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Abstract. Conditional Generative Adversarial Networks (CGAN) are
shown to be useful for generating images. However, the use of CGANs
for human sensor data, is not investigated. It is expensive to gather la-
beled data and it is privacy-sensitive to use this data, therefore it is very
desirable to be able to generate realistic looking data in order to replace
the collected data by the generated data, to avoid these privacy issues.
The data is needed to be able to train a model to determine what activity
someone is performing at that moment. This Activity Classifier could be
implemented in a simulation environment like in [1]. It has been shown
that Generative Adversarial Networks (GAN) can be created to generate
realistic human sensor data in paper [1]. In this paper a CGAN is devel-
oped, which can generate various types of sensor data that is related to
activities someone is performing. To determine the performance of the
generated data, an Activity Classifier is created. However, the generated
data is not reliable to use, because the data is visually significantly dif-
ferent than the actual sensor data and the activity classifier is only able
to classify the correct label to three of the six activities. Some methods
and advice will be given on how a CGAN, that generates realistic human
sensor data for different conditions can be developed.



1 Introduction

Nowadays many people carry one or multiple smart devices on them during the
day, like smart phones, smart watches etcetera. These smart devices can measure
movement with multiple sensors. If Machine Learning is used to predict what
activity someone is performing at that moment, we need labeled sensor data. The
collected data can be useful to improve the physical condition of the individual.
This can be done by an intervention generated by a simulation environment, like
described in [1]. However, to generate useful recommendations, the activities that
the individual has performed during the day must be known. A large amount
of sensor data is needed to train a model that accurately predicts what activity
someone is performing given a sequence of data points.

The data that is used to train the model, must be labeled with the activity
someone is performing at that moment. The problem is that it is very expensive
to gather data of individuals that keep track of their activities while using a
smart device that collects the data. Furthermore, the data that is collected, is
privacy-sensitive. To avoid privacy issues with the sensor data, extra data can
be generated, in order to replace the sensitive collected data with the generated
data. It is important that this data sequences are not just copies of previous
collected data, but it should be data that includes variation and noise, because
each individual is unique and will have different sensor data related to an activity.
The main reason of this research is based on paper [1]. This research is an
extension of that paper, a brief summary of this paper will be given in section
2.

The main focus of this paper will be to describe a method to generate more
labeled data that includes noise and is reliable to use for a predictive model.
The method that will be used in this paper is a Conditional Generative Adver-
sarial Networks (CGAN) [2], which is an extension of Generative Adversarial
Networks(GAN) [3]. This makes sure that not multiple GANs should be created
to generate labeled data of multiple activities, but just one CGAN can do the
job. The use of CGANs are shown to be successful for generating images in, for
example, [4]. However, the use of CGANs for human sensor data, is not investi-
gated. The main research question of this paper is:

Is it possible to generate realistic human sensor data using a CGAN?

An Activity Classifier is created to help evaluate the generated sequences of the
CGAN. Furthermore, the visual looks of the generated data sequence is com-
pared to the real data, the Discriminator- and Adversarial Loss and the accuracy
of the Discriminator determine the performance of the CGAN. Where the out-
come of the Activity Classifier is most leading. The CGAN and the Activity
Classifier will be created using LSTM networks [5], [6]. Another topic that will
be discussed in this paper is what structure the CGAN should have to create a
reliable model.



This paper is organized as follows. First, related work will be discussed in
section 2. A general description and theoretical background of Generative Adver-
sarial Networks and Conditional Generative Adversarial Networks will be given
in section 3. The data that is used to create the Conditional Generative Adver-
sarial Networks and the Activity Classifier is described in section 4. Then the
setup and performance of the Activity Classifier is described in section 5. Fol-
lowed by the experiments conducted, the setup and the results of the CGAN in
section 6.2. Also, some further research is done on the dataset including demo-
graphics of the individual who is linked to the sensor data. This will be described
in section 7. Finally, a conclusion will be given in section 8.

