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1 Introduction 
 

This paper presents analysis and simulation of the vehicle platoon following problem 

described in [1]. The problem the authors try to tackle there is to model the vehicle-platoon 

following problem via Networked Control System (NCS), concretely Markovian Jump Linear 

System (MJLS). The vehicle platoon consists of five trucks following the leader. The four 

followers are supposed to be fully “auto-piloted” with the help of: 

• on-board radar to give the information about the predecessor vehicle, 
• wireless network to broadcast the feedback information about the leading and other 
vehicles. 

 

The leading vehicle is supposed to follow a so-called “reference-trajectory”, actually a 

constant-speed virtual “position-mark” moving along the track, where the aim of the feedback 

control law is to minimize the tracking and spacing errors of all the vehicles. 

 

 
 

This is a screenshot from the simulation of the vehicle platoon in MATLAB, we see (in the 

units based on seconds and meters): 

• for each vehicle (0=leader down to 4): 
o tracking error e, 
o velocity v, 
o acceleration a, 

• current time t, 
• track position (leading vehicle is now at ~182), 
• red marker for a reference track. 
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1.1 Sources/References 

 

Several other sources have been used in the course of the study that led to this thesis. 

Background information concerning general systems theory was taken from [7] and [8], 

information onH∞ -control theory was taken from [2]. 

Information concerning linear matrix inequalities, which play an important role in solving 

H∞ -control problems was taken from [3]. The source for information on probability theory 

was [10]. The conversion of continuous time systems to discrete time systems using sampling, 

which we use later on in this thesis, can be found in many sources; we follow [9] here. 

 

The area of Networked Control Systems is an area of much recent research in systems and 

control theory. Several issues concerning the use of a network to exchange information 

between the plant and controller have been studied in many papers, and are still being studied. 

See [4] for an overview of much of the literature up to 2004. We will focus on the facts of 

information-package loss, modeled by a Markovian jump system, and in doing so take the 

example from [1] as our lead. See also [6]. Other papers in this area focus on the effects of 

package delay [5]. As always in systems theory, stability analysis of the class of control 

systems under consideration plays an important role in the subject. See [9] for a good 

introduction to that particular problem. 

 

 

1.2 Acknowledgements 

 

I would like to thank my advisor professor Andre Ran to help me “having fun all the way”. 
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2 Mathematical background 
 

The main subject of study for the Mathematical Control and System Theory branch of 

mathematics is the dynamical system (PPPP        ), a “transformation” of input/disturbances ( / )u d into 

output/error measurements ( / )y z : 

 
The goal of this analysis is often a synthesis of a feedback control law (KKKK        ), which is 

itself also a dynamical system, in order to stabilize the (unstable/marginally stable) dynamical 

system: 

 
 

Analysis of dynamical systems and the synthesis of the feedback laws was long time 

dominated by the Kalman filtering method, also called 2H -control, originally developed in the 

1960s for aerospace applications. The main objection to this approach was that it makes quite 

severe assumptions about the disturbance process statistics (zero-mean 

Gaussian).H∞ analysis/synthesis is the answer to this problem as it tries to bring some 

robustness in the feedback, in order to make the closed loop system behave acceptably even in 

the face of unpredicted/misestimated noise. More information on this subject can be found in 

the reference [2]. 

 

PPPP 

KKKK 

z  

u  

d  

y  

PPPP 
z  

u  

d  

y  
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2.1 H∞ analysis/synthesis for Networked Control Systems 

 

 In the paper [1] theH∞ analysis/synthesis is used in order to study the problem of the 

Networked Control System, a system where the feedback has to be communicated via the 

network, subjected to errors, delays or complete packet-losses: 

 
  

  

The approach of the authors of the paper was to model such a system as a Markovian Jump 

Linear System (MJLS), meaning: 

• The network stochastic processθ is a Markov process: the state of the network at the 

time t is independent of the history up to this time, it depends only on the current state 

of the network (here stated for a discrete case): 

[ ( ) | ( 1), ( 2), ( 3), ..., (0)] [ ( ) | ( 1)]k k k k k kθ θ θ θ θ θ θ− − − = −E E , 

• The physical continuous dynamical system is “linearized” into the discrete settings: 
 

 

(1)    
( ) ( )

( ) ( )

( 1) ( )

( ) ( )

k k

k k

A Bx k x k

C Dz k d k

θ θ

θ θ

+     
=     

    
. 

