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Abstract

Autoimmune diseases are in the top ten leading causes of all deaths among U.S.
women under 65 years[39] and is the fourth-largest cause of disability for these
women.[25] Patients spent over 4.5 years with 5 different doctors before getting
the correct diagnosis[2].
This research gives an experimental comparison of methods for multi-label learn-
ers is done based on three well known classification algorithms. Learners are
made in order to predict the most common autoimmune diseases based on pa-
tients’ symptoms and conditions. The aim is to assist medical professionals in
diagnosing the patient by analyzing his symptoms, conditions and health record
and deduce the time until diagnosis.
Two methods are used to handle patients having multiple autoimmune diseases.
The first is the Problem Transformation method, where multi-label classifica-
tion problems are converted into single-label problems. This is split into the
Label Powerset method and the Binary Relevance method. In the Lapel Power-
set method a new class is defined for each unique combination of labels attested
in the training set. The Binary Relevance method on the other hand a separate
binary problem is created, one for every possible label. The second is the Algo-
rithm Adaptation method where conventional classifiers are implemented in a
way that allows for multi-label classification.
Based on these methods, three well known algorithms have been used namely,
the k-Nearest Neighbors, the Random Forest and the Support Vector Machine.
For every combination of algorithm and method models are developed and op-
timized for the F-measure of this model, while tuning the parameters. The two
best parameter settings are chosen, which results in 18 developed models, that
are evaluated and compared. Finally, a conclusion can be drawn that an en-
semble chain of Binary Relevance methods, overall, works best, especially in
combination with the Support Vector Machine. This method uses a Radial ker-
nel, a γ-parameter of 2−10, a cost parameter of 10 and a threshold of 0.3. The
F-measure has a 95% confidence interval of [14.83, 21.03] which is not high.
But as a result, in almost 50% of the cases at least one autoimmune disease
of a patient can be predicted correctly, and the average time before receiving a
diagnosis can be deduced significantly.
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1 Introduction

Informatics and machine learning is widely applied in health care nowadays, sensors
are available that constantly monitor blood glucose levels, analyze readings, recognize
patterns in data, as well as in images or text, testing in silico is made possible, using
simulations to avoid in vitro testing.[23][41]
The progress in biotechnology and health science have led to the enormous production
of electronic health records and data. As a result, hundreds of petabytes of health
records available in digital dossiers.[41]

An autoimmune disease (aw-to-̆i-mūn d̆i-zēz) is ”any disease characterized by tissue
injury caused by an apparent immunologic reaction of the host with his own tis-
sues; distinguished from autoimmune response, with which it may or may not be
associated.”[14] There are over 100 different autoimmune diseases, that cross differ-
ent medical specialties, such as rheumatology, endocrinology, hematology, neurology,
cardiology, gastroenterology, and dermatology, and result in different clinical pictures
and symptoms for every patient. Due to this, diagnosing an autoimmune disease is
very difficult. Such specialties usually focus on one autoimmune disease and virtually
no research has been don on autoimmunity as the underlying cause.

This is were bioinformatics comes in, making it possible to spot similarities in how
patients bodies respond to autoimmune diseases, in stead of focusing on one medical
specialty or one disease. This especially comes in handy since it has been shown that
having co-occurring autoimmune diseases is not infrequent, and how they might relate
to each other. This points to multi-label learnings, where labels can coexist and are
not exclusive.

This research gives an experimental comparison of methods for multi-label learning and
is done based on three well known classification algorithms. Learners are made in order
to predict the most common autoimmune diseases based on patients’ symptoms and
conditions.

It is said that it takes on average 4.6 years, 5 doctors and $50,000 for a patient to re-
ceive the correct diagnosis.[2] Furthermore, it has been estimated that health care costs
in the U.S. for autoimmune diseases is over $100 billion dollars a year. Furthermore,
autoimmune diseases are in the top ten leading causes of all deaths among U.S. women
under 65 years[39] and is the fourth-largest cause of disability for these women.[25]
For these reasons the aim of this research is to assist medical professionals in diagnosing
a patient with the correct autoimmune disease faster by analyzing his health records.

First, section 2 describes the data that is used, explains the cleaning, transformation
and selection of the data and gives an analysis of the patients and health records.
Section 3describes the different methods in dealing with the multi-label nature of di-
agnosing autoimmune diseases and the three classifiers that are used. Furthermore,
it describes the evaluation measures to decide what model works best. Next, section
4 gives the experimental setup and expands on feature engineering and selection and
describes the process of parameter selection. Section 5 gives the results and evaluates
them. It gives the optimized parameter settings, describes the performance and the
reliability of the models. Next a comparison between models is done. Finally, section
6 and section 7 give a conclusion and discussion on the research, respectively.
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2 Data

The data used for this research is based on Flaredown - The world’s most advanced
symptom tracker. Flaredown describes itself as ”a free web and mobile app that helps
patients track and visualize their illness, treatments, and symptom triggers so that
they can understand how their choices affect their health”.[15] The reasoning behind
the choice of this data is that some patients deteriorate quickly, while for others the
most severe symptoms arrive after years. This makes predicting an autoimmune disease
very difficult and in order to reduce the influence of time, data is used from a period
aggregated over 2 years.

This section focuses on the data itself, first a short description of the data is given.
Next, an explanation of the cleaning of the data is given, which is described in subsec-
tion 2.1. Third, an exploratory data analysis is done in subsection 2.2, then the data is
transformed and subsets are made, to shape the data in a way that fits the aim of this
research in subsection 2.3. Finally, the adjusted data is analyzed in subsection 2.4.

The data contains the following columns

– The unique user id
– The age
– The gender

– The country of residence
– A checkin date
– A trackable id

– A trackable type
– A trackable name
– A trackable value

The trackable type consist of six different possibilities, namely:
– Condition; an illness/syndrome a patient suffers from
– Food; anything they consumed in order to find causes of a flare
– Symptom; a physical or mental feature that might indicate a condition
– Tag; a miscellaneous category, containing mostly activities
– Treatment; any medication or care someone uses
– Weather; the weather circumstances of that day, in order to find causes of a flare

Based on the trackable type a specification is given in the trackable name. The track-
able value gives the severity of the symptom or condition, the dose of treatment or
other extra information.

The trackable id is disregarded in this research.
Table 1 shows a summary of the data divided over the nine columns. It shows that
973,583 observations are logged, and that the application was used by 6,307 unique
users. At first sight it becomes clear that data is entered incorrectly. As shown in table
1 the minimal age in the data is equal to −196, 694. Furthermore, the unique sexes are
split into NA, ”male”, ”female”, ”other” and ”doesn’t say”.
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Table 1: Summary of the observations in the original data

User id Sex Country

Length 973,583 973,583 973,583

NA’s 0 13,622 17,369

Unique 6,307 5 96

Trackable type Trackable name Trackable value

Length 973,583 973,583 973,583

NA’s 0 0 112,377

Unique 6 22,525 3,909

Age Check-in date Trackable id

Length 973,583 973,583 973,583

Min -196,694 2015-05-24 1

1st Qu. 24 2016-02-25 189

Median 30 2016-10-23 553

Mean 31.93 2016-09-01 2,588

3rd Qu. 39 2017-03-29 3.383

Max 2.016 2017-06-23 14.923

NA’s 43.244 0 0

Unique 89 762 14.640

2.1 Data cleaning

Since the data is hand entered by ordinary people the data contains many mistakes
and is unstructured, since no rules exist about logging information on the application.
Not only typing errors occur frequently, but it also contains many synonyms for the
same term, or people logging in their own language. A lot of time went into cleaning
the data from noisy and inconsistent data to data structured and fit for the aim of this
research.
First the characters for user ids are transformed into unique numeric ids, ranging from
1 to 6,307. As stated in the last subsection the ages entered in the application were not
credible. So for the variable age it is assumed ages equal to or below zero and above 90
are entered wrong. The reasoning behind this is the average life expectancy of 72 years
according to the World Health Organization.[42] To account for outliers in the data,
the average age per country is considered. The maximum equals a life expectancy of
87.1 years in Japan, and since this is an average, this is rounded up. These have to be
changed into Not Available (NA). Furthermore, the recorded names for sex were incor-
rect as well. All values for ”other” and ”doesn’t say” are set to NA. Making all entered
trackable names and trackable values lowercase already reduced the number of unique
trackable names from 22,525 to 21,253 and the number of unique trackable values from
3,909 to 3,827.

Next, all trackable names were cleaned per trackable type. The following six revisions
are done for every trackable type:
– Abbreviations are written out.
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– If a trackable name contains multiple names in one observation, they are split and
logged in the dataset as a new observation.

– Names are merged when synonyms exist.
– All names are written in singular form
– Adjectives are removed
– Trackable names that belong to other trackable types are moved to the correct

type. (e.g. observations that contain the words ”syndrome” or disease are changed
into type Condition.)

The most important part was cleaning the trackable type Condition. Most of the en-
tered conditions are not autoimmune diseases, but symptoms, immune deficiencies,
other illnesses or diseases that go hand in hand with an autoimmune disease or may
even be caused by treatments for the autoimmune disease. So all entered conditions
were compared to two lists of autoimmune diseases. The first is from the Autoimmune
Registry, Inc. (ARI)[3], Ari calls itself ”a hub for research, statistics, and patient data
on all autoimmune illnesses.” According to this list there are 156 different autoim-
mune diseases. The second list includes 144 different autoimmune diseases and was
compiled by the American Autoimmune Related Disease Association, Inc. (AARDA)
[1]. AARDA says it ”is the only national nonprofit health agency dedicated to bringing
a national focus to autoimmunity, the major cause of serious chronic disease.” If the
condition entered by the user is included within one of the two lists mentioned above,
the trackable type of that observation is changed into the trackable type Autoimmune
Disease (AD).
Text mining, text analysis and frequently used words and patterns are used to clean
the condition names. If a condition contains any word, the plural, the conjugation,
the superlative or any other form of the word mentioned in the list in Appendix A,
the trackable type is changed into Symptom. These are usually symptoms caused by
a condition or side effects caused by medication. Finally, there is a group called ”Mis-
cellaneous”, that represent conditions that are measured in less than 10 observations.
This group aggregates 859 unique names and combines to 2,338 observations. This is
done because it is assumed that having a condition that is this rare, will not influence a
trained model, or make it extra complex. What is left in the trackable type Condition,
are mostly non-autoimmune diseases and syndromes.

Next, within the trackable type Symptom the observations need cleaning as well. Some
examples for synonyms that were aggregated into one form for trackable type Symptom
are:
– Combine pain, ache, sore into pain.
– Combine anxiety and panic and worry into anxiety
– Combine abdominal, stomach, belly and tummy into abdominal.
– Impaired functioning combines terms like can’t get up, working is more difficult,

need help with things, etc.
– Impaired walking combines terms like problems walking, need to use a walking

stick, etc.
– Impaired sight combines terms like blurry vision, depth perception issues, etc.
– Impaired memory combines terms like memory issues, poor memory, trouble re-

membering, etc.
– Impaired speech combines terms like word swapping, talk slurry, etc.

This is done since too many unique names exist for the same term, but using synonyms.
The same reasoning holds as before. Symptoms that are left are clustered for keywords
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such as limb, joint, muscle, facial, etc. If a specific form is a frequently observed name,
it is kept separate. An example is burning feet, this is a trackable name that occurs
relatively often as a symptom, so this is not categorized as a burning extremity. Finally,
there is a group called ”Miscellaneous”, which represent symptoms that are very rare
and are observed less than 25 times. This group aggregates 622 unique symptoms and
combines to a total of 3,499 observations.
The trackable types Tag, Treatments and Weather are disregarded, since they are be-
yond the scope of this research.
Eventually, the aggregating of the names results in a decrease of unique names from
5,739 to 476. It is assumed that grouping symptoms and conditions that are very similar
will make the model less complex and make it more feasible to train a well predicting
model.

2.2 Exploratory data analysis

After cleaning all the data an altered dataset is made. The structure of the data stays
the same. But in stead of six unique trackable types, the set now contains seven. A
newly added type AD exists. Table 2 shows the number of records of the original
data and the, cleaned, altered data. It shows that almost 3,000 extra observations
were added, because many conditions and symptoms were split into two or even more
observations. The mean number of entries per unique user increased for the same
reason, and the number of unique users remain the same. It also includes the mean
age per unique user, the unique number of home countries of users and the number of
unique check-in dates.

Table 2: Number of records original data vs. cleaned data

Original data Cleaned data

Observations 973,583 976,533

Unique users 6,307 6,307

Mean entries per unique user 154.36 154.83

Median entries per unique user 17 17

Mean age per unique user -5.96 31.43

Median age per unique user 29 30

Number of unique home countries 96 96

Number of unique check-in dates 762 762

As stated in table 2 the mean number of entries per unique user equals 154.8 entries,
whereas the median only equals 17 entries. Figure 1, A illustrates this in bins of size 20.
It shows that, by far most people only have between 0 and 20 entries in the dataset. It
also shows that the bin with over 200 entries is quite large, and the maximum number of
entries for a patient equals 22,749 entries, which increases the mean number of entries
fast.
Figure 2, A shows that check-in dates range between 24-05-2015 and 23-06-2017. It
shows that the number of entries starting from January 2017 are generally higher
than the other years. This might be because the application received more attention.
Furthermore, it seems as if the months April, May or June show a peak as well. Figure
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Fig. 1: A: Entries per unique user frequency. B: Age per unique user frequency

2, C show the same premonition. Unfortunately, the time window within the data is
not long enough to justify this. Since users of the application are from countries all over
the world, the month can not be linked to a season and the trackable type Weather
might be more interesting than a time line itself. Figure 2, B shows the mean number
of entries per day. It shows that the number of entries from Fridays until Mondays are
relatively lower than the rest of the week. People tend to enter negative feelings over
positive ones. This might imply that people have more rest during the weekend and
start feeling worse after working on Mondays.

Figure 1, B shows the distribution of the age per unique user. It show that especially
many patients between the ages of 23 and 30 use the application. One cause is the fact
that younger people tend to use mobile applications more. But literature shows that
mostly women in their childbearing years are affected by autoimmune diseases.[2]
So the ages in the dataset clearly correspond to the literature, it has also been cited
that women have a higher chance of having an autoimmune disease. The literature
states that overall, women are three times more likely to have an autoimmune disease
and it is estimated that 75% of American patients suffering from autoimmune dis-
eases are women.[2]. Some specific autoimmune diseases have an even higher incidence
among women. These statements are clearly represented in the data as well, which is
illustrated in figure 3. It shows that almost 80% of the users of the application is fe-
male, where only 10% is male. The other 10% did not enter information on their gender.



9

Fig. 2: A: Mean umber of entries per day. B: Mean number of entries per weekday.
C: Number of entries per month.