2 Related work

The paper [1] was the main reason for this research. They succeeded to create
a GAN that could generate realistic human sensor data. The data needed to
create the GAN of [1], is comparable to the dataset used in this paper. The use
of GANSs is proposed so that behavioral models that mimic human behaviour can
be created. This is an approach to take simulation environments for e-Health to
the next level. In [1] an existing simulation environment is used which is extended
and made more mature. The focus of the simulator is on a health setting where
users get interventions to adapt their activities. They make use of an Activity
Classifier to evaluate the performance of the GANs. This classifier is able to tell
what activity the raw sensor data is from with an overall accuracy of 97.33%
on the test set. The GAN is able to generate data where the classifier is able to
classify, on average over 500 iterations, up to 97% correctly. The GAN did not
work for every activity. For example, the data generated for the activity standing
was classified correctly 7% of the times.

[2] was the first to investigate the use of a CGAN. In a previous research
they have shown that a GAN can be used as an alternative framework to train
generative models. This paper goes deeper into that research and shows that
it is possible to create a CGAN which is able to generate images. A CGAN
can generate images for multiple conditions, while a GAN just generates images
of one condition. So just one CGAN can replace multiple GANs. However, the
results of the CGAN are outperformed by the GAN. The authors of [2] are
convinced that the results of the CGAN should match or exceed the results of
a GAN if further research is done for the parameters and architecture of the
CGAN. Combining the findings of [1] and [2] gave the impression that it would
be possible to create a CGAN for realistic human sensor data.

In [7], a comparable investigation is performed. Namely, the option to use
a CGAN for convolutional face generation. The CGAN that is build is able to
generate images of faces. They filtered out the face attributes which have clear
visual effects in the images so that the model could be trained more easily. This
makes sure that the CGAN is not overfitting and it avoids that the CGAN does
not see the unclear visual effects as random noise. [8] investigated the option
to use a CGAN for spoken language identification. This paper proposes a new



structure for a CGAN. A comparable structure is shown in figure 10b. This
CGAN has a Discriminator that not only determines if the data is real or not, but
also indicates which label should correspond to the data. The i-vector data based
on NIST 2015 language recognition i-vector machine learning challenge was used
for examination with identification error rate as the evaluation criterion. The
conclusion of the research is that the algortihm proposed is outperformed by
other Deep Neural Networks, However, the proposed CGAN structure is working
well.

Overall, most of the research done concerning Conditional Generative Adver-
sarial Networks are mainly focused on generating images. Like [9] and [4], they
created a CGAN which translates edges of a variety of images to high-resolution
natural photos. In [10] a CGAN is presented which can dehaze unclear images.
and [11] created a CGAN that changes the image of an existing face into the
face in the wanted age category. In all the papers discussed in this section that
created a CGAN, the CGAN is build out of many large hidden layers. Also a
large number of epochs are needed to have a well working CGAN. This will not
be doable for the research done in this paper while the computational power
available is not sufficient for such complex models, because this will take a too
long time to train the CGAN and thus very time consuming to test multiple
parameter settings.



3 Model Description

The algorithm used is a Conditional Generative Adversarial Networks, which
is an extension of a regular Generative Adversarial Networks. To have a better
understanding of a CGAN, a regular GAN will be explained first. After this, the
CGAN will be discussed.

3.1 Generative Adversarial Networks

A method to generate more labeled sensor data is to use Generative Adversarial
Networks. The main focus of the GAN is to create data from random noise.
Where GANs combines two deep learning models, The Generator (G) and Dis-
criminator (D) [3]. In short, a Generator generates data, which should look as
real as possible. This data is generated from random noise. A Discriminator
determines the quality of the generated data by trying to distinguish real and
generated data, which is shown in figure 1. In this figure Z indicates the random
noise, X cq1, a real data sequence and X yqx. the generated data sequence by the
Generator.

Fake/Real 7

[ Xleal ] [ Xlalie

()
—

Fig. 1: Generative Adversary Network [12]

If the Discriminator cannot determine what is real data or generated data
and the generated data has approximately equal statistics as the real data, like
mean, variance etcetera, then it is a possibility to replace the original data by
the generated data.

The overall objective function of a GAN is given in equation (1).

ngn mgX[Eprdam log(D(z)) + E.p(z) log(1 — D(G(2)))] (1)



Where D(z) is the Discriminator output for real data x and D(G(z)) is the
Discriminator output for generated data G(z). The aim of the Discriminator
is to maximize the objective such that D(z) is close to 1 and D(G(z)) close
to 0, where 1 indicates that it is real data and 0 fake data. The Generator
wants to achieve the opposite. The Generator wants to minimize the objective
such that D(G(z)) is close to 1. In other words, the Generator wants to trick
the Discriminator in thinking that G(z) is real data, while the Discriminator
wants to identify real and fake data as correct as possible. The goal of the
GAN is to generate a realistic output by alternating between gradient ascent on
Discriminator given by equation (2) and gradient descent on Generator given by
equation (3).

