instance. The cause of this
is Algorithm 1 used to create a new instrument demand. It uses a probability
pi for instrument i of being assigned to a surgery. This causes randomness in
the number of assignments within groups and therefore less pronounced peaks.
If we now look at the same figures for H3 in Figure 4.2, we see the opposite
occurring. The peaks for group 2 and 3 appear to be more pronounced in
the generated instance. So in the original instance, there was more spread in
the assignment of instruments to surgeries within groups than we were able to
produce with Algorithm 1.
So this characteristic of the original data set is not kept in its entirety in the
newly generated instance and could use improvement.
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Figure 4.1: Histogram of the number of surgeries per instrument for H2 and a
generated instance based on H2
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Figure 4.2: Histogram of the number of surgeries per instrument for H3 and a
generated instance based on H3

The next thing we have to check, is the distribution of instrument-types
within groups amongst surgery-types. Figures 4.3 and 4.4 show this distribution
for respectively H2 and H3. The red line is the original instance and the blue line
the generated. We can see that for both hospitals the lines are very close and
the differences are caused by the randomness in the creation of new instruments
and surgeries.
So in the new instance this characteristic is kept.
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Figure 4.3: Equality graphs for the instrument groups for H2(red) and a gener-
ated instance(blue)
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Figure 4.4: Equality graphs for the instrument groups for H3(red) and a gener-
ated instance(blue)

The last thing we have to check for the instrument demand is the variance
of the amount of instruments assigned per instrument and surgery. Figures 4.5
and 4.6 show these variances for respectively H2 and H3. The original variance
is shown in red and the variance belonging to the generated instance is in blue.
Both graphs for both hospitals seem relatively close together with some expected
variation due to the randomness of the assignments.
So we can see that this characteristic is carried on to the new instance.
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Figure 4.5: The sorted instrument variance per instrument and surgery for
H2(red) and the generated instance(blue)
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Figure 4.6: The sorted instrument variance per instrument and surgery for
H3(red) and the generated instance(blue)

4.2 Surgery Planning

The surgery planning is a matrix with the surgeries as rows and the days as
columns. The value in a cell contains the number of times that particular surgery
is performed on that specific day. In order to create a new surgery planning
based on an existing one, we want to preserve the characteristics of the original
plan. Section 3.2.2 showed that there are two different characteristics we want to
maintain. The first characteristic is the week pattern and the second is whether
a surgery can be modeled as a Poisson distribution.
For instances that can be classified as Poisson instances, a parameter λ has
to be determined. In order to preserve the week pattern in the new surgery
plan, seven different λ’s will be computed, one for every day of the week. As
estimator for these parameters, the Maximum Likelihood Estimator(MLE) for
the Poisson distribution will be used, which is equal to the sample mean.
For surgeries that can not be classified as Poisson instances, the historical data
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is used. In order to also preserve the week pattern in this case, the value in the
new surgery plan is equal to a random value in the past on the same weekday.

4.2.1 Results

In order to check whether the characteristics from the original data set are kept
in the new instance, we check to see if we can find similar week patterns to the
ones we saw before. Figure 4.7 shows an example for both an elective and an
emergency surgery. These figures are very similar to the figures of Figure 3.7
and we can therefore conclude that the week patterns can still be found in the
generated instances.
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Figure 4.7: Examples of week-patterns for different types of surgery
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Chapter 5

Solution Evaluation

A solution to the Tray Optimization Problem(TOP) consists of three parts. The
first is a net composition that contains the instruments that go into each tray.
The second is a tray allocation which contains the trays required to perform
each surgery. The last part is the number of trays that have to be kept in stock
for each tray type.
In order to evaluate such solutions of existing or created instances, four differ-
ent methods will be applied. These methods will be applied to three different
solutions for the original data set of H2. The first solution is the current com-
position of trays used by H2. The second is the solution given by a Genetic
Algorithm(GA). The inner workings of this algorithm are treated like a black
box in this paper. However, the algorithm requires a starting solution and for
this purpose it uses a solution that is different from the original solution. There-
fore, in order to test the effectiveness of the algorithm, this solution will also be
examined.
Section 5.1 will discuss the results obtained using historical sampling. Section
5.2 will show the results using perturbed historical sampling. Section 5.3 will go
into the results of using historical frequencies. And finally section 5.4 will talk
about the results of using perturbed historical frequencies. All of the results in
this chapter are obtained by taking the average over 1000 periods of five years.