 

PPPP 

KKKK 
 

z  

u  

d  

0y  
Network(θ ) 

cy  

ˆ
cy  
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2.1.1 H∞ analysis/synthesis “toolbox” 

 

The presence of the network brings “stochasticity” into the system, therefore an 

additional (to the deterministic case) mathematical “toolbox” is used to analyze such systems. 

 

We have several concepts of the (stochastic) stability: 

• Second-moment stability: the MJLS is said to be second-moment stable (for initial 

state/network state 0 0,x θ ) if it is (equivalently): 

o Mean-square stable: 
2

0 0 0 0( , ) : lim [ ( ) | , ] 0
k

x x k xθ θ
→∞

∀ =E , 

o Stochastically stable: 
2

0 0 0 0

0

( , ) : lim [ ( ) | , ]
k

k

x x k xθ θ
∞

→∞
=

∀ < ∞∑ E , 

o Exponentially mean-square stable: 
2 2

0 0 0 0 0( , ) 0 1, 0 : , [ ( ) | , ] kx k x k x xθ α β θ βα∀ ∃ < < < ∀ <E , 

• Almost-sure stability: 0 0( , ) : (lim ( ) 0] 1
k

x x kθ
→∞

∀ = =P . 

 

To measure the sensitivity of the system to the input/disturbance, in other words: to measure 

system gain from input/disturbance to output/error-measurement, we use the following norm:  

• H∞ norm of an MJLS for a network with two states{0,1}= network down/up:  

o Assume that systemP is second-moment stable (SMS), let 0 0x = , 

o Then theH∞ norm is: 
2

2

(0) {0,1} 0
2

: sup sup
nd l

z

dθ
∞

∈ ≠ ∈

=P , 

o Where 2
nl is defined as: 

{ }2 0 0 2
{ ( )} : , ( )  is a random variable dependent on { ( )}  and n n

k kl x k k x k k xθ∞ ∞
= =≡ ∀ ∈ < ∞R , 

o And the
2

⋅ norm there is given by:
2

2
0

[ ( ) ( )]T

k

x x k x k
∞

=

≡∑E . 

 

The actual synthesis of the feedback law with gain less then one is based on: 

• Bounded real lemma: 

o Assume systemP given by (1) is weakly-controllable, 

o Then:P  is SMS with 1
∞
<P  if and only if 

2

1

0 0
{ } 0 : 0,      {0,1}

0
0

T

ij ji i i
ji

i i

p GA B G
G i

C D I
I

=

 
    ∃ > − < ∈          

∑
. 
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For practical use this lemma is cast into a more familiar/standard settings of: 

• Linear matrix inequalities (LMI): 

o The synthesis of the feedback law can be reduced to a more standard semi-
definite programming problem: 

� minimizeγ and find { , , , }cl cl cl clA B C DΣ = , 

� Subject to 

[ ] [ ]

[ ]

2

,1 ,1

1

,1 ,1

,2 ,2

2

,2 ,2

0
* *

0

0
* 0, 0

0

0 0 0

0 0 0

T T

Tcl cl

cl cl

cl cl

cl cl

Z

I

A Z B Z
p Z

C Z D I

A Z B Z
p

C Z D I

γ

  
  

  
      > >      
 

      
      

     

, 

� Where “cl” stands for closed-loop, “[*]” stands for symmetric terms, 
o LMIs are mostly solved via the interior-point methods using freely-available 
software. 
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3 The model 
 

The model, discrete-time linear system with Markovian jumping parameters, stabilized 

via (network transmission dependent) output feedback is shown here: 

 

 
 

 

 

Where: 

• PPPP   is the (open-loop) plant, actually the dynamics of the 5-vehicles-platoon, 
• KKKK   is the feedback controller to stabilize the platoon via internal 0( )y k and external 

(network-communicated) ˆ ( )cy k  plant output, 

• Network(θ ): ( )kθ is the Markov (Bernoulli) process simulating the network packet 

loss, it has two states: packet lost/received: : ( ) {0,1}k kθ∀ ∈ , 

• ( )d k is the general system-disturbance, further on defined as 0( ) ( )d k r k≡ , the 

reference path of the leading vehicle,  

• ( )z k is the error vector: [ ]0 1 4( ) ( ) ( ) ( )
T

z k e k t k t k= ⋯ , where 0 0 0e r x= − is the 

tracking error of the first vehicle, 0 . , {1, 2,3,4}i i it r x i iδ= − − ∈ are the tracking errors 

of the rest of the platoon vehicles, where iδ are the desired spacing between the 
vehicles, ix is the horizontal position of i -th vehicle, we also assume ,i iδ δ≡ ∀ , 