Max[Egnp,,,, 108(D(2)) + Eznp(z) log(1 = D(G(2)))] (2)

for number of training iterations do
for k steps do

— Sample minibatch of m examples {:c(l)7 e x(m)} from data generating
distribution pgqeta ().
— Update the Discriminator by ascending its stochastic gradient:

m

1 i i
Vo, b ;Uog(p(x< ) +log(1 — D(G(=)))]
end
— Sample minibatch of m noise samples {z(V, ..., 2(™} from noise prior p,(z).

— Update the Generator by descending its stochastic gradient:

Vouo Y llog(1 = D(G())

end
The gradient-based updates can use any standard gradient-based learning rule.

Algorithm 1: GAN training algorithm [3]

To obtain the goals described in equations 2 and 3, the algorithm described
in algorithm 1 is used. This algorithm shows that per iteration the Discriminator
is trained k steps with random noise and real data. Per step, the Discriminator
is updated by ascending its stochastic gradient using the random noise and real
data. After the k steps the Generator is updated by descending its stochastic
gradient using random noise. [3]

— Sample minibatch of m noise samples {z(l), e z(’")} from noise prior pgy(z).



3.2 Conditional Generative Adversarial Networks

A GAN can be extended to a CGAN when an extra condition is added as input
for the Generator and Discriminator. This condition will be an extra input when
training the Generator, as well as the Discriminator. The objective function of
the CGAN is given in formula (6).

min max(Eenp,,,, 108(D(z[y)) + Eenpz) log(1 = D(G(2]y)))] (6)

For the Generator the input noise z and the label y are combined into a hidden
layer to generate data of label y. The Discriminator tries to identify, like a GAN,
if the data x with label y is real data or not. An illustrative example of a CGAN
is shown in figure 2. The outcome of the Discriminator is an identifier that
identifies if the data with the corresponding label is real or not [2].

Discriminator Dixdy) .
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Fig.2: Conditional Generative Adversary Network [2]

Long-Short term memory networks

Long-Short term memory (LSTM) networks belong to the Recurrent Neural
Network (RNN) family. An illustration of a RNN is given in figure 3 with A the
cell, z; the input and h,; the output of the cell at time . A RNN is a sequence of
multiple Neural Networks (NN), where the output of the previous NN is taken
into account for the next NN. For the sequential accelerometer data described
in section 4, it will be useful to use LSTM networks. LSTM networks are an
extension of RNN where it is able to learn long-term dependencies [5]. LSTM
networks are useful to learn from experience to classify, process and predict time
series. Even if there is a (very) long time of unknown size between crucial and
relevant events [6]. This motivated to use LSTM networks for both the Generator
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Fig. 3: Recurrent Neural Network [5]
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Fig.5: Layers of LSTM cell [5]

and the Discriminator. LSTM networks are also used for the Activity Classifier
described in section 5.

Figure 4 shows an example of the layers of a LSTM cell. The layers of a
LSTM cell, step by step, are given in figure 5. The flow of information between
time point ¢ — 1 and ¢ is called the cell state C;. The LSTM can add or remove



information from the cell state handled by gates, which are carefully regulated
[5]. Figure 5(a) shows the forget gate layer, Which is the first step of a LSTM.
It decides how much of the information must be thrown away from the cell state
looking at h;_1, the output of the previous layer and z;, the input of the current
layer. The value f; of the forget layer is calculated using equation (7) with Wy
the recurrent weights of gate f and by the bias weights for gate f. This is a
sigmoid funtion, which will result in a value between 0 and 1, where a value of 1
indicates that all the information will be kept and nothing will be thrown away.
If the value becomes 0, all the information will be thrown away.

fe=0Wy - [he—1,24] + by) (7)