Fig. 3: Distribution of gender per unique user within the dataset

Finally, literature also states that one of the probable causes of autoimmune disease
are caused by environmental factors, they are said to have a stronger influence than
genetics.[20] An example of a suspected trigger is a ”western diet” consisting of high-
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fat, high-sugar and highly processed foods.[22] The last theory is called the hygiene
hypothesis, because of vaccines and antiseptics in western countries, the lack of expo-
sure to germs make immune systems overreact to otherwise harmless substances.[33]
This corresponds to the findings from the data, figure 4 shows a world map, that shows
that most users are from the United States, United Kingdom and Australia. This might
also point to another cause of the differences, maybe the language barrier plays a part
in using the application.

Fig. 4: Unique users per Country

Figure 5 shows the distribution between the trackable types for both the original
dataset and the altered one. In both cases the trackable type Symptom includes by
far the highest number of observations. The type AD is a newly added trackable type
and covers around 4% of the observations. Symptoms, Weather and Food are types
that grew in size, this is mainly because trackable names were split if multiple names
were entered as one observation. The trackable type Condition decreased in size the
most, since most autoimmune diseases were filtered from this type. Types Treatment
and Tag decreased as well, this is in particular due to observations that were entered
under the wrong trackable type.

Figure 6 give the top 200 entered names for Autoimmune diseases, Conditions and
Symptoms. Figures 7, A and B give the top 10 most frequent names for Conditions
and Symptoms as well. It shows that the most common condition is the irritable bowel
syndrome (IBS), it is shown that IBS is closely linked to the immune system and au-
toimmune diseases like celiac disease, but the link itself is not well understood.[19][37]
Many fundamental pathogenic mechanisms link autoimmune diseases and cause the
symptoms to be similar. The most common symptoms include fatigue, and joint pain,
which are found for all autoimmune diseases. These are examples of Figure 8, A shows
the top ten autoimmune diseases. A total of 74 different autoimmune diseases were
distinguished within the dataset. Oddly enough, five out of ten, including the two most
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Fig. 5: A: The original distribution between trackable types. B: The altered dis-
tribution between trackable types.

frequently occurring autoimmune diseases in the dataset, are not mentioned in the 14
most common autoimmune diseases according to Healthline.[40]

Some people have multiple autoimmune diseases. The mean amount of autoimmune
diseases for a user is equal to 1.538 and the maximum is equal to eight diseases. This
distribution is shown in figure 8, B. It is said that around 25% of patients suffering
from an autoimmune disease have multiple autoimmune diseases.[11] The number of
patients with multiple co-occurring autoimmune diseases within the dataset is over
35%.

Some AD’s rarely occur in the dataset as described in table 3. It shows that there are
13 autoimmune diseases that only have one patient and only two autoimmune diseases
that have over 500 patients.

Table 3: Number of autoimmune diseases with x number of patients diagnosed

# patients # AD’s # patients # AD’s # patients # AD’s

1 13 6 2 (10,20] 7

2 7 7 1 (20,50] 7

3 5 8 0 (50,100] 9

4 2 9 1 (100,500] 13

5 3 10 2 (500,1232] 2
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Fig. 6: A: Top 200 Autoimmune Disease frequency . B: Top 200 conditions fre-
quency. C: Top 200 symptom frequency.

Fig. 7: A: Top 10 most frequent conditions. B: Top 10 most frequent symptoms.
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Fig. 8: A: Top ten Autoimmune diseases, B: Number of Autoimmune diseases
per unique user
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2.3 Data transformation and selection

As described in table 3 in the last subsection, some autoimmune diseases are very rare
in the dataset. There are 13 autoimmune diseases that only have one patient, predicting
these 13 disease will be impossible for a model.
For this reason the diseases that have at least 100 patients are used. This leaves 16 of
the 74 autoimmune diseases. Within the dataset a total of 3,066 patients suffer from
(at least) one of these diseases. Important to note is that the entire dataset is tested,
even people that suffer from a different autoimmune disease, these should be predicted
as ”Miscellaneous”. This means that doctors who suspect their patient to have an
autoimmune disease can predict if they have one of the 16 autoimmune disease, based
on their symptoms. The 2,744 users that have not entered an autoimmune disease are
disregarded.
Next, patients that did not enter any conditions and symptoms are disregarded as well,
which removes 127 patients from the dataset.

Since no correlation is proven in literature between symptoms/ conditions and the age,
sex or country of residence, this information is ignored. The final dataset is made using
one row of data for every unique user id. For all conditions and symptoms that occur
in the data a column is made. Every column contains a different unique symptom or
condition with a boolean value of 1 if the patient with that unique user id suffers from
this symptom or condition, and a 0 otherwise. It is assumed that if a patient logged this
condition or symptom, anywhere between 24-05-2015 and 23-06-2017 they suffer from
this symptom or condition. If a patient entered this symptom or condition multiple
times, it is treated the same as when it would have been logged only ones. The same
goes for the label set for every user id for the possible autoimmune diseases to predict.
This aggregates a total of 499,794 observations into 3,436 observations, one row per
unique patient.

2.4 Data analysis

The final dataset used for this research results in a total of 476 explanatory variables.
And a set of 17 response variables with a boolean value for every autoimmune disease
for every unique user id.

Figure 9 shows that an average patient in the dataset has 10.28 symptoms, 2.54 con-
ditions and 1.54 autoimmune diseases.
Figure 10 states the distribution of the autoimmune diseases to be predicted for the
patients included in the final dataset.
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Fig. 9: The information that is known about an average patient

Fig. 10: The 16 autoimmune diseases that are predicted.
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3 Methodology

This section will discuss the different methods used, outlines the different algorithms
used and describes how the performance is measured. Subsection 3.1 will discuss the
k-Nearest Neighbors, Random Forest and Support Vector Machine algorithms. These
three algorithms are chosen since it are well known, easy to implement algorithms. All
three have implementations in various fields, including bioinformatics. Furthermore,
all three have multi-label implementations. Subsection 3.2 describes how scores and
performances measures are calculated to determine the quality between the implemen-
tations.

3.1 Methods for dealing with multi-label classification

This section describes the methods that are used to handle patients having co-occurring
autoimmune diseases. Table 4 shows an example of a single-label classification whereas
table 5 shows a multi-label problem. Next, table 6 shows how table 5 can be restructured
into a categorical multi-label classification problem.
Multi-label classification has received much attention in literature, including the field
of bioinformatics.[10][38][43][9]

Three well known algorithms are implemented using tree different methods to adapt
to the multi-label classification problem at hand. Literature states two main categories
in methods for handling multi-label classification, namely the Problem Transformation
method and the Algorithm Adaptation method. [35]

Table 4: Single-Label Classification

X1 X2 X3 X4 X5 Y

1 0 0 1 1 1

0 0 0 1 1 0

1 1 0 0 1 2

1 1 1 0 1 1

0 1 1 1 1 ??

Table 5: Multi-Label Classification

X1 X2 X3 X4 X5 Y

1 0 0 1 1 {Y1, Y2}
0 0 0 1 1 {Y3}
1 1 0 0 1 {Y2, Y3}
1 1 1 0 1 {Y1, Y4}
0 1 1 1 1 ??

Table 6: Multi-label Classification

X1 X2 X3 X4 X5 Y1 Y2 Y3 Y4

1 0 0 1 1 1 1 0 0

0 0 0 1 1 0 0 1 0

1 1 0 0 1 0 1 1 0

1 1 1 0 1 1 0 0 1

0 1 1 1 1 ?? ?? ?? ??
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– Problem Transformation methods
Multi-label classification problems are converted into single-label classifications
problems. Here the data is adapted to fit the algorithm. This is done using the
following two methods:
• Label Powerset method[30]

In the Label Powerset method a new class is defined for each unique combi-
nation of multi-labels. It makes a single multi-class problem with 2L possible
class values, with L the number of possible labels. Tables 8 and 9 illustrate
this. Table 7 gives the advantages and disadvantages of this method.

• Binary Relevance method
For the Binary Relevance method L separate binary problems are created, one
for each possible label. Again, these are trained with any off-the-shelf binary
classifier. An illustration of this process is given in tables 10 and 11, for the first,
second and fifth label in the label set. A disadvantage of this method is that
in many cases no positive decision function exists, so an observation remains
unclassifiable. As an heuristic any unclassifiable observation will be classified as
having ”no autoimmune disease / miscellaneous autoimmune disease”. Another
big disadvantage is that it does not take label dependency into account, which
can be solved using a Chain Classifier.[31][32] It makes L binary problems,
but in this case includes previous predictions as explanatory variables. This
is illustrated in table 12, for the first, second and fifth label in the label set.
An ensemble of Classifier Chains are implemented here, which is composed
by a set of Classifier Chains. Support Vector Machines are often used for
implementing the Binary Relevance Method due to their high generalizable
nature.[6][44] Table 7 gives the advantages and disadvantages of this method.
The Binary Relevance method using an ensemble of Classifier Chain will be
used, but simply named the Binary Relevance method for the remainder of
this research.

– Algorithm Adaptation method
As opposed to the Problem Transformation methods, in the Algorithm Adapta-
tion method the algorithm is adapted to fit the data. Conventional classifiers are
implemented in a way that allows for multi-label classification. Table 7 gives the
advantages and disadvantages of this method.

Table 7: Advantages and disadvantages of the three methods for handling multi-
label classification

Advantage Disadvantage

Label Powerset - Any classifier can be used - Complexity due to the number of classes
- Easy to implement - Imbalance of the classes

- Overfitting due to unknown combination of labels

Binary Relevance - Any classifier can be used - Many observations are unclassifiable
- Number of classes to predict does not increase - Computationally expensive
- Easy to implement

Algorithm Adaptation - Data does not need to be altered - Classifier needs to be reimplemented

In the next sections the three implemented algorithms are described as well as the
Algorithm Adaptation method for that specific algorithm. Since the Problem Transfor-
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mation methods behave in the same way for all tree algorithms, no further explanation
is given.

Table 8: Multi-label Classification using
Label Powerset method

X̄2 Y1 Y2 Y3 Y4 Y5

x̄(1) 0 0 1 1 1

x̄(2) 0 0 1 1 0

x̄(3) 1 0 0 1 1

x̄(4) 1 1 0 0 1

x̄(5) 0 1 0 0 0

Table 9: Multi-class Classification due to
Label Powerset method

X̄ Y ∈ 2L

x̄(1) 00111

x̄(2) 00110

x̄(3) 10011

x̄(4) 11001

x̄(5) 01000

Table 10: Multi-label Classification using
Binary Relevance method

X̄ Y1 Y2 Y3 Y4 Y5

x̄(1) 0 0 1 1 1

x̄(2) 0 0 1 1 0

x̄(3) 1 0 0 1 1

x̄(4) 1 1 0 0 1

x̄(5) 0 1 0 0 0

Table 11: Single-class Classification due to
Binary Relevance method

X̄ Y1 HOI X̄ Y2 HOI X̄ Y5

x̄(1) 0 x̄(1) 0 x̄(1) 1

x̄(2) 0 x̄(2) 0 x̄(2) 0

x̄(3) 1 x̄(3) 0 x̄(3) 1

x̄(4) 1 x̄(4) 1 x̄(4) 1

x̄(5) 0 x̄(5) 1 x̄(5) 0

Table 12: Using the Chain Classifier to improve the Binary Relevance method

X̄ Y1 HOI X̄ Y1 Y2 HOI X̄ Y1 Y2 Y3 Y4 Y5

x̄(1) 0 x̄(1) 0 0 x̄(1) 0 0 1 1 1

x̄(2) 0 x̄(2) 0 0 x̄(2) 0 0 1 1 0

x̄(3) 1 x̄(3) 1 0 x̄(3) 1 0 0 1 1

x̄(4) 1 x̄(4) 1 1 x̄(4) 1 1 0 0 1

x̄(5) 0 x̄(5) 0 1 x̄(5) 0 1 0 0 0

3.1.1 k-Nearest Neighbors
k-Nearest Neighbors (kNN) is a widely disposable algorithm and finds applications in
various fields, as well as bioinformatics, such as the breast cancer diagnosis problem.[34]
It does not make any assumptions about the distribution of underlying data and is easy
to implement for both single-label as multi-label classifications.
kNN is an algorithm that classifies n-dimensional objects (i.e. an observations with
n features) based on their similarity (e.g., distance functions) to other n-dimensional
objects. Here an observation is classified as the class most common among the k most
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similar observations. With k as a positive integer.[27]

Distance Functions
The distance between observations can be calculated in multiple ways. Table 13 shows
N observations with n explanatory variables. The distance between two observations
i and j is defined as d(x̄i, x̄j) = ||x̄i − x̄j ||

Table 13: N observations with n explanatroy variables

Observation Explanatory Variables

x̄1 x11 x12 · · · x1k · · · x1n

x̄2 x21 x22 · · · x2k · · · x2n

...
...

...
. . .

...
. . .

...

x̄i xi1 xi2 · · · xik · · · xin
x̄j xj1 xj2 · · · xjk · · · xjn
...

...
...

. . .
...

. . .
...

x̄N xN1 xN2 · · · xNk · · · xNn

Since the data used in this research only contains boolean explanatory variables ∈ [0, 1]
the Euclidean-, Manhattan-, Canberra and Squared Euclidean- and Minkowski distance
all end up with the same result. Furthermore, the Chebyshev distance always calculates
the distance as being either 0 or 1, which does not make this a good distance measure
either.
The decision was made to work with the Euclidean distance, since this is the most
commonly used measure, the Pearson distance and the Jaccard distance. These are
defined as follows:[27]

Euclidean distance:

d(x̄i, x̄j) = ||x̄i − x̄j || =
√∑

∀k (xik − xjk)2 i, j, k ∈ Z+, i 6= j

Pearson distance:

d(x̄i, x̄j) = ||x̄i − x̄j || =
∑
∀k

(xik−xjk)2

xjk
i, j, k ∈ Z+, i 6= j

Jaccard distance:

d(x̄i, x̄j) = ||x̄i − x̄j || = 1− |x̄i∩x̄j |
x̄i∪x̄j

= 1− x̄i∩x̄j
|x̄i|+|x̄j |−|x̄i∩x̄j |

=
|x̄i∪x̄j |−|x̄i∩x̄j |
|x̄i∪x̄j |

This means it calculates the distance by dividing the difference of the sizes of
the union and the intersection by the size of the union. In other words, per ex-
planatory variable:

d(x̄i, x̄j) = ||x̄i − x̄j || = 1−
∑

∀k(xik·xjk)∑
∀k xik

2+
∑

∀k xjk
2−

∑
∀k(xik·xjk)

i, j, k ∈ Z+, i 6= j

Note: for the division by zero the following is done:
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– case: 0/0 → 0
– case: n/0 → n/ε, ε = 0.00001.

Informal kNN algorithm
The intuition behind the kNN algorithm implemented here can be explained with the
following steps:
1. Determine k.
2. Calculate the distance between the queried observation and all observations in the

training data.
3. Sort the distances in a decreasing order and based on the k observations with the

minimum distance, determine the k nearest neighbors.
4. Gather the response variables of the k nearest neighbors
5. Classify the queried observation based on a set threshold function.

