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Abstract

The scheduling of outpatients is studied with general job duration and
deterministic interarrival times, where we use a sequential scheduling method
to derive these interarrival times. This is done by balancing between idle
and waiting time, with the addition of tardiness as hard constraint. In
this paper the mathematical equations for calculating an optimal sequen-
tial schedule are derived and the results are illustrated with some numerical
examples.

1 Introduction

Probably the most important subject of the last elections in the Netherlands
was healthcare. How do we keep it affortable and maintain a high level of care.
Questions whether to privatize hospitals, cut back on management costs and many
others issues were raised. In any case, hospitals have to cut back on their cost,
while maintaining a high service level. One of the best ways to archieve such
objectives is to work more efficiently.

The scheduling of expensive machines and manpower has become more effective
in many departments of hospitals. Outpatient scheduling has been an area where
not so much research has been done. The question remains whether the idle time of
docters and the waiting time of patients can be reduced, to become more customer
friendly with less costs. This kind of problem appears in more industries than in
healthcare, for example financial advisors and other consultation branches have
to schedule appointments as well. The model from this paper can be used in such
kind of branches.

In general there are three measures to rate a schedule, i.e. waiting time (of the
customer), idle time (of the server) and tardiness (of the server). This research
starts with sequential scheduling as in the research of Kemper et al. [1], which
schedules patients in a outpatient setting. The sequential method has as advantage
compared to global methods that the speed is higher. In the research of Kemper et
al. tardiness is not involved, which is important in practice. Therefore, tardiness is
added to the model of Kemper in this research, together with practical approaches
to calculate such a schedule.

This paper starts with describing the model for the sequential schedule in
chapter 2. After that a formula to calculate an optimal sequential schedule is
derived and used to find recursive relations for the waiting time in chapter 3. In
this chapter also ways to add tardiness to the model are explored. Numerical
results of a program that makes schedules sequential are discussed in chapter 4.
In chapter 5 a discussion how the results can be used is given.
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2 Model

2.1 The model

We want to schedule n customers and we define a risk for customer i (i = 1, . . . , n)
as

Ri(t1, t2, . . . , ti) = E(g(Ii)) + E(h(Wi)), (1)

with Ii the idle time of the server between customers i− 1 and i, Wi the waiting
time of the ith customer and ti the arrival time of customer i. This definition
is ideal for the sequential scheduling, because when scheduling customer i at an
optimal ti we only need t1, . . . , ti−1, since that gives all the information about the
earlier customers and facts about later customers are not used.

To find these optimal ti’s, we use a loss function l that uses the fact that idle
time and waiting time can not occur at the same time

l(x) = g(−x)1[x<0] + h(x)1[x>0]. (2)

Now can we write Equation (1) as

Ri(t1, t2, . . . , ti) = El(Wi − Ii). (3)

In the research only

g(x) = αx2

h(x) = (1− α)x2
(4)

is taken into account, where α ∈ [0, 1]. In the sequential scheme, we determine
optimal interarival times xi = ti+1 − ti for each customer and these xi’s give the
optimal ti’s. In this scheme we assume job durations B1, . . . Bn to be independent
of each other and of time. We define Si = Wi+Bi as the sojourn time of customer
i.

When tardiness is taken into account, we have an endtime T . Tardiness can
be included in two ways, as a parameter and as hard constaint. When tardiness is
included with a parameter, we have to consider a tardiness measure for the system.
Because the sequential method optimizes the system job for job, it is unclear how
to include it. Therefore a hard tardiness constraint is included. That means that
only schedules meeting the tardiness constraint are accepted. The most obvious
hard constraint is that a schedule has to finish in expectation at time T , but also
constraints like with 95% chance the schedule has to be finished before T can be
used.

With this endtime, we can also define the load of the system as
∑n

i=1 E(Bi)

T
, which

should be less than one when a schedule ending before T is expected. When we

have a system with
∑n

i=1 E(Bi)

T
> 1 we know that we can not have a schedule finish

in expectation before T .
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2.2 Choices in the model

The choice to make the schedule sequential is partly practical. When we do not
consider all the jobs at the same time, but only one by one, computing the optimal
interarrival times gets easier.