The next step of the LSTM is to decide what information should be saved
in the cell state. This will be done in two phases, which is shown in figure 5(b).
First, the input gate layer determines which values should be updated. The
output of this step is calculated using the sigmoid function (8). After this, the
tanh layer creates information that could be added to the cell state. This is
calculated using equation (9). The values i; and C, are used to update the old
cell state Cy_; and create a new cell state C;. Equation (10) shows how this is
done. The old cell state is multiplied by f;, to throw away all the information
that is not needed from the previous cell state. The new candidate values are
calculated by multiplying i; and C, to scale each state value. The illustrative
representation of this step is shown in figure 5(c).

it = O'(WZ . [ht_l,xt] =+ bz) (8)
Cy = tanh(We - [h—1, 2] + be) (9)
Cy = fr % Cooy +ip % Cy (10)

The output of the current layer will be based on the cell state C;. What
parts of the cell state will be used is determined by sigmoid function (11). To
make sure the values of the cell state are between -1 and 1, the cell state is run
through a tanh layer. This is multiplied by o; in order to only get the output h;
that is determined to output. These steps are shown in figure 5(d).

O = O'(Wo . [ht,l,xt] + bo) (11)

hy = o¢ x tanh(Cy) (12)
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4 Data

For this paper data from multiple people is used, released by the Wireless Sensor
Data Mining (WISDM) Lab [13]. The sensor data is generated by the accelerom-
eter and this data has labels of multiple activities. This data is real world data
where individuals mark what activity they are performing at that specific mo-
ment. The raw data consists of 2,980,765 data points and demographics data
of 563 participants is noted. In this dataset, 6 different activities are present.
The number of datapoints per activity are given in table 1. As this table shows,
some activities have (very) little data available in comparison to other activities.
Especially walking the stairs has limited datapoints.

lActivity Data points

Jogging 435,238
Lying down 275,966
Sitting 663,142
Stairs 56,895
Standing 288,871
Walking 1,250,427

Table 1: Number of data points per activity

Data of the x-, y- and z-accelerometer have a very different pattern per
activity. Examples of these different patterns are shown in figures 6 and 7. The
data generated by the accelerometer is saved with a rate of 20 HZ, which indicates
that every 50 ms a datapoint is saved for the values of the accelerometer. The
plots given in figures 6 and 7 consist of 160 datapoints, which is 8 seconds of
data per activity. The assumption is that performing an activity, will last for at
least 8 seconds. The x-, y- and z-accelerometer data is shown in the colors blue,
green and red respectively.
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Fig. 6: x-, y-, and z-accelerometer data of jogging, lying down and sitting
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Fig. 7: x-, y-, and z-accelerometer data of stairs, standing and walking

Figures 6 and 7 clearly indicate the difference between each activity. Inter-
esting to see is, while standing, the accelerometer data has relatively high values
compared to the activities lying down and sitting. These two activities have
values from around 0, where standing has values from approximately -5, 2 and
8, While all three activities are passive. Another thing that stands out is that
the data of standing in this example, is almost constant. However, the values
of lying down and sitting are so small, that this data for these examples are
almost constant as well. When walking, Jogging and walking the stairs, these
fluctuations are more present.

LR N LTS K

A b A A AL 42
R Sy - o 4 g"’ 4"( *r"g' r"‘ "i"“ ,n- ‘ ..‘ .‘“. ."‘"",""m!ﬂ._ .‘g -:,M‘II"“.,W* IJ.”- _!‘{ {\“
‘?“rf‘.l",”".“."f“'.“\l\ 1 \ ) Y ﬁ Y ey

Fig.8: x-, y-, and z-accelerometer data of stairs, jogging and walking

Figure 8 shows that the accelerometer data for the stairs, standing and walk-
ing can vary significantly in comparison to the x-, y- and z-accelerometer data
given in figures 6 and 7. An explanation for this is that every person has a dif-
ferent age, height and weight, which influences the speed of walking, jogging or
walking the stairs. Where sitting, lying down and standing does not fluctuate
that much per type person. Data sequences of one person differs as well for these
activities, this can be caused by, for example, performing activities at different
speed or having a different stepsize while performing the same activity.
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5 Activity Classifier

To evaluate the performance of the CGAN, an Activity Classifier is created. This
classifier tries to determine the activity of the generated data. In other words, if
the generated data is comparable to the actual data of the activity. The optimal
performance is when the generated data of all the activities can be classified
with the correct activity. The setup and performance of the activity classifier
are described below.