Section 4 gives the experimental setup for different values of k, the distance function,
and the threshold function.

Formal kNN algorithm
Now the formal kNN algorithm can be defined given:
A train set T̄ , with observation t̄, t̄ ⊆ T̄ .
A dataset Q̄ to classify, with queried observation q̄, q̄ ⊆ Q̄.
And an integer k.
The set of k nearest neighbors of q̄ from T̄ := kNN(q̄, T̄ )
now are a set of k observations from T̄ such that:[27]

∀ō ∈ kNN(q̄, T̄ ), ∀t̄ ∈ {T̄ − kNN(q̄, T̄ )}, d(ō, q̄) ≤ d(t̄, q̄) (1)

Combining each observation q̄ ∈ Q̄ with its k nearest neighbors from T , is defined
as:[27]

kNNjoin(Q̄, T̄ ) = {(q̄, t̄) | ∀q̄ ∈ Q̄, ∀t̄ ∈ kNN(q̄, T̄ )} (2)

3.1.1.1 Algorithm Adaptation method

To adapt the algorithm to work with multi-label data, the ML-kNN classifier is used.
The k nearest neighbors are identified based on the traditional kNN algorithm as de-
scribed above. To classify the label for the queried observation the maximum a poste-
riori principle is used, based on statistical information of the label sets of the k nearest
neighbors for the queried observation.

Informal ML-kNN algorithm
The normal kNN algorithm is followed to determine the k nearest neighbors and their
respective label sets. The difference lays in the decision function. The intuition behind
the final prediction depends on the most common labels among the k nearest neigh-
bors, combined Bayesian inference. Meaning the probability for a label increases as
more evidence or information becomes available.

Formal ML-kNN algorithm
Now the formal ML-kNN algorithm can be defined given:[45]
A train set T̄ , with observation t̄, t̄ ⊆ T̄ .
A dataset Q̄ to classify, with queried observation q̄, q̄ ⊆ Q̄.
And an integer k.
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The set of k nearest neighbors of q̄ from T̄ := kNN(q̄, T̄ ).

Given observation t̄ and its associated label set Y ⊆ Y,
Let ȳt̄ be the classification vector for t̄, where its l-th component,

yt̄(l) , l ∈ Y =

{
1 if l ∈ Y
0 otherwise

Now, a membership counting vector can be defined, counting the number of neighbors
of q̄ belonging to the l-th class as:

Cq̄(l) =
∑

t̄∈kNN(q̄,T̄ )

yt̄(l) , l ∈ Y (3)

For each queried observation q̄ ⊆ Q̄, first identify kNN(q̄, T̄ ) and let:
Hl

1 := the event that q̄ has label l,
Hl

0 := the event that q̄ doest not have label l,
Elj := the event that, among the k nearest neighbors of q̄, there are exactly j instances
which have label l. , j ∈ {0, 1, ..., k}

Now it follows that:

yq̄(l) = arg max
b∈{0,1}

P (Hl
b | ECq̄(l)) , l ∈ Y

= arg max
b∈{0,1}

P (Hl
b)P (ECq̄(l) | Hl

b)

P (ECq̄(l))

= arg max
b∈{0,1}

P (Hl
b)P (ECq̄(l) | Hl

b)

(4)

Now the prior probabilities P (Hl
b), l ∈ Y, b ∈ {0, 1} and posterior probabilities

P (Elj | Hl
b), j ∈ {0, 1, ..., k} are needed to determine the category vector ȳq̄(l). These

probabilities can directly be estimated from the training data based on frequency count-
ing.

3.1.2 Random Forest
Like the kNN algorithm, the Random Forest is an algorithm that is used for many
purposes and fields. An example of an implementation of the Random Forest in the
bioinformatics field is the detection and localization of multiple organs multi-channel
magnetic resonance scans.[28]
Advantages of Random Forest include the fast and easy implementation, high accu-
racies in prediction and the ability to handle a large number of explanatory variables
without overfitting.[4] Furthermore, they are conceptually easy to understand for any-
one. This fact makes it a good algorithm for the medical field. A drawback of the
random forest is the inability to handle noisy and incomplete data.

Informal Decision Tree algorithm
A decision tree is a tree such that each decision node corresponds to an explanatory
variable whereas the leafs correspond to a classifying label. The problem is to decide
which concepts in the hypothesis space will be best in classifying and so, determining
the set of rules to follow.
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Note that every split in this research deals with Boolean explanatory variables, either
having a certain symptom/ condition or not.
In other words, when a set of questions about a patient are asked, one follows the steps
and eventually ends up with a certain autoimmune disease; the prediction.

The intuition behind the Decision Tree algorithm implemented here can be explained
with the following steps:[16]

1. Measure how well every explanatory variable separates observations into targeted
classes, using the entire training set.

2. Choose the best split, so the dataset is split into subsets using the explanatory
variable that minimizes the impurities, and increases the homogeneity. This leads
to subsets in the daughter nodes belonging to similar classes. This favors splits that
lead to bigger partitions and so, ultimately minimizes the errors in prediction.

3. Make a decision node of this explanatory variable.

4. Iterate the steps above, in a recursive matter by making subsets using the re-
maining explanatory variables until a leaf node is reached at every branch, and a
classification can be made by computing the most frequent class.

Informal Random Forest algorithm
The Random Forest algorithm is an ensemble learning method that constructs a num-
ber of decision trees based on random parts of the training set and random subsets of
the explanatory variables. Combining many of these weak learners tackles the disad-
vantage of overfitting, and makes the final classifier stronger.
In other words, a prediction is done based on different trees. And the final prediction
is the label that has the majority vote among the trees.[16]

The intuition behind the Random Forest algorithm implemented here can be explained
given:[16]
ntree := the total number of trees to grow,
mtry := the total number of explanatory variables randomly sampled as candidates at
each split.
n := the total number of observations in the training set.
m := the total number of explanatory variables in the training set.

1. Sample n cases with replacement from the training set.

2. At each decision node:

(a) Sample mtry explanatory variables out of m, where mtry < m

(b) Split the node into daughter nodes using the best split

(c) Repeat steps (a) and (b), until the tree is grown to the largest extent possible.

3. Recurse steps 1. and 2. until ntree number of trees are grown.

Using the ntree grown trees to make a prediction for the queried observation, the next
steps should be followed:

1. Use the explanatory variables of queried observation as input and use the rules of
every tree in the forest

2. Store the classification of every tree for the queried observation

3. Calculate the number of votes for each predicted class

4. The final prediction is the classification having the highest number of votes.
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Section 4 gives the experimental setup for different values of ntree and mtry.

Formal Random Forest algorithm
Now the formal Random Forest algorithm can be defined:[7],[8]
Let a train set T̄ , with observation t̄, t̄ ⊆ T̄ .
A dataset Q̄ to classify, with queried observation q̄, q̄ ⊆ Q̄.
And the possible label set Y = 1, ..., L
Let T̄ = {(t̄i, y1), ..., (t̄n, yn)} the train set with n observations.
Where t̄i = (ti,1, ..., ti,m)T . Meaning the train set has n observations, where each
observation consists of m explanatory variables, and a response variable y.

1. Recurse the following steps until ntree trees are grown:
(a) Take a bootstrap sample T̄j of size n from T̄

i. Use all observations {(t̄i, y1), ..., (t̄n, yn)} from T̄j in a single node.
ii. Repeat the following steps using the remaining explanatory variables until

a leaf node is found for every branch:
A. Sample mtry explanatory variables out of m, where mtry < m
B. Among these mtry explanatory variables, find the split s possible,

minimizing the Gini index and so optimizing the node purity.
The best split is found by minimizing:

θ(t̄, s) =

(
1−

L∑
l=1

(
nl,1
n1

)2
)

+

(
1−

L∑
l=1

(
nl,2
n2

)2
)

(5)

Where the subscripts 1 and 2 represent the daughter nodes of the
node. And nl,1 and nl,2 are defined as the number of cases of class l
in the left and right daughter, respectively, such that nl = nl,1 + nl,2

C. Split this node into daughter nodes.
iii. Let k denote the leaf nodes and let yk1, ..., ykn denote the response vari-

ables of T̄j
The predictions are given by:

ĥ(t̄) = argmax
y

n∑
i=1

I(yki = y) , where

{
1 if yki = y
0 otherwise

(6)

2. To make a prediction for a new observation q̄ calculate

f̂(q̄) = argmax
y

ntree∑
j=1

I(ĥj(q̄) = y) (7)

where ĥj(q̄) is the predicted classification for q̄ using the j-th tree.

3.1.2.1 Algorithm Adaptation method

The split in the Random Forest algorithm ensures that labels within a node are similar
to each other and different from labels in the other daughter node. For multi-label
classification the label sets need to be considered, rather than the labels themselves.
For this reason a different type of splitting need to be used. This finally result in an
algorithm that allows for multiple labels at the leaves.
Let T̄ = {(t̄i, Y ), ..., (t̄n, Y } the train set with n observations.
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Where x̄i = (ti,1, ..., ti,m)T and the associated label set Y ⊆ Y for every observation.
Meaning the train set has n observations, where each observation consists of m ex-
planatory variables, and a set of response variables Y .
The difference between the Algorithm Adaptation Method and a standard Random
Forest is that a composite normalized Gini index splitting rule is used, which is an
average over the entire set of classification labels.[29]

θ(x̄, s) =
n1

n

(
1−

L∑
l=1

(
nl,1
n1

)2
)

+
n2

n

(
1−

L∑
l=1

(
nl,2
n2

)2
)

(8)

3.1.3 Support Vector Machine
The Support Vector Machine (SVM) is another well known classifier, that finds many
implementations. One implemntation in bioinformatics using a combination of a SVM
and a genetic algorithm were used for heart disease classification.[5]

A SVM essentially looks for the optimal separating hyperplane between observations
with the same label. If observations of two different classes can be illustrated on a
two dimensional graph, a line can be drawn that is able to separate classes, and so
divides the graph into two areas. This line is called the hyperplane. The SVM looks
for the optimal separating hyperplane by maximizing the margin between the closest
points between the classes. The points lying on the boundaries of the margin are called
support vectors, these are the critical elements of the training set. The support vectors
namely specify the decision function for the prediction.

Informal Support Vector Machine algorithm
For the linear case the following holds:
The maximal margin hyperplanes are two lines at equal distance from the optimal hy-
perplane. These lines give the boundaries of the margin that separates the two classes.
Since the margin between two parallel lines needs to be maximized, one can calcu-
late the distance between the two lines, and maximize this distance. This leads to a
quadratic, constrained optimization problem that can be solved using the Lagrangian
multiplier method. A graphical interpretation is given in figure 11. Where the arrows
show the distance to be maximized, the pink line represents the optimal hyperplane,
the dotted lines maximal margin hyperplanes and the classes are represented by circles.

In the case of multi-class classification the SVM uses the one-against-one technique
by fitting all cases of having a certain label against all others, and finding the correct
classification by a voting mechanism.
In many cases classes are not linearly separable, so the Kernel Trick can be used, in
which the data is mapped to a higher dimensionality in order to gain linearly separation.
This trick is illustrated in figure 12, where the left image in two dimensions is not
linearly separable, but as shown in the right figure, it turns out to be linearly separable
in three dimensions.

Kernel Functions
When a situation like described in figure 12 occurs, a kernel function k(x̄i, x̄j), k:RN ×
RN → R implicitly computes the similarity between x̄i and x̄j in RM .
Two Kernel functions are used in this research, namely the Linear Kernel function and
the Radial Basis function (RBF).

k(x̄i, x̄j) =

{
x̄i · x̄j if Linear
exp(−γ | x̄i − x̄j |2) if RBF

(9)
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Fig. 11: The Maximum margin hyperplane illustrated

Fig. 12: The Kernel Trick illustrated

Formal Support Vector Machine algorithm
The formal Support Vector Machine algorithm can be defined:[12] The equation defin-
ing the decision surface separating the classes is a hyperplane of the form: w̄T x̄+b, with
w̄ a weight vector, x̄ an input vector and b the bias. Furthermore, the total distance
between the max margin hyperplanes equals 2

||w̄||
In order to prevent observations of falling in the margin and observations having to lie
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on the correct side of the margin, the following constraints have to hold:

w̄ · x̄i − b ≤ 1 if yi = 1

w̄ · x̄i − b 6= −1 if yi = −1

Meaning anything above the boundary is of one class, with label 1, and any observations
below it belong to the other class with label −1.
This can be combined into the optimization problem

min || w̄ ||
s.t. yi(w̄ · x̄i − b) ≤ 1 , for i ∈ (1, ..., n)

(10)

By adding cost C > 0 per misclassification the influence of misclassified observa-
tions is reduced, this allows trading-off margin size against training error of misclassified
observations.
A slack variable εi ≤ 0, is added as well. In order to get the optimal hyperplane,
equation 11 eventually can be written as:

min
1

2
|| w̄ ||2 +C

n∑
i=1

εi

s.t. yi(w̄ · x̄i − b) ≥ 1− εi , for i ∈ (1, ..., n)

εi ≥ 0 , for i ∈ (1, ..., n)

(11)

The Support Vector Machine algorithm uses tree parameters, namely the kernel
function, the γ parameter and the cost parameter.
The γ parameter define a Gaussian function, that is used as similarity measure be-
tween two points. This means high values for γ define a Gaussian function with small
variance and only points that are close to each other can be considered similar. Vice
versa, with low values for γ, two points can be considered similar even if they are far
apart.
The cost parameter decides the cost of constraint violation, in other words it trades off
misclassification against model complexity. High cost parameters will result in a very
complex model, whereas low cost parameter make decisions surface smooth and will
probably result in more training errors.
The threshold function used in the Binary Relevance Method and the Algorithm Adap-
tation Method decides which diseases to include in the prediction. For every label, the
algorithm decides the probability of it being fitting to the model. A disease is included
in the prediction if the probability is at least equal to x, where x equals the threshold.
A set of different settings for the experimental setup are discussed in section 4.

3.1.3.1 Algorithm Adaptation method

The Algorithm Adaptation Method makes use of SVMRank[21]. It reduces a ranking
problem into a classification problem over pairs of observations.
Given pairwise observations and the corresponding explanatory variables, a ranking of
labels is made to give a prediction. In this way it finds regularities between similar ob-
servations in order to find the most fitting labels. Implicitly, the classification label are
used to generate pairwise preference constraints for two given observations. Meaning,
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for every observation a constraint is made where an ordering of importance is given.
This will eventually result in the following model, that looks similar to the SVM:

min
1

2
|| w̄ ||2 +C

n∑
i=1

εi,j,k

s.t. ∀(li, lj) ∈ r̄∗1 : w̄φ(x̄1, li) ≥ w̄φ(x̄1, lj) + 1− εi,j,k
· · ·

∀(li, lj) ∈ r̄∗n : w̄φ(x̄n, li) ≥ w̄φ(x̄n, lj) + 1− εi,j,k
∀i∀j∀kεi,j,k ≥ 0

(12)

With w̄ a weight vector, l̄ = {l1, ..., lm} the label set φ(l, x̄1) a mapping onto features
describing the match between the label and observation, slack variables εi,j,k and target
rankings r̄∗ for the n observations: (x̄1, r̄

∗
1), ..., (x̄n, r̄

∗
n)

Note that in this case the target is not a class label but a binary ordering relation and
the goal is not to minimize the training error.