• ( )u k is the system input: applied throttle/brake, 

• ( )cy k is the (network-) communicated vehicle-platoon status, 

[ ]0 0 1 2 3( )
T

cy k v a a a a= ,where ,i iv a stand for i -th vehicle speed resp. 

acceleration, 

• ˆ ( )cy k is the platoon status as received by the individual vehicles, thus this is actually 

( )cy k  ”disturbed” by the network: 
( ),   ( ) 1

ˆ ( )
,        ( ) 0

c

c

y k k
y k

k

θ
θ

=
= 

∅ =
, 

• 0( )y k is the internal vehicle status as read form the on-board sensors, thus this is kind 

of a fall-back-output-state when the network packet gets lost, 

[ ]0 0 4 0 4 1 4( )
T

y k e e e e v v= ɺ ɺ⋯ ⋯ ⋯ , where 1 , {1, 2,3,4}i i i ie x x iδ−= − − ∈  

are spacing errors of the other vehicles. 

 

PPPP 

KKKK 

( )z k  

( )u k  

( )d k  

0( )y k  

Network(θ ) 

( )cy k  

ˆ ( )cy k  
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3.1 Model derivation 

 

3.1.1 Packet loss simulation: Markov (Bernoulli) process 

 

The feedback information (network packet) loss is modelled via a Markov process, 

actually a Bernoulli process, so we have: 

• jumping probabilities: , , {0,1}ij jp p i j= ∀ ∈ , 

• Markov process transition matrix: 
1

1

p p
A

p p

− 
=  − 

. 

where the process has two states: 

• 0 = packet lost, with probability p , 
• 1 = packet received, probability1 p− . 

 

3.1.2 Derivation of the open-loop plant 

 

 
 

Individual vehicle dynamics model (derived from the “first principles”) are: 

 

1 1

( ) 0 1 0 ( ) 0

( ) 0 0 1 ( ) 0 ( )

( ) 0 0 ( )

v

x t x t

v t v t u t

a t a t

A

τ τ

      
      = +      

      −      

ɺ

ɺ

ɺ
�������

 

Where: 

• , ,x v a stand for horizontal position, speed and acceleration, 

• u is the input (throttle/brake). 

 

 

The throttle/brake dynamics are: 

( ) ( ) ( )a t a t u tτ + =ɺ ,  

so we see that the applied throttle/brake is actually a first order approximation of the actual 

acceleration with the actuator delayτ , and also that this brings the system to the stable 
condition if umatches a : 

( ) ( ) ( ) 0a t u t a tτ = − =ɺ  

 

PPPP 
( )z k  

( )u k  
0 ( ) / ( )cy k y k  

( )d k  
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3.1.3 Discretization 

 

Now we are going to discretize the (continuous) vehicle platoon dynamics system: 

 1 2( ) ( ) ( ) ( )x t Ax t B d t B u t= + +ɺ . 

 

Where x now stands for the whole 5-vehiscles open-loop system state: 

( )0 0 0 1 1 1 4 4 4

T
x x v a x v a x v a= ⋯ . 

 

And the whole 5-vehicles platoon (continuous) dynamics are captured by: 

1

2

1

0 0

0 0

0

0 0

1

0

0 0
0

0 0
, 0

0

0 0

v

v

v

C

A

A
A

A

B

b

b
B b

b
τ

  
  
  =
  
  

 
    Σ =  
  

 
  

   
   = =          

  

⋯

⋮ ⋱

⋯

⋮

⋯

⋮ ⋱ ⋮

⋯

. 

 

Discretization uses two facts (and the reference [9]): 

• For the inputu a zero-order-hold is used: 1 1( ) ( ), [ , ], ,ZOH k k k k ku t u t t t t t t h k+ += ∈ − = ∀ , 

• And the reference trajectory 0( )r t is sampled each ZOH period h too: 

0 1( ) ( )      , [ , ]sampled k k kr t r t t t t += ∈ . 