Furthermore, scheduling sequential also has a fairness property, because for
each patient we do not consider all other patients which might give him a longer
waiting time, because that is preferable in the total schedule. Each patient will be
scheduled with balancing between the docters idle time and his own waiting time.

To prevent long waiting times we have taken g and h in Equation (1) quadratic,
because this penalizes large values more severely than linear g and h. It makes
sense to do this, because there is no way to prevent all idle and waiting time, so
extreme cases should be avoided.

We only consider g and h as in Equations (4), because α gives the freedom
to model all quadratic g and h. If we want to use functions g

′
(x) = ax2 and

h
′
(x) = bx2 in (1), where a+ b 6= 1, we could simple take α = a

a+b
. With this α we

have the same Ri(t1, t2, . . . , ti) except for a constant, thus we do not have another
minimum and we will find the same optimal ti’s.

3 Analysis

3.1 The sequential method

In sequential scheduling the first customer arrives at t = 0. Now all the information
about the first customer is available to use, and we can calculate the optimal x2
under Equation (1). Now all the information about the second customer is there,
so we can calculate x3 and so on. The equation to determine xi given x1, . . . , xi−1
is derived in this subsection.

When we want to find the optimal interarrival time of the next customer, we
have

min
xi

E(li(Si−xi)) = min
xi

E(α(Si−xi)21{Si−xi<0}+(1−α)(Si−xi)21{Si−xi≥0}). (5)

By straightforward calculations we see

E(li(Si − xi)) = α

∫ xi

0

fSi
(s)(s− xi)2 ds+ (1− α)

∫ ∞
xi

fSi
(s)(s− xi)2 ds

= α[

∫ xi

0

fSi
(s)s2 ds− 2xi

∫ xi

0

fSi
(s)s ds+ x2i

∫ xi

0

fSi
(s) ds]

+ (1− α)[

∫ ∞
xi

fSi
(s)s2 ds− 2xi

∫ ∞
xi

fSi
(s)s ds+ x2i

∫ ∞
xi

fSi
(s) ds].

(6)
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Now consider the derivative with respect to xi

d

dxi
E(li(Si − xi))

= α[fSi
(xi)x

2
i − 2

∫ xi

0

sfSi
(s) ds− 2xifSi

(xi)xi + 2xi

∫ xi

0

fSi
(s) ds+ x2i fSi

(xi)]

+ (1− α)[−fSi
(xi)x

2
i − 2

∫ ∞
xi

sfSi
(s) ds+ 2xifSi

(xi)xi + 2xi

∫ ∞
xi

fSi
(s) ds− x2i fSi

(xi)]

= 2α[xi(1−
∫ ∞
xi

fSi
(s) ds)− (

∫ ∞
0

sfSi
(s) ds−

∫ ∞
xi

sfSi
(s) ds)]

− 2(1− α)[

∫ ∞
xi

sfSi
(s) ds− xi

∫ ∞
xi

fSi
(s) ds].

(7)

We will now only consider the last line of (7) without the constant −2(1− α)∫ ∞
xi

sfSi
(s) ds− xi

∫ ∞
xi

fSi
(s) ds =

∫ ∞
xi

fSi
(s)(s− xi) ds

=

∫ ∞
s=xi

∫ s

u=xi

fSi
(s) du ds

=

∫ ∞
u=xi

∫ ∞
s=u

fSi
(s) ds du

=

∫ ∞
xi

P(Sj > u) du.

(8)

If we now use this, Equation (7) is equal to

2α[xi −
∫ ∞
0

sfSi
(s) ds+

∫ ∞
xi

P(Sj > s) ds] + 2(1− α)[−
∫ ∞
xi

P(Sj > s) ds]

= 2α(xi − E(Si)) + 2(2α− 1)

∫ ∞
xi

P(Sj > s) ds,

(9)

and we can conclude that xi has a minimum when

α(xi − E(Si)) + (2α− 1)

∫ ∞
xi

P(Si > s) ds = 0. (10)

3.2 Exact calculations

With help of Equation (10) we theoretically can form a schedule when α and the
distributions of the Bi’s are given. Here we show that calculating a schedule an-
alytically is in practice hard, even when α and the Bi’s are choosen simple. First
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we assume that the interarival times are given and calculate the cumulative dis-
tribution functions (cdf’s) of the waiting time. Then we optimize the interarrival
times with probability density functions (pdf’s) of the sojourn time and α = 1

2
,

such that Equation (10) becomes simpler. In both these simple cases we show
that computations already get hard.