5.1 Setup

the Activity Classifier is trained on the data described in section 4. This contains
real life x-; y- and z-accelerometer data of six activities. Segments of 8 seconds
are created in the data, which are 160 datapoints. These segments were created
with a shifting window of 1.5 second (30 datapoints). A shifting window of 30
datapoints is chosen because this had optimal results of the accuracy and loss,
where shifting windows between 10 and 60 datapoints are tested. Each segment
has a label that occurred in that time window. If more activities are present in
that time window, the most occurring activity is chosen. The segments created
are divided into a train and test set. Where 80% of the segments are used for
training and the remaining 20% for testing the classifier.

The structure of the classifier is an LSTM network with 2 hidden layers.
Where each hidden layer has 64 hidden units and a ReLu activation with a forget
bias of 1. A softmax activation was used for the output layer with a forget bias of
1. The Adam optimizer was used with a learning rate of 0.0022. The cost function
was a Softmax cross entropy including a logits with L2 regularization of 0.0018.
The batch size during training is 1024. The structure and parameter settings were
based on the paper [1] and [14]. Multiple settings for the number of hidden units
per LSTM layer are tested, the batch size during training, activation functions
(tanh, sigmoid, softmax and ReLu) and number of hidden LSTM layers. The
settings described above were performing the best based on the accuracy and
loss of the classifier. The performance is described in section 5.2.

For a well working classifier, with a low computational time, it is possible to
chose 32 hidden units per hidden LSTM layer and a batch size during training
of 512, where the rest of the settings can remain the same. However, as data
preparation segments of 160 datapoints should be created with a shifting window
of 20 datapoints. The performance was just slightly lower (0.3% less accurate
overall), but was made in a fraction of the time.
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5.2 Performance

The performance of the activity classifier are shown in figure 9. Where figure
9a shows the accuracy and loss on the train and test set per training epoch.
The classifier had an accuracy of 88.0% on the test set and a loss of 0.427. The
loss and accuracy of the train set do not differ a lot from the accuracy and
loss on the test set. However, the accuracy on the training set is slightly higher
and the loss on the training set is slightly lower than the test set. Figure 9b
shows the confusion matrix based on the predicted label and the actual label
of the test set. This shows that the classifier is working well for most activities,
however, for the activities Lying Down and Standing, it is performing poorly.
The activities Lying Down and Standing are misclassified most often as Sitting,
which are all passive activities. The more active activities can be classified more
accurate. However, walking the stairs has a lower performance than the overall
performance. Walking the stairs is misclassified most often as Walking. Table 2
shows the percentage correctly predicted per activity.

Train loss
Train accuracy

Tast loss
Test accuracy
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Fig.9: Performance of Activity Classifier

lActivity ‘
Jogging 98.3%
Lying down 33.9%
Sitting 94.7%
Stairs 85.3%
Standing  70.1%
Walking 96.7%
Table 2: Percentage correctly predicted per activity on test set
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6 Experiments

CGANs shown in figure 10 are a general representation of the models tested.
These models are tested based on the theoretical shape of a CGAN described
in [2] and the new proposed structure described in [8] and other research done.
The input of the Generator must be random noise. The output of the Generator
including the label it should represent will be the input of the Discriminator as
well as samples of the real data of that label, so that the Discriminator can try
to make a distinguish between real and fake data. CGAN version 2 shown in
figure 10b, shows a significant difference with the theoretical shape of a CGAN
described in [2] and shown in figure 2, Which is more like the CGAN version 1
shown in figure 10a. In CGAN version 2, the output of the Discriminator is a
label and a validation and not only a validation. This structure is described in [8].
The original concept of a CGAN as in figure 2 and like figure 10a, is to validate
if the data is real or not and not also have a label as output. However, after some
trial and error and some research, it is advised to create a CGAN comparable
to version 2. The performance of the CGAN is based on the visual looks of the
generated data sequence in comparison to the real data, the Discriminator- and
Adversarial Loss, the accuracy of the Discriminator and most leading, if the
Activity Classifier is able to classify the generated sequence correctly.