 

Therefore the system could be rewritten as: 

1 2 1 1( ) ( ) , [ , ], ,k k k k k kx t Ax t B d B u t t t t t h k+ += + + ∈ − = ∀ɺ . 

 

By integration we arrive to: 

( ) ( )

1 2
0 0

( )

( 1) ( )

( )

h h
Ah A h x A h x

x k

x k e e dxB e dxB d k

u k

− −

 
  + = − −    
  

∫ ∫ . 

And using: 

( ) ( )

,1 1 ,2 2
0 0

, ,
h h

Ah A h x A h x

OL OL OLA e B e dxB B e dxB− −= = − = −∫ ∫ . 

 

WhereOL stands for open-loop plant, we can rewrite the state-update part of the discretized 

system PPPP   as: 

 

,1 ,2( 1) ( ) ( ) ( )OL OL OL OL OLx k A x k B d k B u k+ = + + . 
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We have discretized the continuous system CΣ using the sampling frequency 20h ms= and 

actuator delay 100msτ = . For discretisation we have used MATLAB which resulted in the 

following discrete system DΣ for the platoon dynamics (open-loop-plant): 

 

,1

,2

1 0.02 0.0002 0

0 1 0.0181 0

0 0 0.8187 0

0 0 0 0.8187

0.02

0

0 0

0.0019 0

0.1813 0

0 0.1813

OL

D OL

OL

A

B

B

  
  
  
  =
  
  

   
  
  =  
  

 
  
  
  
  =
  
  
  

 

Σ

⋯

⋯

⋯

⋮ ⋮ ⋮ ⋱ ⋮

⋯

⋮

⋯

⋮ ⋱ ⋮

⋯

. 

 

With the corresponding state vector: 

( )0 0 0 1 1 1 4 4 4

T
x x v a x v a x v a= ⋯ . 

 

Notice that there is no equilibrium point at 0 for the state vector, and also that the 

disturbance 0r has no zero mean but a “drift”. 
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3.1.4 The equivalent (zero-state-equilibrium, zero-mean disturbance) 
system derivation 

 

Now we derive the equivalent open-loop system, but this time with the different state 

vector: 

( )0 0 0 4 4 4

T

OLx e e e e e e= ɺ ɺɺ ɺ ɺɺ⋯ ,  

and different disturbance 0r , which is now a deviation of the leading vehicle from the 

reference (desired) trajectory, zero mean indeed, and also notice that our new state vector is 

zero in the equilibrium/steady state. 

 

We would actually like to look at the vehicle platoon as it is already moving with the 

constant speed and correct spacing (tracking/spacing errors are zero), being disturbed by the 

deviations of the leading vehicle from its reference trajectory, so we will disturb the position 

of the leading vehicle with 0r . 

 

This all is actually needed in order to be able to perform the correctH∞ analysis. 

 

We will define new open-loop system matrices for this “zero-equilibrium” model from: 

• ( 1) ( ) 0,2. ( ) 0,0002. ( )i i i ix k x k v k a k+ = + + , 

• ( 1) ( ) 0,0181. ( ) 0,0019. ( )i i i iv k v k a k u k+ = + + , 

• ( 1) 0,8187. ( ) 0,1813. ( )i i ia k a k u k+ = + . 

 

So let’s see about the evolution of 0 0 0e r x= − and its derivatives: 

0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0

( 1) ( 1) ( 1)

( ) 0,2. ( ) 0,0002. ( ) ( ) 0, 2. ( ) 0,0002. ( )

[ ( ) ( )] 0,2.[ ( ) ( )] 0,0002.[ ( ) ( )]

( ) 0,2. ( ) 0,0002. ( )

e k r k x k

r k r k r k x k v k a k

r k x k r k v k r k a k

e k e k e k

+ = + − + =

= + + − − − =

= − + − + − =

= + +

ɺ ɺɺ

ɺ ɺɺ

ɺ ɺɺ

 

  

0 0 0 0 0

0 0 0 0 0

0

( 1) ( 1) ( 1) ( 1) ( 1)

( ) 0,0181. ( ) ( ) 0,0181. ( ) 0,0019. ( )

( ) 0,0181. ( ) 0,0019. ( )i i

e k r k x k r k v k

r k r k v k a k u k

e k e k u k

+ = + − + = + − + =

= + − − − =

= + −

ɺ ɺ ɺ ɺ

ɺ ɺɺ

ɺ ɺɺ

 