5.1 Historical Sampling

Historical sampling is done by drawing a random day from the surgery plan and
evaluating the solution for that day. The idea behind this method is that it is
a good and fair way to compare the average cost of a solution, as none of the
solutions should have a failed surgery.
Table 5.1 shows the results for historical sampling and there are indeed no
failures. In order to test if the differences in costs are significant between the
solutions, the Welch’s t-test from section 2.3 will be used. However, before this
test can be used, the normality assumption of the data has to be checked. In
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order to do this the Shapiro-Wilk test from section 2.2 will be used. However,
this test is not conclusive for larger data sets and has to be used in conjunction
with a QQ-plot.

Failures Failure Rate(in%) Costs
Current 0 0 246,735
Start GA 0 0 210,591
Solution GA 0 0 208,033

Table 5.1: Average yearly results for 1000 times historical sampling for 5 years

Table 5.2 shows the value for the Shapiro-Wilk test statistic and the corre-
sponding p-value. None of the p-values are below the threshold of five percent,
so the test gives no reason to withdraw the normality assumption. Since the
number of data points is quite high, the Shapiro-Wilk test is inclined to classify
most distributions as a normal distribution, so in addition to the test QQ-plots
are required. Figure 5.1 shows the QQ-plots for the costs of the different solu-
tions and also shows no reason to withdraw the normality assumption.

W p-value
Current 0.9989 0.8152
Start GA 0.99855 0.59
Solution GA 0.99792 0.2506

Table 5.2: Values for the Shapiro-Wilk test statistic for the costs
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Figure 5.1: Normal QQ-plots for the costs for historical sampling

Since both the test statistic and the QQ-plots do not reject the normality
assumption we are allowed to use the Welch’s t-test to see if there is a significant
difference between the costs.
First we will compare the current solution to the starting solution of the GA.
The null-hypothesis is that the means of both data sets are the same. The
alternative hypothesis is that the costs of the starting solution of the GA are
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less than the costs for the current solution. The value for the test statistic is
t = 301.47, which, in combination with 1926.5 degrees of freedom, gives a p-
value smaller than 2.2 ∗ 10−16. Since the p-value is smaller than five percent,
the null hypothesis is rejected and the costs for the starting solution of the GA
are significantly smaller than those of the starting solution.
Next we will compare the starting solution of the GA to the eventual solution of
the GA. The null-hypothesis is the same as before and the alternative is that the
costs for the eventual solution are less than the costs for the starting solution.
The value for the test statistic is t = 29.591 with 1997.4 degrees of freedom.
This corresponds to a p-value of again 2.2∗10−16, which means that the solution
of the GA is significantly less than its starting solution.
So to conclude the historical sampling, the current solution is significantly more
expensive than both other solutions and the GA produces a solution that is
significantly better than its starting solution. However the differences between
the current solution and the others is much greater than the difference between
the starting solution and the end result.

5.2 Perturbed Historical Sampling

Perturbed historical sampling is similar to the previous method in the way that
a random day from the past is drawn. However for perturbed historical sampling
a certain percentage of the surgeries on a day are randomized. For this example
a percentage of ten percent is chosen. The idea behind this method is to test
what happens when small changes occur in the schedule. The results for this
method are shown in Table 5.3. From this method onward failures will occur
and therefore the costs are no longer a fair comparison. This is because failed
surgeries will not incur costs, so in order to rate a solution a manager will have
to look at a combination of the failure rate and the costs to determine what is
best for the hospital.

Failures Failure Rate(in%) Costs
Current 0.204 0.013 245,613
Start GA 1.377 0.086 209,446
Solution GA 3.115 0.195 206,605

Table 5.3: Average yearly results for 1000 times 10% perturbed historical sam-
pling for 5 years

In order to see if the differences in failures are significant, a statistical test
is again performed. First Table 5.4 shows the results for the Shapiro-Wilk test
for normality. From this we can conclude that the normality assumption is not
correct for this instance and therefore, the Welch’s t-test can no longer be used
to test for significance. Instead the Wilcoxon-Mann-Whitney(WMW) test from
section 2.4 will be used.
First we will test the null-hypothesis that the number of failures in the current
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situation and the starting solution are the same. Against the alternative that
the current situation has more failures. The test statistic is W = 17340 with a
p-value less than 2.2∗10−16. So the starting solution for the GA has significantly
more failures than the current solution.
Next we will test the null-hypothesis that the number of failures between the
starting solution of the GA and then end solution are the same. With an
alternative-hypothesis that the number of failures for the solution is bigger.
The test statistic is W = 38125 with a p-value less than 2.2 ∗ 10−16. So again
the differences are significant.
So to conclude, the current solution is able to handle the small changes much
better than the other solutions. And the starting solution has significantly less
failures than the end result. However the maximum number of failures is still
below 0.2%.