In this first case, we take all Bi’s exponential with rate µ and xi known. We
prove with induction that the waiting time Wi has the form

P(Wi > ω) =
i−2∑
j=0

cj(i)ω
je−µω, (11)

for i ≥ 2, by straightforward calculation and give a recursive manner to find cj(i).
We start with (i = 1)

P(W1 = 0) = 1, (12)

because the first customer has no one to wait for. By using the well-known Lindley
recursion

P(W2 > w2) = P((W1 +B1 − x1)+ > w2)

= P(B1 > w2 + x1) = e−µ(w2+x1),

for w2 > 0. We need w2 > 0, due to a propability mass in 0 due the + sign in
(W1 +B1 − x1)+. This proves the base case of Equation (11) and we now assume
this equation to be true until a certain i and prove the statement for i+1 to finish
the induction proof.
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Using Lindley again

P(Wi+1 > ω) = P((Wi +Bi − xi)+ > ω)

= P(Wi +Bi > ω + xi)

=

∫ ω+xi

0

fBi
(y)P(Wi > ω + xi − y) dy + P(Bi > ω + xi)

=

∫ ω+xi

0

µe−µy
i−2∑
j=0

cj(i)(ω + xi − y)je−µ(ω+xi−y) dy + e−µ(ω+xi)

=
i−2∑
j=0

cj(i)

∫ ω+xi

0

µ(ω + xi − y)je−µ(ω+xi) dy + e−µ(ω+xi)

=
i−2∑
j=0

cj(i)µe
−µ(ω+xi)−(ω + xi − y)j+1

j + 1
|ω+xiy=0 + e−µ(ω+xi)

= e−µ(ω+xi)[1 + µ

i−2∑
j=0

cj(i)
(ω + xi)

j+1

j + 1
].

(13)

Now the binomial theorem is used for (ω + xi)
j+1 in (13) to find

P(Wi+1 > ω) = e−µ(ω+xi)[1 + µ
i−2∑
j=0

cj(i)
1

j + 1

j+1∑
k=0

(
j + 1

k

)
ωkxj+1−k

i ]

= e−µωe−µxi [1 + µ
i−2∑
j=0

cj(i)
1

j + 1

(
j + 1

0

)
ω0xj+1

i

+ µ
i−1∑
k=1

i−2∑
j=k−1

cj(i)
1

j + 1

(
j + 1

k

)
ωkxj+1−k

i ].

(14)

Which is of the form of Equation (11), so we have finished the induction proof
and we found the recursive relations

c0(i+ 1) = e−µxi [1 + µ
i−2∑
j=0

cj(i)
1

j + 1
xj+1
i ] (15)

and

ck(i+ 1) = µe−µxi
i−2∑

j=k−1

cj(i)
1

j + 1

(
j + 1

k

)
xj+1−k
i . (16)
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This makes clear that in this simple case, n does not need to get very big,
before computations become too cumbersome to do analytically. When we do
not have the same rate for each job duration, we see that the recursive relations
already do not hold anymore.

We now try to calculate an optimal schedule analytically by using the pdf’s instead
of the cdf’s and combine this with choosing some parameters for simplification.
Clearly the analysis is very similar to the analysis with the cdf’s. The biggest
different is that the xi’s are now derived.

We now calculate the xi’s and we take Bi = e−x, such that we have less
parameters to keep track of. Furthermore we take α = 1

2
, such that Equation

(10) gives the optimal interarrival time xi = ESi. We can simply start with
fS1(s) = fB1(s), because the first customer has no waiting time and conclude that
x1 = 1.

Now it is possible to calculate fS2(s):

fS2(s) = P(S1 < x1)fB2 +

∫ s+x1

x1

fS1(t)fB2(s− t+ x1) dt

=

∫ x1

0

e−x dxe−s +

∫ s+x1

x1

e−te−(s−t+x1) dt

= (1− e−1)e−s +

∫ s+1

1

e−s−1 dt

= (1− e−1)e−s + [te−(s+1)]s+1
t=1

= (1− e−1)e−s + se−(s+1).