3.2 Evaluation Measures

Given queried dataset Q̄ and its queried observations q̄, with q̄ ⊆ Q̄, having n obser-
vations.
Furthermore, given q̄ with its associated diagnosed label set Y ⊆ Y
and the length of the possible label set Y := m the following equation can be defined,
given its l-th label:

yq̄(l) , l ∈ Y =

{
1 if l ∈ Y
0 otherwise

This represents whether a certain patient is diagnosed with a certain autoimmune
disease.
In the same way the predicted label for the queried observation can be defined, given
its l-th label, and Ŷ ⊆ Y the predicted label set. This, on the other hand, represents
whether a certain autoimmune disease is predicted for a certain patient.

ŷq̄(l) , l ∈ Y =

{
1 if l ∈ Ŷ
0 otherwise

Next the number of diagnosed diseases for a given patient can be defined as:

Cq̄ =
∑
∀l∈Y

yq̄(l)

Finally four functions, tpq̄(l), tnq̄(l) fpq̄(l) and fnq̄(l), can be defined that describe
whether a prediction for a certain label is correct or not:

tpq̄(l) =

{
1, if ŷq̄(l) = yq̄(l) = 1

0, otherwise

∀q̄ ∈ Q̄, ∀l ∈ Y

tnq̄(l) =

{
1, if ŷq̄(l) = yq̄(l) = 0

0, otherwise

∀q̄ ∈ Q̄,∀l ∈ Y

fpq̄(l) =

{
1, if ŷq̄(l) = 1 6= yq̄(l)

0, otherwise

∀q̄ ∈ Q̄, ∀l ∈ Y

fnq̄(l) =

{
1, if ŷq̄(l) = 0 6= yq̄(l)

0, otherwise

∀q̄ ∈ Q̄, ∀l ∈ Y
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The following performance measures are widely used to evaluate how well a model
works. These are based on a confusion matrix for every disease separately, an example
of such a confusion matrix is depicted in figure 14. The following four cases can be
distinguished:

– True Positives (TP): True positives are the cases where the actual class of the data
point was True and the predicted is also True.
E.g.: A person is diagnosed with lupus and the model classifies his case as having
lupus.

– True Negatives (TN): True negatives are the cases where the actual class of the
data point was False and the predicted is also False.
E.g.: A person doest not have lupus and the model classifies his case as having no
lupus.

– False Positives (FP): False positives are the cases where the actual class of the
data point was False and the predicted is True.
E.g.: A person does not have lupus and the model classifies his case as having lupus.

– False Negatives (FN): False negatives are the cases when the actual class of the
data point was True and the predicted is False.
E.g.: A person is diagnosed with lupus and the model classifies his case as having
no lupus.

Table 14: Confusion matrix

Prediction
outcome

Actual value

Positive Negative total

Positive

True
Positive
(TP)

False
Positive
(FP)

p

Negative

False
Negative
(FN)

True
Negative
(TN)

p

total p p

Accuracy, precision and recall are the most common performance measures. In this
case accuracy should not be used, since the target variable classes are unbalanced.
E.g.: In our lupus detection example with 100 people, only 5 people have lupus. Lets
say our model is very bad and predicts every case as No lupus. In doing so, it has
classified those 95 non-lupus patients correctly and 5 lupus patients as Non-lupus. Now
even though the model is terrible at predicting lupus, The accuracy of such a bad model
is 95%.

The precision represents how well a model predicts a certain disease to be True. A
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high precision is desired.
E.g.: out of all the people that were predicted to have lupus, how many actually had it?
High precision makes sure not many people are told to have lupus, when actually they
do not.

Precision(l) =
TP (l)

TP (l) + FP (l)
=

∑
q̄∈Q̄ tpq̄(l)∑

q̄∈Q̄ tpq̄(l) + fpq̄(l)
, l ∈ Y

The recall on the other hand gives the fraction of cases where a disease is predicted
correctly divided by the times that prediction is missed for a certain disease.
E.g.: Out of all the people who actually have lupus, how many did the model identify?
High recall makes sure the model does not fail to spot many people who have lupus.

Recall(l) =
TP (l)

TP (l) + FN(l)
=

∑
q̄∈Q̄ tpq̄(l)∑

q̄∈Q̄ tpq̄(l) + fnq̄(l)
, l ∈ Y

Since both are found very important, the F-measure is calculated, which is a weighted
harmonic mean of the precision and recall.

F −measure(l) = 2 · precision(l) · recall(l)
precision(l) + recall(l)

, l ∈ Y

Since these performance measures have to be calculated for every class, a macro-
average precision and recall can be calculated as a combination for all classes. The
macro-average is used for computational reasons and the fact that macro-average gives
equal importance to each class, whereas micro-average give equal importance to each
sample. This means that a micro-average performance measure will favor majority
classes, like the accuracy when regarding the F-measure. These can be calculated as
follows:

Precision =

∑
l∈Y precision(l)

m
∈ [0, 1] (13)

Recall =

∑
l∈Y recall(l)

m
∈ [0, 1] (14)

F −measure =
precision · recall
precision+ recall

∈ [0, 1] (15)

Finally, the percentages of cases in which at least one disease is predicted correctly is
calculated:

Score =

∑
q̄∈Q̄

∑
l∈Y tpq̄(l)·100∑

l∈Y tpq̄(l)

n
∈ [0, 100] (16)

All four performance measures need to be maximized in order to optimize the
model. During training of the model and tuning of the parameters the focus lays on
finding the maximum F-measure.
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4 Experimental Setup

To do a righteous evaluation and prevent overfitting, the dataset is split into a train-,
validation- and test set of 60%, 20% and 20% respectively. Each user id is sampled
randomly, with the distribution of having ”no autoimmune disease / miscellaneous
autoimmune disease” equally distributed among the sets. Table 15 describes the dis-
tribution of patients within the tree sets. Figure 13 gives the distribution between the
tree different sets for every autoimmune disease that has to be predicted. It shows that
the sets are evenly distributed for the response variables.

Table 15: The distribution of patients between the train-, validation- and test
set.

Training set Test set Validation set Total

% 60 20 20 100

Patients 2.062 687 687 3.436

From within 16ADs dataset 1.777 592 593 2.962

From other ADs dataset 285 95 94 474

Fig. 13: The distribution of ADs between the train-, validation- and test set.

In order to use the limited data in the best way possible, K-Fold cross validation is
used to detect and prevent overfitting. The train set is split into K, non overlapping,
folds. Now the K − 1 chunks of data are used to train, and the last, remaining part
is used to test on. The performance measures are calculated and then averaged over
all K different configurations. Here, 5-Fold cross validation is used, for computational
reasons, during the training of each of the models. Parameter tuning is done for the
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5-Fold cross validation set, in order to optimize the performance measures.

The optimal parameter setting is selected based on the two maximal F-measures for
all nine combinations of methods and algorithms. Based on this parameter setting, the
model is trained and then tested on the validation set. Finally, to make best use of the
limited data, the train and validation set are combined in the end to train the model
that is tested on the test set. All evaluation measures for the cross validation set, the
validation- and test set are compared.
For the average performance measures of the 5-Fold cross validation, validation- and
test set performances should not differ more than 10% from each other. If this were to
be the case, the parameter setting or the dataset itself could be biased which leads to
a model that might be over- or underfitting.

No current published existing methods exist that predict this problem. So a set of four
benchmarks are made, which indicate the performance measures for naive solutions.
The following benchmarks are made with 100 simulations, and the performance mea-
sures are averaged. The first benchmark is most naive, and the successors take more
knowledge of the data into account. The results of these benchmarks are depicted in
section 5.

1. The number of diseases for a certain patient are randomly sampled between the
minimum and maximum number of labels a patients has; sample1 ∈ [1, 8], as shown
in figure 8, B. Next, a bootstrap sample of all 17 different labels is done of size
sample1

2. From the set that is used to train the model, the most frequently occurring disease
is used as a prediction for every patient.

3. The number of diseases for a certain patient are randomly sampled between the
minimum and maximum number of labels a patients has; sample1 ∈ [1, 8]. From
the set that is used to train the model, the distribution of autoimmune diseases is
deducted; distributiontrainset. Finally, a bootstrap sample of size sample1 is done,
following distributiontrainset.

4. From the set that is used to train the model, the average number of disease patients
have is deducted; Av diseaseNumbertrainset, as well as the distribution of diseases
occurring; distributiontrainset. Since Av diseaseNumbertrainset is an averaged
number, it will not be an integer. With equal probability it is decided whether to use
the smallest or largest following integer from Av diseaseNumbertrainset; sample2.
Finally, a bootstrap sample of size sample2 is done, following distributiontrainset.

4.1 Feature engineering and selection

All explanatory variables are boolean values. They indicate the presence or absence
of some categorical variable. So feature engineering is deemed unnecessary for this
research. Feature selection is not used either, because no assumptions can be made on
the importance of symptoms or conditions, since the possible label set is this big.

4.2 Parameter selection

Parameter tuning is necessary to optimize the model and get the highest performance
measures. For each of the nine models, a set of parameters is tested according to a grid
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search. Below the different parameter values per algorithm that are tested for each
possible combination of parameters are described.
For every model the computational cost is weighed against having enough models to
compare.

4.2.0.1 k-Nearest Neighbors

The kNN algorithm uses tree variable parameters. Namely, the distance function to de-
termine similar patients, the K-parameter that determine how many similar patients
are regarded and the threshold function that decide how to predict which diseases to
adopt from the similar patients.
The threshold function parameters are decided by trial and error for every method.
Problem Transformation method

Label Powerset method

Distance function ∈ [Euclidean, Jaccard, Pearson]

k parameter ∈ [1, 3, 5, 7, 10]

Threshold function ∈ [1, 2]

A rule of thumb for choosing the value of k is said to be evaluated starting from
one to the square root of the number of observations.[17] Furthermore, keeping the
value of k odd, prevents having a tie between classes when classifying. This is too
computationally expensive, and the label power set will become too big, so using
trial and error it is decided to have a maximum k of ten.
The threshold function used in the Label Powerset method decides which diseases
to use as prediction. The label sets for the k neighbors are combined to one large
set, and the diseases included in the prediction are the ones that occur at least
x times in the combined set, where x equals the threshold. If the K-parameter
equals 1, the entire label set of the nearest neighbor is used. If the threshold func-
tion equals 1, the unique combination of the k nearest neighbors’ diseases is used
as the prediction.

Binary Relevance method

Distance function ∈ [Euclidean]

k parameter ∈ [1, 3, 5, 7, 10, 12, 15, 20, 25, 30, 35, 40]

Threshold function ∈ [0.3, 0.4, 0.5]

The distance function available in the used package is limited to the Euclidean
distance. Because of this, more k parameters are added as opposed to the Label
Powerset method, making a grid search according to the rule of thumb.[17]
The threshold function used in the Binary Relevance Method decides which dis-
eases to include in the prediction. For every label, the algorithm decides the prob-
ability of it being fitting to the model. A disease is included in the prediction if
the probability is at least equal to x, where x equals the threshold.
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Algorithm Adaptation method

Distance function ∈ [Euclidean]

k parameter ∈ [1, 3, 5, 7, 10, 12, 15, 20, 25, 30, 35, 40]

Threshold function ∈ [0.1, 0.2, 0.25, 0.3, 0.35]

Like in the Binary Relevance method, only the Euclidean distance is available. The Bi-
nary Relevance method is a computational expensive method, since a chain of classifiers
is used. The Algorithm Adaptation method on the other hand is less computational
costly, and so an extra number of threshold parameters are tested.
Next to the parameters mentioned above, there is a parameter s, which controls the
strength of the uniform prior. This smoothing parameter s is set to 1, which yields the
Laplace smoothing.
The threshold function used in the Algorithm Adaptation Method decides which dis-
eases to include in the prediction. For every label, the algorithm decides the probability
of it being fitting to the model. A disease is included in the prediction if the probability
is at least equal to x, where x equals the threshold.

4.2.0.2 Random Forest

The Random Forest algorithm uses two parameters. Namely, the number of trees to
grow in every forest; the Ntree parameter and the number of explanatory variables to
sample as a possible split; the Mtry parameter.
In general the rule of thumb for the Ntree parameters is that the more trees are grown,
the better the performances. However, this is computationally expensive, and after a
certain number of trees grown, improvement is negligible.[26] Both the Ntree and Mtry
parameters are chosen based on trial and error. The package used to implement the
Random Forest has a default of Mtry =

√
#of eplanatory variables. The other Mtry

parameters surrounding it are explored.
Problem Transformation method

Label Powerset method

Ntree parameter ∈ [250, 500, 1000]

Mtry parameter ∈ [15,
√

#explanatory variables, 30, 60, 100]

Binary Relevance method

Ntree parameter ∈ [250]

Mtry parameter ∈ [15,
√

#explanatory variables, 30, 60, 100]

Treshold function ∈ [0.3, 0.4, 0.5]

The Ntree parameter is set only to 250 for computational reasons and the fact that
the Binary Relevance method uses a chain of classifiers. This means 250 trees are
grown for every possible label.
The threshold function used in the Algorithm Adaptation Method decides which
diseases to include in the prediction. For every label, the algorithm decides the
probability of it being fitting to the model. A disease is included in the prediction
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if the probability is at least equal to x, where x equals the threshold. The possi-
bilities for this parameters are based on trial and error.

Algorithm Adaptation method

Ntree parameter ∈ [100, 250, 500, 1000]

Mtry parameter ∈ [15,
√

#explanatory variables, 30, 60, 100, 250, 500]

The Algorithm Adaptation method is not computational expensive and so an extra
number of parameters to test have been added.

4.2.0.3 Support Vector Machine

The threshold function parameters are decided by trial and error for every method. In
case of the Linear Kernel function, no γ parameter is needed.