The Dense and LSTM functions in the CGANSs are tested with many settings
for the activation and number of hidden nodes to find optimal parameters for the
Dense and LSTM functions. Activations tested are tanh, sigmoid, softmax and
ReLu. As seen in figures 10a and 10b, there are not many layers in the Generator
and Discriminator. However, these models are tested with more layers as well.
Nevertheless, this had a lower performance as well as a long computational time.
This could be caused by the size of the layers, since these layers could not consist
of many hidden nodes where this would increase the computational time too
much. In research done, as well in the articles described in section 2, most of the
CGANs had many layers with many hidden nodes, so the expectation is that
in general this would increase the performance of the model. Data preparations
tested are: Measured accelerometer data, transformed data (all data between so
0 and 1 and all data between -1 and 1) and measured accelerometer data data
of three activities. The measured accelerometer data had the best performance
and thus will be used for the CGAN. The label that indicates the activity, must
be transformed to a numerical value. This can be done by giving each activity an
integer value or to give each activity a string of zeros and a one at the location to
indicate what activity it is. The latter is called one hot encoding. For example,
activity 5 will be [0,0,0,0,1,0] if one hot encoding is used. The best performance
of the CGAN was when the label was converted into a one hot encoded string.
The results represented in section 6.2 are created with a one hot encoding for
the labels.

Per iteration the CGAN is trained per activity. After all activites, the itera-
tion is complete. So the CGAN has 6 updates per iteration. After every iteration,
the activities are shuffled, so that the CGAN cannot train for a pattern in which
the activities occur but solely trains on the data corresponding to the activities.
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Optimizers tested for the Generator, Discriminator and CGAN are the Adam,
RMSProp and SGD optimizer. The best performing combinations are given in
section 6.1

Generator Discriminator

1
1
Label —— e - -

[ LSTM ] [ Dense ]

Concatenate

1
1
1
1
1
1 Dense Validity
1
]

(b) CGAN version 2

Fig. 10: CGAN structures tested
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6.1 Conditional Generative Adversarial Networks Setup

Using the data described in section 4, a CGAN is created. The CGAN is trained
to generate x-, y- and z-accelerometer data for multiple activities. As a first
step, the dataset is divided into segments of 160 datapoints, without overlap
so that these can be used for training the CGAN. The Generator is trained
with 24 segments of real sensory data of an activity and 1 batch of generated
data of the same activity. Taking more batches or more data points, had a
negative effect on the performance of the CGAN. The CGAN is trained using
Binary cross entropy and Categorical cross entropy as Loss functions and the
Adam optimizer with a learning rate of 0.01 with a learning rate decay of le-10,
B1 of 0.20 and Sy of 0.25. Accuracy is used as the performance metric of the
CGAN. The inspiration for these settings came from [1] and for the structure
from [8]. A visual representation of the CGAN structure used is given in figure
10b, combining the Generator and the Discriminator.

Generator

For the Generator, there is noise of shape (160,3) as input and a label of shape
(1,6) as input. The noise goes through one hidden layer. This is a LSTM layer
with 32 hidden units. The label goes through a fully connected layer of 32 hidden
neurons with a softmax function as activation. Then these outputs are merged
with a concatenate function in the third dimension. So the output of the LSTM
layer (160,3,32) and the fully connected layer (1,6,32) are merged in a way that
per matrix of (160,3) a label is connected of shape (1,6). This merged layer goes
through a LSTM layer with 32 hidden units. Finally this goes trough a fully
connected layer with 480 output neurons with a Linear activation function and
reshape this so that the output of the Generator is of shape (160,3). The loss
function of the Generator is a Binary cross entropy and the Adam optimizer
with a learning rate of 0.01 with a learning rate decay of 1le-10, 5y of 0.55 and
B2 of 0.60.

Discriminator

For the Discriminator, there is one input of shape (160,3). This input follows
two separate paths in order to get two output layers. In the first path, the input
goes through a LSTM layer with 32 hidden units. Followed by a fully connected
layer of 1 hidden neuron with a sigmoid as activation function. The output layer
is another fully connected layer of 1 hidden neuron with a sigmoid as activation
function. In the second path, the input goes through a LSTM layer with 32
hidden units. Followed by a fully connected layer of 6 hidden neurons with a
RelLu a activation function. As output layer, another fully connected layer of 6
hidden neurons with softmax as activation function is used. So, the Discriminator
has two output layers. Therefore, two loss functions are used. Namely, a Binary
cross entropy and a Categorical cross entropy. The SGD optimizer is used with a
learning rate of 0.02 and a learning rate decay of le-7. The Nesterov accelerated
gradient descent is used and a momentum of 0.8.
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6.2 Conditional Generative Adversarial Networks Results

The model versions tested, described in section 6, did not give the desired results.
The intention was to create a CGAN that could generate realistic human sensor
data of various activities. The problem is that the data generated has often high
values and incorrect patterns. When applying more iterations, some peaks with
extreme values will occur.