(17)

We determine x2 = E(S2) by using the fact that the first moment of an exponential
distribution is 1

µ
and the second moment is 2

µ2
. With this we see that ES2 =

((1− e−1) + 2e−1 = 1 + e−1.
Here we see that in a simple case it is again possible to find some expression for

Sn, when n doesn’t get too large. Again we see that when we take different rates
for the exponential distribution, or take some other distribution, computations
like this will get extremely hard.

So we have seen that already in simple cases, it gets very hard, when n is
large, to calculate a schedule with Equation (10). When we assume that all job
duration are exponentially distributed with the same rate, you could find some
acceptable recursive relations, but even here you need the computation strength
of a computer to practically calculate an optimal schedule.
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3.3 Tardiness

In the present model there is no way to control the tardiness, which is an im-
portant measure for the quality of a schedule. The time the server finishes is, in
expectation, equal to the sum of expected service times plus the sum of all the
expected idle times. So we can only change the tardiness by changing the idle
times. When Equation (1) is taken with g and h as in (4) the idle times can only
be influenced by changing α. So in the current model tardiness can be included
by searching for the best α such that idle time, waiting time and tardiness are
balanced.

To define what a best α is, we consider tardiness as a hard constraint, because
people do not like overtime and overtime is very expensive. So when we plan
enough customers such that the total expected job durations get close to T , we
could choose α as small as possible such that the expected endtime still is less
than T . This way we have a schedule that includes tardiness, still does not have
to much idle time, because big gaps in the schedule will make that we do not finish
before T , and with the lowest waiting time the tardiness constraint allows us.

The α were the expected endtime of the schedule is close to T is considered
to be the best α. We already concluded that a higher α always leads to less idle
time and tardiness and more waiting time. So α as small as possible such that the
expected endtime still is less than T makes sense as the best α. But it is not very
important to keep the expected endtime under T . Because the model has a lot
of stochasticity in it, we can not make sure that the model always ends before T ,
but only in expectation. Whether this expectation is T + ε or T − ε with ε small,
will not matter much and thus we can take the α with an expected endtime of the
schedule close to T .

To find such an α, we use a heurisic improving scheme. We start with an
initial α and improve until we have an expected endtime close to T . Because
the expected endtime of a schedule is stricly decreasing in α, we take αnew as
αnew = αold ∗ expected endtime of the schedule with αold

T
. This will give a new α closer to

our optimal α. We can continue until the expected endtime of the α schedule is
close enough to T according to a user defined tolerance interval.
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Figure 1: The steady state interarrival time for different α’s of a schedule with all
job durations exponentially distributed with rate one.

Very important for such an improving scheme is the choice of the starting α.
By having a starting α close to the optimum, we have to do only a few iterations
and decrease the number of calculations in this manner. For this an estimation
of extra time (x∗) per job is made, where x∗ = T∑n

i=1 E(Bi)
. This extra time is

used to guess the steady state interarrival time x̄i = x∗EBi and such a steady
state interarrival time has a unique α related to it, which would be a reasonable
starting α. So it would be nice when a closed formula for α could be find, with
as input the steady state interarrival time, but that is quite hard. During the
research we tried to solve this by using estimations for the waiting time from [3],
but an appropriate closed formula has not been found. Therefore α now is guessed
by using figures as Figure 1, by looking up the value of α that belongs to a certain
x̄i. For example, when we would have an estimated steady state interarrival time
of 1.5 we could see that a corresponding α would lie around 0.6. Figure 1 is only
for exponential distributions, but also for other distributions it works decent when
we simply take the α value connected with x∗. So improvement could be archieved
by making plots for other distributions as well, but Figure 1 can also be used for
non exponential distributions.
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This α would be a good starting point, when we would reach steady state fast.
In Figure 2 it is shown how fast steady state is reached. In this figure we see
the xi’s of a schedule with exponential distributed job durations with rate 1. The
green line is α = 0.1, the blue line is α = 0.5, the red line is α = 0.9 and the
yellow line is α = 0.95. Steady state is reached when the difference between some
xi and xi+1 is small. We can see that when we have a full system (which most
practical cases have) with α ≥ 0.9, we do not reach steady state very fast, so our
method for guessing the starting α with steady state interarrival times does not
work optimal for such α’s. This is solved by using a correction, such that α is
decreased towards the optimal α. This correction is guessed at n−1

n
, but should

be studied further, where the load probably should be taken into account to have
a better estimation for this correction value.