Problem Transformation method

Label Powerset method

Kernel function ∈ [Linear,Radial]

γ parameter ∈ [2−#explanatory variables,

2−
#explanatory variables

2 , , 2−100, 2−10,

1

#explanatory variables
,

1
#explanatory variables/2

, 1]

Cost parameter ∈ [0.1, 1, 10, 100, 500, 1000, 10000]

It is found that trying exponentially growing sequences for the Cost and γ parameter
is a practical method to identify good parameters.[18]

Binary Relevance method

Kernel function ∈ [Linear,Radial]

γ parameter ∈ 2−10,
1

#explanatory variables
,

1
#explanatory variables/2

, 1]

Cost parameter ∈ [0.1, 1, 10, 100, 500, 1000, 10000]

Threshold function ∈ [0.3, 0.4, 0.5]

The Binary Relevance method is very computationally expensive, for this reason, less
possibilities are tested for the γ parameter.
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Algorithm Adaptation method

Kernel function ∈ [Linear,Radial]

γ parameter ∈ 2−10,
1

#explanatory variables
,

1
#explanatory variables/2

, 1]

Cost parameter ∈ [0.1, 1, 10, 25, 50, 100, 500, 1000, 10000]

Threshold function ∈ [0.1, 0.2, 0.3]

Since not all γ parameters used in the Label Powerset method are eligible in the
implementation of the Algorithm Adaptation method, only the valid ones are used.
For this reason, an extra number of Cost parameter possibilities are added to review.
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5 Results and evaluation

5.1 Parameter settings

All results resulting from the 5-fold cross validation are stated in appendix B. For the
optimized F-measures, the two best parameter settings per algorithm and per method
are distinguished. The model with these settings was trained on the training set and
validated on the validation set. Finally, the combined train and validation set were used
to train, and this model was tested on the test set. All results are shown in appendix
C. The chosen parameter settings result in 18 different models, that are stated in table
16. It shows that the parameter pairs differ enormously depending on the model.

Table 16: Final model parame-
ter settings

Parameter setting

Distance function k Threshold

KNN LP 1 Euclidean 1

KNN LP 2 Jaccard 1

KNN BR 1 Euclidean 7 0.4

KNN BR 2 Euclidean 12 0.4

KNN AA 1 Euclidean 15 0.25

KNN AA 2 Euclidean 25 0.25

Ntree Mtry Threshold

RF LP 1 500 60

RF LP 2 1000 30

RF BR 1 250
√

#explanatory variables 0.3

RF BR 2 250 60 0.4

RF AA 1 100 500

RF AA 2 500 500

Kernel γ Cost Threshold

SVM LP 1 Radial 2−10 100

SVM LP 2 Radial 1/# explanatory variables 100

SVM BR 1 Radial 1/# explanatory variables/2
10 0.3

SVM BR 2 Radial 2−10 100 0.3

SVM AA 1 Radial 2−10 10 0.2

SVM AA 2 Radial 1/# explanatory variables/2
10 0.2

Table 17: Final F-measures per-
formances

5-fold CV set Validation set Test set Percentage

Benchmark 1 5.87 5.9 5.91 23.2

Benchmark 2 3.32 3.37 3.37 64.19

Benchmark 3 5.87 5.84 5.94 22.97

Benchmark 4 5.83 5.9 5.82 8.58

KNN LP 1 11.53 9.57 9.48 32.6

KNN LP 2 13.84 10.87 11.12 37.12

KNN BR 1 14.44 12.83 12.89 35.37

KNN BR 2 14.18 14.78 13.58 36.83

KNN AA 1 11.77 11.53 11.37 40.9

KNN AA 2 11.79 11.29 10.46 42.21

RF LP 1 17.44 13.96 13.48 42.63

RF LP 2 16.53 16.14 14.22 45.27

RF BR 1 19.64 16.19 16.73 44.69

RF BR 2 19.66 16.99 16.71 46.29

RF AA 1 14.57 9.49 11.06 36.1

RF AA 2 15.11 9.66 11.7 36.24

SVM LP 1 15.61 13.13 16.86 43.23

SVM LP 2 15.34 14.74 17.89 43.67

SVM BR 1 19.27 19.85 17.7 47.16

SVM BR 2 19.41 20.65 18.67 47.6

SVM AA 1 18.44 17.96 15.32 42.07

SVM AA 2 18.41 18.48 15.72 41.63

5.2 Performance

Table 17 shows the F-measures of all chosen models. Furthermore, it shows the per-
centages of cases in which at least one disease is predicted correctly for the test set.
It shows that there are quite obvious differences between performances in different
models, even though they have all been optimized.

Figure 14 illustrates the F-measures of these models and the benchmark, sorted by
algorithm. The blue shapes represent the 5-Fold cross validation set, red are the per-
formances for the validation set and orange represents the F-measures for the test
set of a given model. The square shapes represent a model using the Label Powerset
method, the circles have a Binary Relevance method as underlying model method and
the crosses represent that Algorithm Adaptation methods are used.

Figure 15 shows the same measures, but sorted by method. The colors represent the
datasets in the same way as in figure 14. But now circles represent a model using the
k-Nearest Neighbors algorithm, squares represent the Random Forest and crosses imply
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a Support Vector Machine being used.

When comparing the F-measures between the different sets in table 17, and figures
14 and 15 it seems that all models of the Random Forest are over- or under- fitting, as
do all Label Powerset methods, and so are not reliable.

From both table 17 and figures 14 and 15, it is clear that all models outperform the
four benchmarks, where all Benchmarks outperform Benchmark 2. Furthermore, when
comparing the algorithms, from figure 14 it seems that the k-Nearest Neighbor is out-
performed by the Random Forest, and the Random Forest on his turn is outperformed
by the Support Vector Machine.
From figure 15 a comparison between the methods can be deducted. This comparison
is less clear, but it seems that the Binary Relevance method on average performs best,
followed by the Algorithm Adaptation method and finally the Label Powerset Method.
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Fig. 14: Final F-measure performances sorted by algorithm

Fig. 15: Final F-measure performances sorted by method
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5.3 Reliability of the models

To test the hypothesis of reliability of the model performances, confidence intervals can
be made. The confidence interval shows what the performance measure is in 95% of the
cases. Now, using bootstrapping, a sample of 500 F-measures of patients are drawn and
the mean F-measure is calculated. This process is repeated 1,000 times. This process
results in 1,000 mean F-measure values for which the 2.5% and 97.5% quantiles result
in the confidence intervals described in table 18

Table 18: Confidence intervals of the models
95% Confidence interval LJ 95% Confidence interval LJ 95% Confidence interval

KNN LP 1 [7.71, 11.49] RF LP 1 [11.28, 15.75] SVM LP 1 [12.91, 19.35]

KNN LP 2 [9.08, 13.17] RF LP 2 [11.5, 16.85] SVM LP 2 [13.45, 20.67]

KNN BR 1 [10.43, 15.79] RF BR 1 [12.33, 18.86] SVM BR 1 [14.83, 21.03]

KNN BR 2 [10.37, 16.95] RF BR 2 [12.6,19.36] SVM BR 2 [14.4, 20.78]

KNN AA 1 [6.98, 12.32] RF AA 1 [8.68, 13.19] SVM AA 1 [12.42, 18.53]

KNN AA 2 [8.24, 12.76] RF AA 2 [9.25, 13.98] SVM AA 2 [12.79, 19.0]

The confidence intervals mentioned in table 18 support the expectations based on
the visualizations above. The k-Nearest Neigbor models based on the Label Powerset
method are not deemed reliable, as well as all Random Forest Models, except for the
Label Powerset model 2. So even though the parameters are optimized based on the
5-Fold cross validation, the models still overfit. The five models will be disregarded,
because not only are the performance measures found, deemed unreliable, they do not
outperform other models either.

The fact that the Label Powerset is over- or under-fits is not surprising. Many of
the label sets necessary in the classification of both the validation and test set, are
unknown to the model at the moment of training. The fact that the Random Forest
over- or under- fits is surprising, although every machine learning algorithm with high
complexity can over- or under-fit. But in general an ensemble method such as the
Random Forest will deduce the likelihood of this happening.

5.4 Model Comparison

After the reliability check in subsection 5.3, 11 models are left to compare to each
other as well as to the four benchmarks. Since the same group of patients is used, for
all models, the paired T-test can be used. From this test p-values can be retrieved, that
indicate whether there is indeed a significant difference between the F-measure of the
different models. If the p-value is smaller than 0.05, the null hypothesis is rejected and
thus the models are found to be significantly different. The p-values for every combi-
nation are found in appendix C.
As expected, there is indeed a significant difference between the models and the bench-
marks. All models outperform the benchmarks, and as expected, benchmark 2 is sig-
nificantly worse than the other benchmarks. But no significant difference was found
between benchmarks 1, 3 and 4.
The SVM Binary Relevance models significantly outperform all other models, except



40

for the Support Vector Machine models with Algorithm Adaption underlying methods.
The SVM BR, model 1 does outperform the SVM AA, model 2. There is no significant
difference between the SVM Binary Relevance models themselves.
The Algorithm Adaptation method in combination with the Support Vector Machine
performs better than the k-Nearest Neighbors Algorithm Adaptation method and in
most cases with the Binary Relevance method as well. The only one that is not sig-
nificantly better is the SVM AA, model 1 in comparison to the KNN BR, model 2.
They do however, not outperform the Random Forest with Label Powerset method
significantly.
There is no significant difference between the performance measures of the Label Pow-
erset methods, regardless of the underlying algorithm. There are significant difference
for both the Algorithm Adaptation and Binary Relevance Methods, depending on the
algorithm.
The Binary Relevance Method, on average, outperforms the other methods signifi-
cantly, as expected and deducted from the figures.

Overall, the F-measure values found are not high, and so none of the models seems to
work very well.
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6 Conclusion

As a conclusion there is not one model that outperforms all other significantly. In fact,
all F-measures are low, and none perform well. But the Support Vector Machine with
the Binary Relevance method; model 1, overall performs best. As parameter settings
this model uses a Radial kernel, a γ-parameter of 2−10, a cost parameter of 10 and a
threshold of 0.3.

Although, looking at the F-measures of the model, this model does not perform well
with a 95% confidence interval of the F-measure of [14.83, 21.03]. For the test set it
does predict at least one of the autoimmune diseases correctly in 47.16% of the cases.
This means that for almost half of the patients at least one disease can be diagnosed
immediately, in stead of having to wait multiple years and visit several doctors before
getting a diagnosis. Benchmark 2 does retain an even higher percentage of cases of
64.19% in which at least one autoimmune disease is predicted correctly. But the F-
measure is a significantly lower. This is because in Benchmark 2, only one disease is
predicted, the most common autoimmune disease.
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7 Discussion

The final performance measures found in this research were not high. This could be
due to a number of reasons.
The first is the fact that many autoimmune diseases have similar characteristics, which
makes diagnosing very difficult, and so predicting based on machine learning as well.
Furthermore, As mentioned before the severity and the and the clinical picture strongly
depend on the patient, which makes an autoimmune disease different for every person.

Other reasons might have to do with design decisions taken in this research. For ex-
ample, including the Miscellaneous category in the trackable type AD, might make
the model unnecessarily complex. Furthermore, combining different names of track-
able type Condition and Symptom into one, might have removed important specifics
for autoimmune diseases. Lastly, the decision was made to not take regular suffering
from certain symptoms and conditions into account. This means, if a user logged hav-
ing a headache in the application ones, it is handled the same as when a user has
headaches every day.

For further research one could try and deviate from these design choices. Improvements
are possible in a number of different ways as well.
Gathering and saving the data could be done in a more structured way. In stead of
users being allowed to freely type their names, there could be a drop down window.
In this case, the data would have been formatted in the same, clear, structured and
concise way.
Furthermore, medical professionals could be involved, filtering out the side effects from
treatments and other conditions. This means symptoms due to treatments or other
conditions are removed and only symptoms due to the autoimmune disease remain.

Feature engineering or adding more features could also help boost performances. It
was found that the gender, age and country of residence were found to be beyond the
scope of this research, but they could add value.
If a patient has already been diagnosed with one autoimmune disease, the co-occurrence
of other diseases is warranted. The dataset shows that the combination of fibromyalgia
and chronic fatigue syndrome occurs very often, as well as fibromyalgia in combination
with arthritis.
It has also been shown that some autoimmune diseases are more common in certain
ethnic groups.[2] This could be added as an explanatory variable.
The same reasoning goes for an explanatory variable of having someone in a patients
family with an autoimmune disease. Some autoimmune diseases are stated to run in
families. Not every family member will necessarily have the disease, but they inherit a
susceptibility to an Autoimmune condition.[2]

The kNN might not have been a good choice because of the dimensionality. With
so many dimensions any data point is actually closer to the border of the feature space
than to any other point. If a larger dataset is available, this problem would be over-
come. Another possible solution would be to use feature selection, and so reduce the
dimensionality. As shown in figure 7, B symptoms occur across all autoimmune diseases
and so a medical background would be useful in feature selection, to disregard a set of
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symptoms.

One could also look at other classifier algorithms. In this research three well known,
and often implemented algorithms have been used. But the use of Bayesian Networks
could also boost performances.[13] It has been said that they are one of the most most
successful tools for medical diagnostics.[24]

Finally, a last possible method could be the use of ensemble methods. Each classifier in
an ensemble method is based on a Problem Transformation- or Algorithm Adaptation
method or a combination of both.[36][32] They could also combine algorithms, and use
either boosting or bagging to improve on performances.
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A Appendix

Conditions are changed in symptoms if the trackable name contains any of the following
words in any form:

– Ache
– Acne
– Activity
– Ankle
– Anxiety
– Arm
– Back
– Bloating
– Burn
– Cough
– Cramp
– Deficiency
– Depression
– Diarrhea

– Dizziness
– Ear
– Eye
– Face
– Fatigue
– Fear
– Fever
– Finger
– Fog
– Foot
– Hair
– Hand
– Head
– Hunger

– Insomnia
– Itch
– Joint
– Knee
– Leg
– Migraine
– Mood
– Nausea
– Neck
– Numb
– Pain
– Rash
– Sensitivity
– Skin

– Sore

– Spasm

– Stiffness

– Stress

– Sweat

– Swelling

– Tooth

– Ulcer

– Upset

– Urinating

– Weak
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B Appendix

Table 19: KNN Label Powerset, performance measures 5-fold-cross validation
5-fold-cross validation

Performance measures

Distance function k Min Occurrence Precision Recall F-measure Percentage

Euclidean 1 0.1121 0.1198 0.1153 33.1241

Euclidean 3 1 0.0063 0.0101 0.0077 22.2633

Euclidean 3 2 6e-04 0.0062 0.0012 4.0746

Euclidean 5 1 0.0416 0.0417 0.0415 42.0984

Euclidean 5 2 0.0032 0.008 0.0046 18.1884

Euclidean 7 1 0.0989 0.0904 0.0941 54.8999

Euclidean 7 2 0.012 0.0161 0.0137 32.5426

Euclidean 10 1 0.1022 0.0954 0.0986 66.4406

Euclidean 10 2 0.0473 0.0468 0.0469 47.2862

Jaccard 1 0.1388 0.1382 0.1384 39.4754

Jaccard 3 1 0.0116 0.0152 0.0131 29.436

Jaccard 3 2 0.0011 0.007 0.0019 7.1289

Jaccard 5 1 0.066 0.057 0.0611 49.5647

Jaccard 5 2 0.0063 0.0106 0.0079 24.9756

Jaccard 7 1 0.1248 0.1081 0.1158 61.2997

Jaccard 7 2 0.0263 0.0234 0.0246 39.2843

Jaccard 10 1 0.1204 0.1079 0.1137 71.8705

Jaccard 10 2 0.0841 0.0662 0.0739 54.9477

Pearson 1 0.0965 0.1 0.0976 29.973

Pearson 3 1 0.0044 0.0089 0.0058 18.0425

Pearson 3 2 3e-04 0.0043 6e-04 2.9105

Pearson 5 1 0.0283 0.0344 0.031 37.9771

Pearson 5 2 0.0019 0.0068 0.003 13.096

Pearson 7 1 0.0746 0.0815 0.0775 50.3422

Pearson 7 2 0.0075 0.0125 0.0093 25.2685

Pearson 10 1 0.0876 0.0862 0.0856 63.4834

Pearson 10 2 0.0321 0.0405 0.0358 41.0778
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Table 20: KNN Binary Relevance, performance measures 5-fold-cross validation
5-fold-cross validation