Figure 11 shows the generated data of the CGAN at 600 iterations on the left
side and the actual data of the same activity on the right hand side. This data
shows the x-, y- and z-accelerometer data in blue, green and red respectively for
the activities Jogging, walking the stairs and Walking. These activities are chosen
because the Activity Classifier could classify these activities with a fair certainty.
When a model is chosen with more iterations, the generated accelerometer values
get too high. The actual data is between -20 and 20 and so the generated data
should have the same maximum and minimum in order to get realistic human
sensor data. Furthermore, the generated data does not look like any real data
of any activity described in section 4, Which is also shown in figure 11. The
generated data fluctuates too much in comparison to the real data, which is
more stable.

However, figure 12 shows that the sequences generated are just in three cases
identified as the correct label by the Activity Classifier. The classifier recognizes
the sequence of Jogging with an certainty of 97.5%, the sequence of walking the
stairs with an certainty of 56.4% and the sequence of Walking with an certainty
of 80.6%. The other three sequences are misclassified completely. So, the more
active activities can be generated and classified with the corresponding label,
fairly accurate.

Figure 13a shows the Discriminator- and Adversarial loss of the CGAN for
900 iterations. For the first 350 iterations the losses are relatively stable, then the
losses drop. The Discriminator loss drops slightly and the Adversarial loss makes
a steeper dive, where the losses becomes stable after roughly 700 iterations.
There is a higher variance of the Discriminator loss than the Adversarial loss.
The moment at which the losses become stable and the patters of which the
loss changes, differs per activity. However, this is a good representation of the
behaviour of the losses in general.

The accuracy of the Discriminator is shown in figure 13b. This figure shows
that the Discriminator is correct in approximately 70% of the cases in determin-
ing if the data is generated or real. In ideal case the Discriminator thinks all data
is real and that will make the accuracy of the Discriminator 50%. Looking at the
trend of the accuracy, it indicates that after more iterations, the Discriminator
has can identify if the data is generated or real with a higher accuracy. Like
mentioned earlier, this is also seen visually. After more iterations, the generated
data get too high values as well fluctuates too much. The accuracy of the gen-
erated data of all activities are approximately 70% and increasing after more
iterations.
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Fig. 11: Generated (left) and real (right) data of Jogging, Stairs and Walking at
iteration 600
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Fig.13: Loss and Accuracy CGAN of Jogging for 900 iterations

In conclusion, it is hard to generate realistic human sensor data. However, it
is possible to generate different sensor data per activity. Like described in paper
[1], generated data by the Generator of a GAN is performing optimal after a
different amount of iterations for each activity. Where the CGAN will generate
data for each activity at the same amount of iterations. Which makes it hard to
find an optimal number of iterations.
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7 Further research

If the intention is there to identify what activity a type of person is performing at
a certain moment, it could be interesting to see if there are significant differences
per type of person for the accelerometer values. If this is the case, a CCGAN
can be created, where an extra condition is added to the CGAN described in
previous sections. This condition can describe the type of person. Now data can
be generated per type of person per activity.

The data described in section 4 is used to show if there are significant dif-
ferences between types of individuals. If only the data is included where the
participant is known, it results in a dataset of 832,653 datapoints. The number
of datapoints per activity are given in table 3. In order to keep enough data

[Activity Data points|

Jogging 12,995
Lying down 187,695
Sitting 284,589
Stairs 41,825
Standing 105,071
Walking 200,478

Table 3: Number of data points per activity

available to train a CGAN and perform statistical tests, a clustering is applied
per category. Each category is divided into three groups. Not every group will be
of the same size, however, each group will be large enough to perform statistical
tests in order to see if there are differences in the collected data per subgroup.
The boundaries of the groups created are given in table 4. The boundaries are
chosen randomly so that enough data is available per group. Each individual has
an age, height and weight group.

lAge group Data pointsHHeight group (inch) Data pointsHWeight group(lbs) Data points

(0, 25] 245,379][(63, 68 240,313[[ (0, 140] 288,406
(25, 35] 445,808([(68, 71 434,356|[ (140, 210] 131,773
(35, 55] 135,077([(71, 77] 151,595/[(210, 250] 406,085

Table 4: Number of data points per group

Figure 14 gives the impression that there are differences between the x-accelerometer

data per age group for each activity. The boxplots of the x-, y-, and z- accelerome-
ter data of the age, weight and height groups per activity gave comparable results
as figure 14.