Figure 2: The interarrival times of the customers of schedules with different α.
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4 Numeric examples

4.1 Choices in programming

In Chapter 3 we derived Equation (10) to make an optimal schedule, but this chap-
ter also shows that it is hard to determine such a schedule analytically. Therefore
code in matlab to calculate an optimal schedule is programmed. Matlab is cho-
sen because lots of calculations (i.e. integration) made for creating a sequential
schedule are preprogrammed in matlab.

The most important choice in the program is between symbolic and numeric
computation. The advantages of symbolic computation is that it does not need
any asumptions and it is similar with the analytical derivations. The downside is
that when n gets bigger the computations get hard and a matlab program is slow
and in the end fails in the calculation, because to calculate the results in closed
form is not possible anymore.

Numeric calculation uses a time grid with intervals that contain the chance
that a customer finishes (when using sojourn time) in that time interval. How
big these time intervals are, is an important issue of numeric calculation. By
taking them too big, you will lose too much information. By taking them too
small, you will need a lot of computation power. But not only the size of the
intervals is important, also when to stop calculating how large the propability is
that a customer finishes in that interval. With an exponential distribution there
is a propability that an appointment with expected duration of 10 minutes, takes
weeks. This propability is very small, but the propability that it takes 2 hours
should be considered. So when you stop considering small propabilities too fast,
you lose information.

The choice during this research has been to use the symbolic method, because
we prefer calculations that are the same as the analytical calculations. We prefer
not to make assumptions that in a program for practical use might are easy to
make, to increase the speed of the program.

Moreover the program makes use of the pdf’s of the sojourn times, instead of
cdf’s and/or waiting times. These choices will not make a big difference, because
pdf’s and cdf’s are connected though integration. Waiting times are more basic to
calculate compared to sojourn times, but need a convolution with the job duration
when you use Equation (10).

As mentioned before, when n is large, the program gets slower and might not be
able to calculate a schedule. How big this n can be, is heavily dependent on which
distributions are used for the job durations. Some distributions like lognormal,
even can not be taken into account at all by the program.

Estimating the starting α in the improving scheme could quite easily be im-
proved. At the moment schedules that only have exponential job durations has a
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good guess by the plot of Figure 1. When you want to use the same method, you
have to make such a plot for each distribution, most having multiple parameters.
At the moment those α values are all guessed by using the exponential line, which
makes the estimation of the starting α worse.

4.2 Results from symbolic computations

When we reconsider Figure 2 we have more information than the rate of conver-
gence, also the schedules made with a certain α are visible in there. All the xi’s
are there and thus we know how the schedule looks like. In Figure 3 you can
see the same schedules, but now shown with the ti’s instead of the xi’s. The the
horizontal axis denotes the α value for that particular schedule. The schedule with
α = 0.1 has only 12 jobs, the other 16, for scale reasons. The black dots stand for
the ti’s and the colors give the duration of the full schedule until the last customer
arrives. The job durations are exponential distributed with rate one and the time
scale is based on this rate. We can clearly see here that lower α leads to larger x’s
and thus a later endtime. Also the rate of converge can be seen in the figure, by
looking at the distance between the ti dots, but not as clear as in Figure 2.

Figure 3: The schedules of exponential distributed job duration with rate 1.

The rate of converge with different α is very clear in Figure 4. Here we see
the convergence of the pdf of the sojourn time. The black line of the figures is the
sojourn time of the second customer, and the color progresses over the customers
from more grey towards blue. We again can conclude that when we have higher
α, it takes more iterations to reach steady state. The figure also shows that the
tails of the sojourn times distribution gets heavier, thus we see the increase in
interarrival times over time explained in this figure as well.
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Figure 4: The pdf’s of the sojourn times with (left) α = 0.5 and (right) α = 0.95.