Performance measures

Distance function k Threshold Precision Recall F-measure Percentage

Euclidean 1 0.3 0.1265 0.1309 0.1285 35.1588

Euclidean 1 0.4 0.1331 0.1319 0.1322 32.3451

Euclidean 1 0.5 0.1513 0.1247 0.1364 31.6184

Euclidean 3 0.3 0.1266 0.1309 0.1285 35.3527

Euclidean 3 0.4 0.1316 0.1306 0.1308 32.248

Euclidean 3 0.5 0.1515 0.1252 0.1368 31.6669

Euclidean 5 0.3 0.1271 0.1317 0.1292 35.3529

Euclidean 5 0.4 0.1336 0.1321 0.1325 32.6361

Euclidean 5 0.5 0.1522 0.1256 0.1373 31.7638

Euclidean 7 0.3 0.1475 0.1335 0.1394 34.9653

Euclidean 7 0.4 0.1694 0.1297 0.1444 32.7832

Euclidean 7 0.5 0.1641 0.1184 0.1363 32.1036

Euclidean 10 0.3 0.1589 0.1299 0.1415 35.7896

Euclidean 10 0.4 0.1607 0.1202 0.1356 33.8014

Euclidean 10 0.5 0.1553 0.1093 0.1278 32.9773

Euclidean 12 0.3 0.1628 0.1274 0.1416 36.2263

Euclidean 12 0.4 0.1735 0.1225 0.1418 35.0138

Euclidean 12 0.5 0.1485 0.1091 0.125 33.5603

Euclidean 15 0.3 0.1583 0.1264 0.1383 36.5159

Euclidean 15 0.4 0.1474 0.12 0.1307 35.5466

Euclidean 15 0.5 0.1485 0.1077 0.1235 34.0931

Euclidean 20 0.3 0.1341 0.1238 0.1283 37.2923

Euclidean 20 0.4 0.1464 0.1185 0.1296 36.2746

Euclidean 20 0.5 0.1637 0.1093 0.1296 35.2568

Euclidean 25 0.3 0.1434 0.1253 0.1333 38.6518

Euclidean 25 0.4 0.1652 0.12 0.1381 37.1484

Euclidean 25 0.5 0.1704 0.1093 0.1315 36.033

Euclidean 30 0.3 0.1503 0.1229 0.135 38.7974

Euclidean 30 0.4 0.1641 0.1163 0.1344 37.0513

Euclidean 30 0.5 0.1544 0.1058 0.1246 35.9854

Euclidean 35 0.3 0.1558 0.1187 0.1342 38.6523

Euclidean 35 0.4 0.1757 0.1157 0.1387 37.4891

Euclidean 35 0.5 0.1515 0.1053 0.1232 35.9859

Euclidean 40 0.3 0.1683 0.1164 0.1369 38.6518

Euclidean 40 0.4 0.1848 0.113 0.1393 37.441

Euclidean 40 0.5 0.1497 0.1047 0.1224 36.665
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Table 21: KNN Algorithm Adaptation, performance measures 5-fold-cross vali-
dation

5-fold-cross validation

Performance measures

Distance function k Threshold Precision Recall F-measure Percentage

Euclidean 1 0.1 0.0867 0.0756 0.0807 58.9698

Euclidean 1 0.2 0.06 0.0834 0.0696 41.9009

Euclidean 1 0.25 0.0296 0.0687 0.0407 36.0834

Euclidean 1 0.3 0.0263 0.0656 0.0372 32.3948

Euclidean 1 0.35 0.0277 0.0656 0.0389 32.4443

Euclidean 3 0.1 0.0712 0.0771 0.0735 62.5107

Euclidean 3 0.2 0.1073 0.0785 0.0893 40.4934

Euclidean 3 0.25 0.1223 0.0864 0.1001 37.1022

Euclidean 3 0.3 0.1167 0.0849 0.097 37.0534

Euclidean 3 0.35 0.1024 0.0802 0.0877 34.6799

Euclidean 5 0.1 0.0924 0.0812 0.0857 59.3134

Euclidean 5 0.2 0.1163 0.0999 0.1072 42.2443

Euclidean 5 0.25 0.1128 0.0922 0.1011 38.7512

Euclidean 5 0.3 0.1175 0.0861 0.0991 36.7609

Euclidean 5 0.35 0.1187 0.081 0.0949 35.1135

Euclidean 7 0.1 0.0866 0.084 0.085 59.8452

Euclidean 7 0.2 0.119 0.0985 0.1069 42.8235

Euclidean 7 0.25 0.116 0.0974 0.1051 39.428

Euclidean 7 0.3 0.1162 0.0965 0.1036 36.5178

Euclidean 7 0.35 0.109 0.0845 0.0926 35.1135

Euclidean 10 0.1 0.0862 0.0825 0.084 60.2793

Euclidean 10 0.2 0.1107 0.0963 0.1014 44.4745

Euclidean 10 0.25 0.1249 0.0916 0.1035 38.4095

Euclidean 10 0.3 0.1251 0.0905 0.1028 37.0055

Euclidean 10 0.35 0.1192 0.0858 0.0973 35.9378

Euclidean 12 0.1 0.0886 0.0868 0.0876 59.7472

Euclidean 12 0.2 0.1215 0.0994 0.1071 45.0546

Euclidean 12 0.25 0.1269 0.0959 0.1077 39.5746

Euclidean 12 0.3 0.1449 0.093 0.1117 38.2653

Euclidean 12 0.35 0.1341 0.0861 0.1037 34.0953

Euclidean 15 0.1 0.083 0.0862 0.0842 58.8256

Euclidean 15 0.2 0.1362 0.0947 0.1108 42.7768

Euclidean 15 0.25 0.1439 0.1009 0.1177 41.2736

Euclidean 15 0.3 0.1497 0.0931 0.1137 37.5369

Euclidean 15 0.35 0.1247 0.0853 0.0989 36.1332

Euclidean 20 0.1 0.088 0.09 0.0887 59.0195

Euclidean 20 0.2 0.1326 0.1041 0.1152 44.6182

Euclidean 20 0.25 0.1424 0.0995 0.1165 41.03

Euclidean 20 0.3 0.1379 0.0907 0.1077 38.5556

Euclidean 20 0.35 0.1206 0.0837 0.0955 35.162

Euclidean 25 0.1 0.0876 0.0888 0.088 58.7278

Euclidean 25 0.2 0.1317 0.0987 0.1121 45.7828

Euclidean 25 0.25 0.142 0.1024 0.1179 41.3691

Euclidean 25 0.3 0.1525 0.0907 0.1132 38.1664

Euclidean 25 0.35 0.149 0.0884 0.1099 37.1519

Euclidean 30 0.1 0.0943 0.0896 0.0913 59.1145

Euclidean 30 0.2 0.1423 0.0961 0.1138 44.4754

Euclidean 30 0.25 0.1397 0.0922 0.1105 40.2071

Euclidean 30 0.3 0.1523 0.0906 0.1122 37.9736

Euclidean 30 0.35 0.1453 0.0844 0.1043 35.6925

Euclidean 35 0.1 0.0921 0.0909 0.0913 57.6601

Euclidean 35 0.2 0.143 0.0963 0.1136 43.8441

Euclidean 35 0.25 0.1572 0.0947 0.1167 39.7216

Euclidean 35 0.3 0.1446 0.0879 0.1078 37.2473

Euclidean 35 0.35 0.1414 0.0871 0.1065 36.1782

Euclidean 40 0.1 0.0944 0.0903 0.0917 57.6139

Euclidean 40 0.2 0.1319 0.0973 0.1108 43.9424

Euclidean 40 0.25 0.1461 0.0977 0.1161 41.2722

Euclidean 40 0.3 0.1341 0.0897 0.1041 38.0214

Euclidean 40 0.35 0.1217 0.0855 0.097 35.9856
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Table 22: RF Label Powerset, performance measures 5-fold-cross validation
5-fold-cross validation

Performance measures

Ntree Mtry Precision Recall F-measure Percentage

250 15 0.1877 0.126 0.1505 41.9992

250
√

# explanatory variables 0.2076 0.1333 0.1607 42.7965

250 30 0.2119 0.138 0.1657 42.4757

250 60 0.1895 0.1457 0.1647 43.1547

250 100 0.1815 0.1383 0.1567 42.1079

500 15 0.1841 0.1248 0.1484 41.6116

500
√

# explanatory variables 0.2072 0.1314 0.1598 42.457

500 30 0.2005 0.14 0.1647 42.3794

500 60 0.2151 0.1471 0.1744 43.0064

500 100 0.1926 0.1414 0.1623 42.561

1000 15 0.167 0.1254 0.1415 41.9992

1000
√

# explanatory variables 0.1953 0.1335 0.1578 42.6516

1000 30 0.205 0.1388 0.1653 42.8176

1000 60 0.1881 0.1433 0.1625 42.6957

1000 100 0.1834 0.1411 0.1591 42.601

Table 23: RF Binary Relevance, performance measures 5-fold-cross validation
5-fold-cross validation

Performance measures

Ntree Mtry Threshold Precision Recall F-measure Percentage

250 15 0.3 0.2746 0.1476 0.19 45.976

250 15 0.4 0.2827 0.1359 0.182 44.569

250 15 0.5 0.2573 0.129 0.1709 43.6466

250
√

# explanatory variables 0.3 0.2811 0.1518 0.1964 46.0243

250
√

# explanatory variables 0.4 0.2989 0.1475 0.1962 44.9099

250
√

# explanatory variables 0.5 0.2752 0.1362 0.1816 43.9874

250 30 0.3 0.2464 0.1583 0.1915 46.1221

250 30 0.4 0.2655 0.152 0.1922 45.3459

250 30 0.5 0.2847 0.145 0.1911 45.2491

250 60 0.3 0.2305 0.1611 0.1881 46.6549

250 60 0.4 0.2516 0.1629 0.1966 45.5891

250 60 0.5 0.2357 0.148 0.181 44.7153

250 100 0.3 0.2305 0.1667 0.1928 46.8991

250 100 0.4 0.2422 0.1626 0.1931 45.2981

250 100 0.5 0.242 0.152 0.1852 43.7468
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Table 24: RF Algorithm Adaptation, performances measures 5-fold-cross valida-
tion

5-fold-cross validation

Performance measures

Ntree Mtry Precision Recall F-measure Percentage

100 15 0.1526 0.0791 0.1032 34.0943

100
√

# explanatory variables 0.1634 0.0911 0.1162 35.3072

100 30 0.1579 0.0954 0.1179 36.4727

100 60 0.1948 0.1026 0.1341 37.0046

100 100 0.2268 0.1062 0.1441 37.1484

100 250 0.1849 0.1105 0.1371 37.8779

100 500 0.2102 0.1116 0.1457 37.1983

250 15 0.1553 0.0802 0.1049 34.095

250
√

# explanatory variables 0.1498 0.0902 0.1124 35.5985

250 30 0.1467 0.0933 0.1137 36.083

250 60 0.1855 0.1006 0.1294 36.7635

250 100 0.2011 0.1043 0.1371 37.3922

250 250 0.2132 0.1084 0.1433 37.5365

250 500 0.2273 0.1115 0.1492 37.5867

500 15 0.1429 0.0787 0.1002 33.8525

500
√

# explanatory variables 0.1575 0.0912 0.1148 35.6958

500 30 0.18 0.0973 0.1256 36.7621

500 60 0.1968 0.101 0.1327 37.5867

500 100 0.2074 0.1052 0.1391 37.5379

500 250 0.2054 0.1087 0.1419 37.2956

500 500 0.2327 0.1125 0.1511 38.0228

1000 15 0.1374 0.0789 0.0987 34.0458

1000
√

# explanatory variables 0.1545 0.0895 0.1128 35.5987

1000 30 0.1572 0.0962 0.119 36.7619

1000 60 0.1871 0.0996 0.129 37.2466

1000 100 0.1928 0.1028 0.1339 37.1007

1000 250 0.2063 0.1102 0.1435 37.8282

1000 500 0.2166 0.1095 0.145 37.5862
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Table 25: SVM Label Powerset, performance measures 5-fold-cross validation
5-fold-cross validation