An analysis of variance (ANOVA) is used to identify if there are significant
differences in means between a group within each of the categories age, weight
and height. The ANOVA is performed for the x-, y- and z-accelerometer data
and for each activity separately.
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The result of almost all the ANOVA tests performed is that the p-values of
the ANOVA tests are 0 or approximately 0. This indicates that there is at least
one group significant different in each category (age, weight and height) for the
x-, y-, and z-accelerometer data of each activity separately. The only p value
larger than 0.05 is for the category height for the z-accelerometer data of the
activity Jogging. This indicates that there is no significant difference between
the means of the groups of the category height for the z-accelerometer data of
the activity Jogging.

ANOVA only identifies if there is a difference in means of a group of a cate-
gory, not which group(s) are significantly different to another. The Tukey hon-
estly significant difference (HSD) test is used for further research. The main
idea of this test is to evaluate if there are differences between the means of every
pairs of groups [15] in a specific category e.g. Age. For example, the HSD test
evaluates if the means of the x-accelerometer data differ between the age group
(0,25] and (25,35]. This is done for every pair of age group per activity.

Again, almost all the p values calculated are 0 or approximately 0. This indi-
cates that the means of almost every pair of groups in almost all the categories
are different from each other. The only p value larger than 0.05 is for the pair of
age groups (35, 55] - (0, 25] for the z-accelerometer data for the activity Jogging.
This indicates that there is no significant difference between the age groups (35,
55] - (0, 25] for the z-accelerometer data for the activity Jogging.

An explanation that both (ANOVA and HSD test) of the p-values larger than
0.05 are in the activity Jogging could be that there are not a lot of data points
for this activity. Data of just five individuals is available, so there are just one
or two individuals in a group of a category. This number is too small to look for
significant differences between groups.

Overall, the conclusion that individuals divided into groups per category,
have different values for their x-, y- and z-accelerometer data per activity, can
be made.
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Fig. 14: x-accelerometer data against age group per activity
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8 Conclusion

In conclusion, it is clear that the CGAN does not perform well. An explanation
could be that while training, every time data of a different activity is used. This
makes it harder to look for patterns in the data of a certain activity. Where
a GAN, like in [1], should be trained per activity, which makes it easier to
find patterns in the data. Another explanation could be, paper [1] shows that
the generated data by the Generator of a GAN is performing optimal for each
activity after a different amount of iterations. The CGAN will generate data
for each activity at the same amount of iterations. However, it is succeeded to
create different data per activity with the CGAN. Which is an indication that
the CGAN is working, but returns inaccurate data. Expected, because of the
research done, is that for this type of data, a CGAN with a structure comparable
to the CGAN shown in figure 10b will work optimal.

Because a CGAN was created that could generate different data per activity,
in combination with the findings of [1], the expectation is that if the structure
mentioned in this paper is followed, a well working CGAN that generates realistic
human sensor data could be created. However, more layers should be added
and the layers should be enlarged. Furthermore, more research and exploration
should be done according to the parameters as well as optimizers, activations
and loss functions.

If a well working CGAN is created, then human realistic sensor data of mul-
tiple activities, can be generated. This makes it easier and cheaper to get reliable
labeled sensor data. Individuals do not have to track their activities while using
their smart device to measure their movements, because this data can be gener-
ated using the CGAN. this will also exclude any privacy-sensitive problems with
the tracked sensor data.

Further research could be to investigate if a "CCGAN” could be created.
This is created by adding an extra condition to the CGAN. Where per type of
individual, per activity, realistic human sensor data can be generated. However,
dividing the data into groups for every type of individual will lead to very small
datasets and makes it even more difficult to train. It could be, that this makes
the whole training process faster. Since, as shown in section 7, differences per
type of individual are significant.
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