W p-value
Current 0.74187 < 2.2 ∗ 10−16

Start GA 0.99374 0.0003365
Solution GA 0.98883 6.661 ∗ 10−7

Table 5.4: Values for the Shapiro-Wilk test statistic for the costs

5.3 Historical Frequencies

The method historical frequencies creates days according to the historical fre-
quencies of the surgeries. The length of a day is equal to the length of a random
day in the past. The idea is that some solutions might depend on day combina-
tions and this method tests what happens when day combinations are broken.
In reality this could correspond to increasing the number of days a surgery is
planned on. The results are shown in Table 5.5. When we compare these re-
sults to the perturbed historical sampling, we see that the number of failures for
both GA solutions increased a lot. While the number of failures for the current
solution went down.
We again want to know if the difference in failures is significant. Comparing
the current solution to the starting solution for the GA gives a p-value less than
< 2.2∗10−16. So the current solution has significantly less failures. The p-value
corresponding to the comparison of the starting solution of the GA and the end
is the same at < 2.2 ∗ 10−16.
Concluding we can see that both GA solutions depended heavily on day combi-
nations and perform a lot worse than before. However, the maximum number
of failures still does not exceed one percent of the total surgeries.
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Failures Failure Rate(in%) Costs
Current 0.157 0.010 246,668
Start GA 3.852 0.241 209,980
Solution GA 11.734 0.734 206,717

Table 5.5: Average yearly results for 1000 times historical frequencies for 5 years

5.4 Perturbed Historical Frequencies

The last method is the perturbed historical frequencies. This method is again
very similar to the historical frequencies, the only difference being that the fre-
quencies being used are perturbed by a fixed percentage. The percentage used
is again ten percent. This means that if a surgery had a frequency of 100 times,
the perturbed frequency will lay between 90 and 110. The idea behind it is to
be able to test for both methods of variation simultaneously.
Table 5.6 shows the results and we can see that the changes between the per-
turbed historical frequencies and the historical frequencies are minimal. The
differences are still significant, as comparing the current solution to the start
yields a p-value of < 2.2 ∗ 10−16, which is the same p-value as we get from
comparing the starting solution of the GA to the final solution.
The differences between the perturbed and non-perturbed historical frequencies
were almost non-existent for this example. However, this could be different in
other situations.

Failures Failure Rate(in%) Costs
Current 0.166 0.010 246,446
Start GA 3.904 0.244 210,036
Solution GA 11.745 0.734 206,783

Table 5.6: Average yearly results for 1000 times 10% perturbed historical fre-
quencies for 5 years
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Chapter 6

Discussion

The goal of this research paper was to create an environment where Tray Op-
timization Problem(TOP)-instances could be generated based on real data and
where solutions to these problems could be evaluated under changing circum-
stances. In addition an evaluation was to be conducted on a provided Genetic
Algorithm(GA).

The creation of new instances is capable of preserving all but one of the
characteristics found in the original data set. Figure 4.1 and 4.2 show that
the number of surgeries an instrument is used in, is either too spread out, or
too clumped up. This is caused by the random, relative to their frequencies,
assignment of instruments from groups to surgeries. A possible solution for
further research would be to make both the number of surgeries an instrument
should be assigned to, as the number of instruments that should be assigned to
a surgery deterministic. Right now only the latter is deterministic and the first
is probabilistic, which appears to cause these problems.

Up until this point research has focused on algorithms that attempt to min-
imize the costs for a given instance. The problem is however, that the solution
will not be used on that instance, but on next years instance which is not yet
known. It is therefore important to determine how well a solution deals with
changing conditions. This paper has shown that for a specific genetic algorithm,
the reduction in costs comes at a steep increase in the number of failures. So
for future research into algorithms it is advisable to also study the compromises
made in order to be able to reduce the costs.

Something that could aid further research would be more detailed and bigger
data sets. The current system does not work with sizes and weights of instru-
ments and volumes of trays, nor with the length of surgeries, because this data
was not available. Also if more data was available, one part of the data set
could be used to create a solution, while the other could be used to evaluate the
solution.
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