Performance measures

Kernel γ Cost Precision Recall F-measure Percentage

Linear 0.1 0.2087 0.1187 0.1511 40.3051

Linear 1 0.1601 0.1427 0.1509 40.9791

Linear 10 0.1309 0.1248 0.1278 38.1202

Linear 100 0.1251 0.123 0.124 37.4394

Linear 500 0.1283 0.125 0.1266 37.8275

Linear 1000 0.1295 0.1262 0.1278 38.4095

Linear 10000 0.128 0.1248 0.1264 38.0704

Radial 2−# explanatory variables 0.1 0.0134 0.0588 0.0218 34.1424

Radial 2# explanatory variables

/2 0.1 0.0134 0.0588 0.0218 34.1424

Radial 2−100 0.1 0.0134 0.0588 0.0218 34.1424

Radial 2−10 0.1 0.0134 0.0588 0.0218 34.1424

Radial 1/# explanatory variables 0.1 0.0134 0.0588 0.0218 34.1424

Radial 1/# explanatory variables/2
0.1 0.0134 0.0588 0.0218 34.1424

Radial 1 0.1 0.0134 0.0588 0.0218 34.1424

Radial 2−# explanatory variables 1 0.0134 0.0588 0.0218 34.1424

Radial 2# explanatory variables

/2 1 0.0134 0.0588 0.0218 34.1424

Radial 2−100 1 0.0134 0.0588 0.0218 34.1424

Radial 2−10 1 0.0134 0.0588 0.0218 34.1424

Radial 1/# explanatory variables 1 0.0161 0.0602 0.0251 34.288

Radial 1/# explanatory variables/2
1 0.0256 0.0669 0.0365 35.7422

Radial 1 1 0.1144 0.0709 0.0839 35.5495

Radial 2−# explanatory variables 10 0.0134 0.0588 0.0218 34.1424

Radial 2# explanatory variables

/2 10 0.0134 0.0588 0.0218 34.1424

Radial 2−100 10 0.0134 0.0588 0.0218 34.1424

Radial 2−10 10 0.0292 0.0726 0.0417 37.1995

Radial 1/# explanatory variables 10 0.0804 0.0844 0.0796 38.1701

Radial 1/# explanatory variables/2
10 0.1834 0.1121 0.139 39.8208

Radial 1 10 0.1462 0.0774 0.0997 36.5206

Radial 2−# explanatory variables 100 0.0134 0.0588 0.0218 34.1424

Radial 2# explanatory variables

/2 100 0.0134 0.0588 0.0218 34.1424

Radial 2−100 100 0.0134 0.0588 0.0218 34.1424

Radial 2−10 100 0.1832 0.1367 0.1561 41.1761

Radial 1/# explanatory variables 100 0.1719 0.1386 0.1534 40.7368

Radial 1/# explanatory variables/2
100 0.1657 0.1422 0.1529 40.9788

Radial 1 100 0.1462 0.0774 0.0997 36.5206

Radial 2−# explanatory variables 500 0.0134 0.0588 0.0218 34.1424

Radial 2# explanatory variables

/2 500 0.0134 0.0588 0.0218 34.1424

Radial 2−100 500 0.0134 0.0588 0.0218 34.1424

Radial 2−10 500 0.1559 0.1408 0.1479 40.7851

Radial 1/# explanatory variables 500 0.1503 0.141 0.1455 40.0129

Radial 1/# explanatory variables/2
500 0.1395 0.1334 0.1364 39.3319

Radial 1 500 0.1462 0.0774 0.0997 36.5206

Radial 2−# explanatory variables 1000 0.0134 0.0588 0.0218 34.1424

Radial 2# explanatory variables

/2 1000 0.0134 0.0588 0.0218 34.1424

Radial 2−100 1000 0.0134 0.0588 0.0218 34.1424

Radial 2−10 1000 0.1512 0.1415 0.1461 40.4005

Radial 1/# explanatory variables 1000 0.1403 0.1342 0.1372 39.4297

Radial 1/# explanatory variables/2
1000 0.1346 0.1277 0.131 38.1202

Radial 1 1000 0.1462 0.0774 0.0997 36.5206

Radial 2−# explanatory variables 10000 0.0134 0.0588 0.0218 34.1424

Radial 2# explanatory variables

/2 10000 0.0134 0.0588 0.0218 34.1424

Radial 2−100 10000 0.0134 0.0588 0.0218 34.1424

Radial 2−10 10000 0.1268 0.1243 0.1255 38.2173

Radial 1/# explanatory variables 10000 0.1357 0.127 0.1309 37.9734

Radial 1/# explanatory variables/2
10000 0.1307 0.1272 0.1288 38.4093

Radial 1 10000 0.1462 0.0774 0.0997 36.5206



54

Table 26: SVM Binary Relevance 1/2, performance measures 5-fold-cross vali-
dation

5-fold-cross validation

Performance measures

Kernel γ Cost Threshold Precision Recall F-measure Percentage

Linear 0.1 0.3 0.2263 0.1633 0.1892 47.1894

Linear 0.1 0.4 0.2413 0.1606 0.1922 46.0269

Linear 0.1 0.5 0.2473 0.1527 0.1874 44.765

Linear 1 0.3 0.2119 0.1568 0.18 45.7352

Linear 1 0.4 0.2252 0.1513 0.1803 44.3286

Linear 1 0.5 0.237 0.1428 0.1777 42.9701

Linear 10 0.3 0.1628 0.1308 0.1449 42.1493

Linear 10 0.4 0.185 0.1224 0.1465 40.7898

Linear 10 0.5 0.1983 0.1123 0.1422 39.5741

Linear 100 0.3 0.1563 0.1124 0.1299 40.886

Linear 100 0.4 0.1677 0.1042 0.1284 39.9153

Linear 100 0.5 0.1801 0.0955 0.1234 38.4604

Linear 500 0.3 0.1681 0.103 0.125 38.5078

Linear 500 0.4 0.1549 0.0974 0.1186 38.5087

Linear 500 0.5 0.1609 0.0933 0.1164 37.9265

Linear 1000 0.3 0.1737 0.104 0.1275 38.653

Linear 1000 0.4 0.1427 0.0966 0.114 38.6051

Linear 1000 0.5 0.1461 0.0901 0.1086 37.8303

Radial 2−10 0.1 0.3 0.2338 0.1628 0.191 47.2867

Radial 2−10 0.1 0.4 0.2316 0.1541 0.1839 46.1231

Radial 2−10 0.1 0.5 0.246 0.1457 0.1802 44.6677

Radial 1/# explanatory variables 0.1 0.3 0.2252 0.1626 0.1882 47.3836

Radial 1/# explanatory variables 0.1 0.4 0.2383 0.158 0.1889 46.2192

Radial 1/# explanatory variables 0.1 0.5 0.2399 0.1491 0.1824 45.5408

Radial 1/# explanatory variables/2
0.1 0.3 0.2235 0.1673 0.1909 47.9173

Radial 1/# explanatory variables/2
0.1 0.4 0.2339 0.159 0.1886 46.5586

Radial 1/# explanatory variables/2
0.1 0.5 0.2503 0.1518 0.1877 45.5413

Radial 1 0.1 0.3 0.1285 0.0824 0.1002 37.101

Radial 1 0.1 0.4 0.1405 0.0813 0.1023 37.0529

Radial 1 0.1 0.5 0.1643 0.0782 0.1053 36.5686

Radial 2−10 1 0.3 0.2206 0.1635 0.1873 47.4326

Radial 2−10 1 0.4 0.231 0.1601 0.1883 46.7527

Radial 2−10 1 0.5 0.2412 0.1502 0.1836 45.2012

Radial 1/# explanatory variables 1 0.3 0.2241 0.1651 0.1895 47.6746

Radial 1/# explanatory variables 1 0.4 0.2377 0.16 0.1904 46.753

Radial 1/# explanatory variables 1 0.5 0.2463 0.1531 0.1876 45.6376

Radial 1/# explanatory variables/2
1 0.3 0.2227 0.1672 0.1906 48.0144

Radial 1/# explanatory variables/2
1 0.4 0.23 0.159 0.1874 46.4132

Radial 1/# explanatory variables/2
1 0.5 0.2531 0.1551 0.1913 45.7835

Radial 1 1 0.3 0.1492 0.0833 0.1061 37.2952

Radial 1 1 0.4 0.1422 0.08 0.1017 36.908

Radial 1 1 0.5 0.1624 0.0787 0.105 36.5689
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Table 27: SVM Binary Relevance 2/2, performance measures 5-fold-cross vali-
dation

5-fold-cross validation

Performance measures

Kernel γ Cost Threshold Precision Recall F-measure Percentage

Radial 2−10 10 0.3 0.2235 0.1662 0.1902 47.6258

Radial 2−10 10 0.4 0.2345 0.1606 0.1897 46.8498

Radial 2−10 10 0.5 0.248 0.1525 0.1872 45.2988

Radial 1/# explanatory variables 10 0.3 0.2166 0.1678 0.1888 47.8685

Radial 1/# explanatory variables 10 0.4 0.2401 0.1618 0.1922 46.5586

Radial 1/# explanatory variables 10 0.5 0.2509 0.155 0.1902 45.2997

Radial 1/# explanatory variables/2
10 0.3 0.2234 0.17 0.1927 48.1113

Radial 1/# explanatory variables/2
10 0.4 0.2326 0.1639 0.1919 46.2197

Radial 1/# explanatory variables/2
10 0.5 0.2505 0.157 0.1922 45.2505

Radial 1 10 0.3 0.1242 0.0784 0.0948 36.5677

Radial 1 10 0.4 0.1359 0.076 0.0969 36.4225

Radial 1 10 0.5 0.1156 0.0739 0.0896 36.2293

Radial 2−10 100 0.3 0.2371 0.1647 0.1941 47.3831

Radial 2−10 100 0.4 0.2446 0.1581 0.191 46.0743

Radial 2−10 100 0.5 0.242 0.1516 0.1854 44.3767

Radial 1/# explanatory variables 100 0.3 0.2179 0.1659 0.188 47.7213

Radial 1/# explanatory variables 100 0.4 0.2421 0.1568 0.1898 45.1531

Radial 1/# explanatory variables 100 0.5 0.2512 0.149 0.1861 43.9402

Radial 1/# explanatory variables/2
100 0.3 0.2123 0.1594 0.1818 46.4601

Radial 1/# explanatory variables/2
100 0.4 0.2291 0.1579 0.1866 45.7814

Radial 1/# explanatory variables/2
100 0.5 0.238 0.1498 0.183 44.2775

Radial 1 100 0.3 0.1242 0.0784 0.0948 36.5677

Radial 1 100 0.4 0.1359 0.076 0.0969 36.4225

Radial 1 100 0.5 0.1156 0.0739 0.0896 36.2293

Radial 2−10 500 0.3 0.2128 0.1581 0.1812 46.0257

Radial 2−10 500 0.4 0.2228 0.151 0.1795 44.4254

Radial 2−10 500 0.5 0.2306 0.1435 0.1766 43.0182

Radial 1/# explanatory variables 500 0.3 0.1991 0.1575 0.1755 45.6859

Radial 1/# explanatory variables 500 0.4 0.2086 0.1485 0.1723 43.8917

Radial 1/# explanatory variables 500 0.5 0.2127 0.1343 0.1636 42.0965

Radial 1/# explanatory variables/2
500 0.3 0.181 0.1487 0.163 44.4236

Radial 1/# explanatory variables/2
500 0.4 0.1947 0.1426 0.164 43.164

Radial 1/# explanatory variables/2
500 0.5 0.2041 0.1331 0.1597 42.3873

Radial 1 500 0.3 0.1242 0.0784 0.0948 36.5677

Radial 1 500 0.4 0.1359 0.076 0.0969 36.4225

Radial 1 500 0.5 0.1156 0.0739 0.0896 36.2293

Radial 2−10 1000 0.3 0.2018 0.1548 0.1748 45.2509

Radial 2−10 1000 0.4 0.2039 0.148 0.1713 43.99

Radial 2−10 1000 0.5 0.2282 0.1355 0.169 42.6786

Radial 1/# explanatory variables 1000 0.3 0.1832 0.1469 0.1625 44.1825

Radial 1/# explanatory variables 1000 0.4 0.1935 0.1408 0.1621 43.0667

Radial 1/# explanatory variables 1000 0.5 0.1955 0.1272 0.1528 41.1756

Radial 1/# explanatory variables/2
1000 0.3 0.1792 0.1456 0.1603 44.6185

Radial 1/# explanatory variables/2
1000 0.4 0.1955 0.1412 0.1633 43.2119

Radial 1/# explanatory variables/2
1000 0.5 0.2013 0.1268 0.1549 40.9826

Radial 1 1000 0.3 0.1242 0.0784 0.0948 36.5677

Radial 1 1000 0.4 0.1359 0.076 0.0969 36.4225

Radial 1 1000 0.5 0.1156 0.0739 0.0896 36.2293



56

Table 28: SVM Algorithm Adaptation 1/2, performance measures 5-fold-cross
validation

5-fold-cross validation

Performance measures

Kernel γ Cost Threshold Precision Recall F-measure Percentage

Linear 0.1 0.1 0.0102 0.0588 0.0173 26.0445

Linear 0.1 0.2 0.0102 0.0588 0.0173 26.0445

Linear 0.1 0.3 0.0102 0.0588 0.0173 26.0445

Linear 1 0.1 0.0563 0.0685 0.0606 26.7237

Linear 1 0.2 0.0102 0.0588 0.0173 26.0445

Linear 1 0.3 0.0102 0.0588 0.0173 26.0445

Linear 10 0.1 0.1691 0.1402 0.1529 53.8781

Linear 10 0.2 0.223 0.154 0.1815 44.4257

Linear 10 0.3 0.2051 0.117 0.1475 35.5506

Linear 25 0.1 0.1331 0.1281 0.13 55.8184

Linear 25 0.2 0.1832 0.153 0.1665 38.1666

Linear 25 0.3 0.1928 0.1234 0.1504 30.5567

Linear 50 0.1 0.1261 0.1239 0.1238 54.8471

Linear 50 0.2 0.1506 0.1474 0.1489 33.7048

Linear 50 0.3 0.1553 0.1183 0.1342 28.6638

Linear 100 0.1 0.1186 0.1256 0.1209 53.3437

Linear 100 0.2 0.1432 0.1433 0.1432 31.6711

Linear 100 0.3 0.1564 0.1188 0.135 27.9349

Linear 500 0.1 0.1148 0.1256 0.1198 49.7563

Linear 500 0.2 0.1409 0.1409 0.1409 30.8456

Linear 500 0.3 0.1526 0.1184 0.1332 27.7403

Linear 1000 0.1 0.1148 0.1256 0.1198 49.7563

Linear 1000 0.2 0.1409 0.1409 0.1409 30.8456

Linear 1000 0.3 0.1526 0.1184 0.1332 27.7403

Linear 10000 0.1 0.1148 0.1256 0.1198 49.7563

Linear 10000 0.2 0.1409 0.1409 0.1409 30.8456

Linear 10000 0.3 0.1526 0.1184 0.1332 27.7403

Radial 2−10 0.1 0.1 0.0102 0.0588 0.0173 26.0445

Radial 2−10 0.1 0.2 0.0102 0.0588 0.0173 26.0445

Radial 2−10 0.1 0.3 0.0102 0.0588 0.0173 26.0445

Radial 1/# explanatory variables 0.1 0.1 0.0102 0.0588 0.0173 26.0445

Radial 1/# explanatory variables 0.1 0.2 0.0102 0.0588 0.0173 26.0445

Radial 1/# explanatory variables 0.1 0.3 0.0102 0.0588 0.0173 26.0445

Radial 1/# explanatory variables/2
0.1 0.1 0.0102 0.0588 0.0173 26.0445

Radial 1/# explanatory variables/2
0.1 0.2 0.0102 0.0588 0.0173 26.0445

Radial 1/# explanatory variables/2
0.1 0.3 0.0102 0.0588 0.0173 26.0445

Radial 1 0.1 0.1 0.0102 0.0588 0.0173 26.0445

Radial 1 0.1 0.2 0.0102 0.0588 0.0173 26.0445

Radial 1 0.1 0.3 0.0102 0.0588 0.0173 26.0445

Radial 2−10 1 0.1 0.068 0.0678 0.0655 26.6751

Radial 2−10 1 0.2 0.0102 0.0588 0.0173 26.0445

Radial 2−10 1 0.3 0.0102 0.0588 0.0173 26.0445

Radial 1/# explanatory variables 1 0.1 0.0621 0.0678 0.0619 26.6751

Radial 1/# explanatory variables 1 0.2 0.0102 0.0588 0.0173 26.0445

Radial 1/# explanatory variables 1 0.3 0.0102 0.0588 0.0173 26.0445

Radial 1/# explanatory variables/2
1 0.1 0.0664 0.0687 0.0638 26.7717

Radial 1/# explanatory variables/2
1 0.2 0.0102 0.0588 0.0173 26.0445

Radial 1/# explanatory variables/2
1 0.3 0.0102 0.0588 0.0173 26.0445

Radial 1 1 0.1 0.0484 0.0609 0.0499 26.287

Radial 1 1 0.2 0.0102 0.0588 0.0173 26.0445

Radial 1 1 0.3 0.0102 0.0588 0.0173 26.0445

Radial 2−10 10 0.1 0.1667 0.1408 0.1523 53.5388

Radial 2−10 10 0.2 0.2263 0.1565 0.1844 44.6682

Radial 2−10 10 0.3 0.2146 0.1193 0.1518 35.9859

Radial 1/# explanatory variables 10 0.1 0.1665 0.1426 0.1533 53.8293

Radial 1/# explanatory variables 10 0.2 0.2245 0.1565 0.1839 44.4742

Radial 1/# explanatory variables 10 0.3 0.2227 0.1194 0.1541 35.9854

Radial 1/# explanatory variables/2
10 0.1 0.1699 0.1447 0.1559 53.8293

Radial 1/# explanatory variables/2
10 0.2 0.2235 0.1575 0.1841 44.5239

Radial 1/# explanatory variables/2
10 0.3 0.2313 0.1179 0.1548 35.8883

Radial 1 10 0.1 0.1095 0.0767 0.0897 36.9082

Radial 1 10 0.2 0.0835 0.0652 0.0713 27.0151

Radial 1 10 0.3 0.0494 0.0612 0.0482 26.2872
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Table 29: SVM Algorithm Adaptation 2/2, performance measures 5-fold-cross
validation