 

0 0 0( 1) 0,8187. ( ) 0,1813. ( )e k e k u k+ = −ɺɺ ɺɺ  

 

For 1i i ie x x δ−= − − : 

1

1 1 1

1 1 1

( 1) ( 1) ( 1)

( ) 0, 2. ( ) 0,0002. ( ) ( ) 0, 2. ( ) 0,0002. ( )

( ) ( ) 0, 2.[ ( ) ( )] 0,0002.[ ( ) ( )]

( ) 0, 2. ( ) 0,0002. ( )

i i i

i i i i i i

i i i i i i

i i i

e k x k x k

x k v k a k x k v k a k

x k x k v k v k a k a k

e k e k e k

δ

δ

δ

−

− − −

− − −

+ = + − + − =

= + + − − − − =

= − − + − + − =

= + +ɺ ɺɺ
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0 0

0 0

0 0

4 4

4 4

4 4

,

1

0
1 0,02 0,0002 0

0
0 1 0,0181 0

0
0 0 0,8187 0

0

0
0 0 0 0,8187

0

OL

OL

e e

e e

e e

e e

e e

e eA

B

 
     
                        ← +                  
      
          

 

ɺ ɺ⋯

ɺɺ ɺɺ

⋮ ⋮

⋮ ⋱ ⋮

ɺ ɺ⋯
���������������

ɺɺ ɺɺ
⋮
	

0

1

0

4

1

,2

0 0 0 0 0

0,0019 0 0 0 0

0,1813 0 0 0 0

0 0 0 0 0

0,0019 0,0019 0 0 0

0,1813 0,1813 0 0 0

0 0 0 0 0

0 0,0019 0,0019 0 0

0 0,1813 0,1813 0 0

OL

u

u
r

u

B

 
 − 
 −
 

  
  −  +  
 − 
  
  

− 
 − 
 
 

⋮

⋮ ⋮
�����������������

1 1

1 1 1

1

( 1) ( 1) ( 1) ( 1) ( 1)

( ) 0,0181. ( ) 0,0019. ( ) ( ) 0,0181. ( ) 0,0019. ( )

( ) 0,0181. ( ) 0,0019.[ ( ) ( )]

i i i i i

i i i i i i

i i i i

e k x k x k v k v k

v k a k u k v k a k u k

e k e k u k u k

− −

− − −

−

+ = + − + = + − +

= + + − + − =

= + + −

ɺ ɺ ɺ

ɺ ɺɺ

 

 

1( 1) 0,8187. ( ) 0,1813.[ ( ) ( )]i i i ie k e k u k u k−+ = + −ɺɺ ɺɺ  

 

Getting the system matrices OLA , ,1OLB and ,2OLB : 

 

 

 

 

  

 

 

 

 

 

 

 

 

Now for the error vector z : 

We have 0 . , {1,2,3, 4}i it r x i iδ= − − ∈ , this we can further simplify to: 

• for 1i = : 1 0 1 0 0 0 1 0 0 0 1 0 1t r x r x x x r x x x e eδ δ δ= − − = − + − − = − + − − = + , 

• for 2i = :

2 0 2 0 0 0 2 0 0 1 1 2 0 1 22 2t r x r x x x e x x x x e e eδ δ δ δ= − − = − + − − = + − − + − − = + + , 

• therefore: 
0

i

i j

j

t e
=

=∑ . 

 

	

0

0 0

0

1 0

1

02

4

4 4 ,1 ,2

4

1 0 0 0 0 0 0 0 0

0 0 01 0 0 1 0 0 0 0

1 0 0 1 0 0 1 0

0 0 01 0 0 1 0 0 1 0

1 0 0 1 0 0 1 0 0
OL OL

OL

e

e e
u

t e
u

rt

e
u

t e D D

eC

 
 

                       = + +                           
 
 

ɺ⋯

ɺɺ

⋮ ⋱⋮
⋮

⋮ ⋱ ⋮
�����

ɺ⋯
���������������

ɺɺ

4

 
 
 
 
 
 

 

 

Thus the complete open-loop plant PPPP   becomes: 

 

,1 ,2

( )
( 1)

( )
0 0( )

( )

OL

OL OL OLOL

OL

x k
A B Bx k

d k
Cz k

u k

 
+     =         

 

. 
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3.1.5 “Closing the loop” 

 

We will stabilize the system with the output-feedback controller, as we see the 

network is drawn as a part of the feedback controller, because the controller must have 

knowledge of the success/failure of the feedback-information-network-packet delivery. 