In [1] is stated that the jobs should be ordered in increasing variance. We
check this by making a few schedules with the same collection of jobs (exponential
with different rates) and α, but in different job order. The result can be found
in Figure 5 and in the next Table specifications about this figure are given. This
figure indeed shows that that the order with increasing variance is the best and
the order with decreasing variance the worst.

Figure 5: The schedules of exponential distributed jobs in different job orders and
with α = 0.9.

hight color order in rates
1 green 0.25, 0.25, 0.5, 0.5, 1, 1, 2, 2, 4, 4
2 blue 4, 4, 2, 2, 1, 1, 0.5, 0.5, 0.25, 0.25
3 red 0.25, 0.5, 1, 2, 4, 0.25, 0.5, 1, 2, 4
4 yellow 1, 1, 2, 2, 0.5, 0.5, 4, 4, 0.25, 0.25
5 light blue 4, 2, 1, 0.5, 0.25, 4, 2 , 1, 0.5, 0.25
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When we make a schedule that includes tardiness, by having an expected end-
time around T , not much changes in the model. We use exactly the same model
as before, only we are estimating α. The question that we do like to answer is
how good this model is compared to non-sequential models, where we calculate
how much tardiness is expected in a system instead of considering only whether
the expected endtime is before T .

In the paper of Kaandorp and Koole [2] such a non-sequential schedule is calcu-
lated by means of local search. The downside of this method is that it uses a time
grid instead of continues time as in the case of the sequential scheduling. We tried
to use their method with a small gridsizes (10 exponential distributed customers
with rate 1

20
and interval sizes of 1), but after about 18 hour of calculating, the

program gave
Searching full neighborhood...
Checked 116820 of 12388450832 schedules,

which means that with such a small gridsize calculation takes too long, even if we
would use a very good computer. With a bigger gridsize a comparison with the
sequential schedule became incorrect, because the local search method uses the fact
that customers arrive at the starting of the timegrid. Putting the appointments
after the sequential scheduling on the starting point of a timegrid, has big impact
at the schedule when the sequential scheduled time and the timegrid time are far
apart.

5 Discussion

Compared to earlier research in sequential scheduling tardiness is included. This
has been based on some guesses and should be studied further to be able to im-
prove these guesses or find optimal values. You might be able to use steady state
estimation from [3] to be able to get a better basic α used in the improving scheme
of a schedule with tardiness. Also more options in the tardiness constraint are pos-
sible. At the moment only an expected endtime around T is considered as a hard
constraint. In practice a schedule with, in terms of tail probabilities, a maximum
probability of exceeding a threshold might be asked. Such hard constraints could
be added to the present program.

In this research recursive relations for simple cases where found. When you
have exponential distributed job duration with the same rate, we have found
Equations (15) and (16) as recursive relation for the waiting time. With these
equations a very quick program for calculating waiting times could be made. When
the assumption of having all job durations distributed exponential with the same
rate µ is a realistic one in practice, a very quick program for sequential scheduling
is possible.
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Limitations in the program used are in distributions possible in the program
and the size of n, both important in practice. Both can be prevented with a
numeric approach instead of a symbolic approach. The downside of the numeric
approach is that you have to make time intervals, where assumptions about interval
size and when a propability still has a significant influence have to be made. In
practice, the first will not be a big issue, because you will not make appointments
to a second precise, but at rounded times. The second might be more troublesome,
because a logical value for this quantity is not available in practice.

No shows are not explicitly considered in the current model and program. But
when we lower the whole distribution of a job duration by multiply it by ρ < 1,
we still have correct calculation. See [1] for the mathematical details. This way
no shows can be considered in the present program.

We can conclude that the sequential scheduling works, it gives a schedule that
is sequential optimal and can be calculate fast. For a practical program, some
problems should still be solved, but no big issues are expected. How good an
optimal sequential scheduled solution is compared to a true optimal schedule, is
hard to decide. The methods used to calculate such an optimum does not use
continues time and takes very long when a fine time grid is taken, such that it
gets close to continues time. We can therefore not conclude whether the sequential
model performs worse, but can conclude that the speed of the sequential method
is significantly better.
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