5-fold-cross validation

Performance measures

Kernel γ Cost Threshold Precision Recall F-measure Percentage

Radial 2−10 25 0.1 0.1257 0.1277 0.1262 55.9158

Radial 2−10 25 0.2 0.1867 0.1578 0.1707 38.0693

Radial 2−10 25 0.3 0.1927 0.1207 0.1484 30.6538

Radial 1/# explanatory variables 25 0.1 0.1276 0.1294 0.128 56.4007

Radial 1/# explanatory variables 25 0.2 0.1911 0.1611 0.1745 38.7477

Radial 1/# explanatory variables 25 0.3 0.1898 0.1206 0.1474 30.9451

Radial 1/# explanatory variables/2
25 0.1 0.1273 0.1308 0.1286 56.9828

Radial 1/# explanatory variables/2
25 0.2 0.1868 0.1604 0.1724 39.2336

Radial 1/# explanatory variables/2
25 0.3 0.1938 0.1231 0.1505 30.9465

Radial 1 25 0.1 0.0995 0.076 0.0859 37.3451

Radial 1 25 0.2 0.0841 0.0648 0.072 26.9181

Radial 1 25 0.3 0.0455 0.0611 0.0438 26.2387

Radial 2−10 50 0.1 0.1207 0.1253 0.1219 55.1871

Radial 2−10 50 0.2 0.1518 0.1479 0.1497 34.4806

Radial 2−10 50 0.3 0.1573 0.1172 0.1342 28.5191

Radial 1/# explanatory variables 50 0.1 0.1283 0.1274 0.1267 56.1083

Radial 1/# explanatory variables 50 0.2 0.1561 0.1505 0.1532 35.0141

Radial 1/# explanatory variables 50 0.3 0.1674 0.1182 0.1383 28.8575

Radial 1/# explanatory variables/2
50 0.1 0.1174 0.1287 0.1223 56.4003

Radial 1/# explanatory variables/2
50 0.2 0.1595 0.1522 0.1557 35.3053

Radial 1/# explanatory variables/2
50 0.3 0.177 0.1191 0.1421 29.6827

Radial 1 50 0.1 0.1081 0.076 0.089 37.3446

Radial 1 50 0.2 0.0836 0.0647 0.0718 26.8695

Radial 1 50 0.3 0.0553 0.0616 0.0499 26.287

Radial 2−10 100 0.1 0.1187 0.1266 0.1214 53.5857

Radial 2−10 100 0.2 0.1451 0.1442 0.1447 32.203

Radial 2−10 100 0.3 0.1586 0.1177 0.135 28.2269

Radial 1/# explanatory variables 100 0.1 0.1058 0.127 0.1154 54.1196

Radial 1/# explanatory variables 100 0.2 0.1495 0.1458 0.1476 32.8817

Radial 1/# explanatory variables 100 0.3 0.1541 0.1175 0.1332 28.664

Radial 1/# explanatory variables/2
100 0.1 0.107 0.1279 0.1165 55.2357

Radial 1/# explanatory variables/2
100 0.2 0.1579 0.1506 0.1541 34.3858

Radial 1/# explanatory variables/2
100 0.3 0.1609 0.1184 0.1362 29.7798

Radial 1 100 0.1 0.1081 0.076 0.089 37.3446

Radial 1 100 0.2 0.0836 0.0647 0.0718 26.8695

Radial 1 100 0.3 0.0553 0.0616 0.0499 26.287

Radial 2−10 500 0.1 0.1163 0.1262 0.1209 50.7256

Radial 2−10 500 0.2 0.1429 0.1423 0.1426 31.427

Radial 2−10 500 0.3 0.1561 0.118 0.1343 28.2259

Radial 1/# explanatory variables 500 0.1 0.1169 0.126 0.1211 51.5501

Radial 1/# explanatory variables 500 0.2 0.1466 0.1445 0.1455 32.0098

Radial 1/# explanatory variables 500 0.3 0.1611 0.118 0.1361 28.6642

Radial 1/# explanatory variables/2
500 0.1 0.1181 0.1276 0.1226 52.6164

Radial 1/# explanatory variables/2
500 0.2 0.1515 0.1459 0.1486 33.3683

Radial 1/# explanatory variables/2
500 0.3 0.1639 0.1209 0.139 29.3921

Radial 1 500 0.1 0.1081 0.076 0.089 37.3446

Radial 1 500 0.2 0.0836 0.0647 0.0718 26.8695

Radial 1 500 0.3 0.0553 0.0616 0.0499 26.287

Radial 2−10 1000 0.1 0.1163 0.1262 0.1209 50.7256

Radial 2−10 1000 0.2 0.1429 0.1423 0.1426 31.427

Radial 2−10 1000 0.3 0.1561 0.118 0.1343 28.2259

Radial 1/# explanatory variables 1000 0.1 0.1169 0.126 0.1211 51.5501

Radial 1/# explanatory variables 1000 0.2 0.1466 0.1445 0.1455 32.0098

Radial 1/# explanatory variables 1000 0.3 0.1611 0.118 0.1361 28.6642

Radial 1/# explanatory variables/2
1000 0.1 0.1181 0.1276 0.1226 52.6164

Radial 1/# explanatory variables/2
1000 0.2 0.1515 0.1459 0.1486 33.3683

Radial 1/# explanatory variables/2
1000 0.3 0.1639 0.1209 0.139 29.3921

Radial 1 1000 0.1 0.1081 0.076 0.089 37.3446

Radial 1 1000 0.2 0.0836 0.0647 0.0718 26.8695

Radial 1 1000 0.3 0.0553 0.0616 0.0499 26.287

Radial 2−10 10000 0.1 0.1163 0.1262 0.1209 50.7256

Radial 2−10 10000 0.2 0.1429 0.1423 0.1426 31.427

Radial 2−10 10000 0.3 0.1561 0.118 0.1343 28.2259

Radial 1/# explanatory variables 10000 0.1 0.1169 0.126 0.1211 51.5501

Radial 1/# explanatory variables 10000 0.2 0.1466 0.1445 0.1455 32.0098

Radial 1/# explanatory variables 10000 0.3 0.1611 0.118 0.1361 28.6642

Radial 1/# explanatory variables/2
10000 0.1 0.1181 0.1276 0.1226 52.6164

Radial 1/# explanatory variables/2
10000 0.2 0.1515 0.1459 0.1486 33.3683

Radial 1/# explanatory variables/2
10000 0.3 0.1639 0.1209 0.139 29.3921

Radial 1 10000 0.1 0.1081 0.076 0.089 37.3446

Radial 1 10000 0.2 0.0836 0.0647 0.0718 26.8695

Radial 1 10000 0.3 0.0553 0.0616 0.0499 26.287
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C Appendix

Table 30: Benchmark performances
5-fold-cross validation Validation set Test set

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure Percentage

Benchmark 1 0.0588 0.0588 0.0587 0.0588 0.0593 0.059 0.0589 0.0594 0.0591 23.2

Benchmark 2 0.0232 0.0588 0.0332 0.0236 0.0588 0.0337 0.0236 0.0588 0.0337 64.19

Benchmark 3 0.0587 0.0589 0.0587 0.0587 0.0582 0.0584 0.0592 0.0598 0.0594 22.97

Benchmark 4 0.0589 0.0583 0.0583 0.0591 0.0591 0.059 0.0589 0.0577 0.0582 8.58

Table 31: KNN Label Powerset performances
5-fold-cross validation Validation set Test set

Distance function k Min Occurrence Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure Percentage

Euclidean 1 0.1121 0.1198 0.1153 0.0944 0.0971 0.0957 0.0917 0.098 0.0948 32.6

Jaccard 1 0.1388 0.1382 0.1384 0.1067 0.1108 0.1087 0.1117 0.1107 0.1112 37.12

Table 32: KNN Binary Relevance performances measures
5-fold-cross validation Validation set Test set

Distance function k Threshold Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure Percentage

Euclidean 7 0.4 0.1694 0.1297 0.1444 0.1442 0.1155 0.1283 0.1377 0.1212 0.1289 35.37

Euclidean 12 0.4 0.1735 0.1225 0.1418 0.1837 0.1237 0.1478 0.1574 0.1195 0.1358 36.83
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Table 33: KNN Algorithm Adaptation performance measures
5-fold-cross validation Validation set Test set

Distance function k Threshold Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure Percentage

Euclidean 15 0.25 0.1439 0.1009 0.1177 0.1459 0.0953 0.1153 0.1751 0.0841 0.1137 40.90

Euclidean 25 0.25 0.142 0.1024 0.1179 0.1347 0.0972 0.1129 0.1144 0.0963 0.1046 42.21

Table 34: RF Label Powerset performance measures
5-fold-cross validation Validation set Test set

Ntree Mtry Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure Percentage

500 60 0.2151 0.1471 0.1744 0.1586 0.1247 0.1396 0.1485 0.1234 0.1348 42.63

1000 30 0.205 0.1388 0.1653 0.2011 0.1206 0.1508 0.1614 0.1271 0.1422 45.27

Table 35: RF Binary Relevance performance measures
5-fold-cross validation Validation set Test set

Ntree Mtry Threshold Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure Percentage

250
√

# explanatory variables 0.3 0.2811 0.1518 0.1964 0.2173 0.129 0.1619 0.25 0.1257 0.1673 44.69

250 60 0.4 0.2516 0.1629 0.1966 0.2147 0.1406 0.1699 0.2152 0.1366 0.1671 46.29

Table 36: RF Algorithm Adaptation performance measures
5-fold-cross validation Validation set Test set

Ntree Mtry Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure Percentage

100 500 0.2102 0.1116 0.1457 0.1084 0.0844 0.0949 0.1537 0.0863 0.1106 36.1

500 500 0.2327 0.1125 0.1511 0.1137 0.084 0.0966 0.179 0.0869 0.117 36.24

Table 37: SVM Label Powerset performance measures
5-fold-cross validation Validation set Test set

Kernel γ Cost Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure Percentage

Radial 2−10 100 0.1832 0.1367 0.1561 0.1467 0.1188 0.1313 0.2125 0.1397 0.1686 43.23

Radial 1/# explanatory variables 100 0.1719 0.1386 0.1534 0.1652 0.133 0.1474 0.2557 0.1376 0.1789 43.67

Table 38: SVM Binary Relevance performance measures
5-fold-cross validation Validation set Test set

Kernel γ Cost Threshold Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure Percentage

Radial 1/# explanatory variables/2
10 0.3 0.2234 0.17 0.1927 0.3251 0.1428 0.1985 0.2131 0.1513 0.177 47.16

Radial 2−10 100 0.3 0.2371 0.1647 0.1941 0.3717 0.143 0.2065 0.2295 0.1574 0.1867 47.6

Table 39: SVM Algorithm Adaptation Method performance measures
5-fold-cross validation Validation set Test set

Kernel γ Cost Threshold Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure Percentage

Radial 2−10 10 0.2 0.2263 0.1565 0.1844 0.2792 0.1324 0.1796 0.1811 0.1327 0.1532 42.07

Radial 1/# explanatory variables/2
10 0.2 0.2235 0.1575 0.1841 0.2952 0.1345 0.1848 0.1925 0.1329 0.1572 41.63
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Table 40: P-values of paired T-Tests
Benchmark 2 Benchmark 3 Benchmark 4 KNN BR 1 KNN BR 2 KNN AA 1 KNN AA 2 RF LP 2 SVM LP 1 SVM LP 2 SVM BR 1 SVM BR 2 SVM AA 1 SVM AA 2

Benchmark 1 0 0.7418 0.2379 0.0051 0.0018 5e-04 0.0056 0.0053 0.0136 0.0089 0.0025 0.0018 0.0074 0.0061

Benchmark 2 1e-04 1e-04 0.0029 0.001 3e-04 0.0026 0.0033 0.0085 0.0057 0.0017 0.0013 0.0049 0.0042

Benchmark 3 0.5876 0.005 0.002 6e-04 0.006 0.0054 0.0129 0.0085 0.0026 0.0019 0.0076 0.0064

Benchmark 4 0.0051 0.0015 4e-04 0.0051 0.0051 0.0141 0.0093 0.0023 0.0016 0.007 0.0058

KNN BR 1 0.3409 0.0499 0.0228 0.0218 0.2431 0.1692 0.017 0.0183 0.0389 0.0368

KNN BR 2 0.0144 0.0114 0.226 0.5516 0.2976 0.0045 0.002 0.0525 0.0332

KNN AA 1 0.3069 0.0218 0.0839 0.0516 0.0061 0.0048 0.0226 0.0183

KNN AA 2 0.0061 0.093 0.0669 0.0027 0.0037 0.0097 0.008

RF LP 2 0.961 0.681 0.0252 0.0314 0.0623 0.0601

SVM LP 1 0.2911 0.1585 0.1204 0.3914 0.3414

SVM LP 2 0.2077 0.1393 0.5801 0.4948

SVM BR 1 0.1283 0.0654 0.0493

SVM BR 2 0.0811 0.0692

SVM AA 1 0.2176

Table 41: P-values of paired T-Tests

Combined Binary Relevance methods

Combined Algorithm Adaptation methods 2.923615e− 06
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