 
 

Define the output network-state dependent feedback as: 

( ) ( ), {0,1}i OLu k K x k i= ∈  

 

Where 

0 1 0 0( ) (1 ) ( ) ( ( ) ( )) ( ) ( ),           ( ) 1, 0             
( )

( ) ( ),                                                                                 ( ) 0, 1 

i i d i p i

i

d i p i

a k a k k v k v k k e k k e k k i
u k

k e k k e k k i

λ λ θ

θ
−+ − + − + + = ≠

=
+ = =

ɺ

ɺ or 0i


 =

 

 

Feedback analysis (see [8] for more detail): 

• in the case when the network packet is lost (or feedback for the platoon leader), we see 
a “classical” proportional ( )p ik e k and derivative ( )d ik e kɺ feedback, 

• when a vehicle receives the network information, this feedback is augmented with the 
part proportional to the difference of the speeds between this vehicle and the platoon 

leader 0 0( ( ) ( ))ik v k v k− , and also with kind of the “interpolation” between the 

acceleration of the vehicle ahead and the leader 0 1( ) (1 ) ( )ia k a kλ λ −+ − . 

KKKK ( )u k  

0( )y k  

Network(θ ) 

ˆ ( )cy k  ( )cy k  
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Using the facts that: 

• 0 1 1v v e− = ɺ , 0 2 0 1 1 2 1 2v v v v v v e e− = − + − = +ɺ ɺ , therefore: 0
1

i

i j

j

v v e
=

− =∑ ɺ , 

• we are studying the system in equilibrium, which is only being disturbed by the 
external factors, thus no acceleration/braking is applied to the reference trajectory, 

therefore we assume 0 0r ≡ɺɺ , and then we see 0 0 0 0a r e e= − = −ɺɺ ɺɺ ɺɺ , 

1 0 1 1 0 1 0 1e a a a a e e e= − ⇒ = − = − −ɺɺ ɺɺ ɺɺ ɺɺ , 2 1 2 2 1 2 0 1 2e a a a a e e e e= − ⇒ = − = − − −ɺɺ ɺɺ ɺɺ ɺɺ ɺɺ , 

therefore
0

i

i j

j

a e
=

= −∑ ɺɺ . 

 

We rewrite the feedback laws: 

• for ( ) 0, {0,1}k iθ = ∈ nothing changes, 

• for ( ) 1, 1k iθ = = :

1 0 0 0 0 1 1 1 0 0 0 1 1 1

0 0 1 1 1 0 0 1 1

(1 ) ( ) ( )

[ ].

d p d p

d p d p

u a a k v v k e k e a k v v k e k e

a k e k e k e e k k e k e

λ λ= + − + − + + = + − + + =

= + + + = − + + +

ɺ ɺ

ɺ ɺ ɺɺ ɺ
, 

• for ( ) 1, {2,3, 4}k iθ = ∈ :

0 1 0 0

1

0 0

0 1

0 0 1 1 0 1

1 1

0 0 0

1 1

(1 ) ( )

(1 ).

( 1)( ... ) ( ... )

( 1) [ ]

i i i d i p i

i i

j j d i p i

j j

i i d i p i

i i

j j d i p

j j

u a a k v v k e k e

e e k e k e k e

e e e e k e e k e k e

e e k e k k e k e

λ λ

λ λ

λ λ

λ

−

−

= =

−

− −

= =

= + − + − + + =

= − − − + + + =

= − + − + + + + + + + + =

= − + − + + + +

∑ ∑

∑ ∑

ɺ

ɺɺ ɺɺ ɺ ɺ

ɺɺ ɺɺ ɺɺ ɺɺ ɺ ɺ ɺ

ɺɺ ɺɺ ɺ ɺ
i

 

 

 

 

Getting: 

 

0 0 1 1

1 1

0 0 0

1 1

( ) [ ]. ( ) ( ),                                                       ( ) 1, 1                          

( ) ( 1) ( ) ( ) [ ] ( ) ( ),      ( )

d p

i i

j j d i p ii
j j

e k k k e k k e k k i

e k e k k e k k k e k k e ku k

θ

λ
− −

= =

− + + + = =

− + − + + + += ∑ ∑

ɺɺ ɺ

ɺɺ ɺɺ ɺ ɺ  ( ) 1, {2,3, 4}                 

( ) ( ),                                                                               ( ) 0 or ( ) 1, 0      d i p i

k i

k e k k e k k k i

θ

θ θ



 = ∈

 + = = = ɺ
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And let us derive the feedback matrices: 

 

• Packet received ( ) 1kθ = , feedback matrix 1K  

	
1

0

0 0

01

0 02

0 0 03

0 0 0 04

0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 1 0 1 0 0

0 0 1 0 1 0 1 0 0 0 0

0 0 1 0 1 0 1 0 1 0

p d

p d

p d

p d

p d

u K

e

k ku e

k k ku

k k k ku

k k k k ku

k k k k k ku

λ
λ λ
λ λ λ

  
   − +  
   − − +=
   − − − +  

   − − − − +   

⋯ ⋯ ɺ

⋯ ⋯ ɺ

⋯ ⋯

�����������������������������������������

	

0

4

4

4

OLx

e

e

e

e

 
 
 
 
 
 
 
 
 
 
 

ɺ

⋮

ɺ

ɺɺ

 

• Packet lost ( ) 0kθ = , feedback matrix 0K  

	

	
0

0

0 0

1 0

2

3 4

4 4

4

0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

OL

p d

p d

u K

x

e

u ek k

u ek k

u

u e

u e

e

 
 

               =                
 
 

ɺ⋯

ɺɺ⋯

⋮⋯

⋯

ɺ⋯
�������������

ɺɺ

 

 

Let’s derive the closed-loop system matrices now, we have: 

,1 ,2( 1) ( ) ( ) ( )OL OL OL OL OLx k A x k B d k B u k+ = + + , 

and 

( ) ( )i OLu k K x k= . 

 

Therefore “closing the loop” results in: 

	

,1 ,2

,2 ,1

,2 ,1

,

( 1) ( ) ( ) ( )

( ) ( )

( )

( )

OL OL OL OL i OL

OL OL i OL OL

OL

OL OL i OL

CLCL i

x k A x k B d k B K x k

A B K x k B d k

x k
A B K B

d k
BA

+ = + + =

 = + + = 

 
   

= +   
  

 
�������

 

where subscripts ,CL i stand for closed-loop, resp. packet lost/received 

 

Setting CL OLC C≡ and ( ) ( )CL OLx k x k≡ we arrive at the full closed-loop system matrix equation 

(notice that CLC and CLB are independent of ( )kθ , the packet delivery status): 

 

,( 1) ( )

0( ) ( )

CL i CLCL CL

CL

A Bx k x k

Cz k d k

+     
=     

    
. 
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4 Simulations 
 

In this section we present a couple of animations/scenario’s generated using MATLAB. 

 

A. System at equilibrium: moving with constant speed and spacing: 
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B. In this simulation we test the impulse-response of the system to the sudden “forward” 

 jump of the reference trajectory, thus the platoon has to accelerate in order to reach 

equilibrium again; We do this for packet-loss probability 0,1 and 0,9: 
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C. This simulation is similar, only we do some braking now for the extreme case of 

probability 0 (full feedback) and 1 (only on-board radars) 

 
See that system behaves quite “gracefully” with full feedback 

 
”Bumper kissing” was unavoidable with such low network quality. 
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D. and finally somehow realistic situation, uniform random disturbance, suppose it’s quite 

windy this time, probability of the packet loss is 0.5 
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5  (Stochastic) Frequency domain analysis 
 

  In this section we would like to analyze the system in its frequency domain (see [7] 

and [8]). This is especially “challenging” because of the randomness in the system. The main 

“quantity of interest” in this domain (just like in the deterministic case) is the gain of the 

system for the frequency values lying on the unit disk in the complex plane: 

• For : , [0, 2 ], 1iz z e zω ω π∈ = ∈ =C , 

• Find 
1

max z
z

G
=

, 

• Where zG  is actually the amplification of the
2π
ω
frequency in the disturbance/input. 

 

We actually have “stochastic” transfer function: suppose we have some realisation of 

the Markov network-noise process ( ) : 1,2,3....k kθ = , then the transfer function of 

some z would be: 

2 3

1 1 1
(1) (1) (2) (2) (1) (3)( ) ...

z z z
G z D CB CA B CA A Bθ θ θ θ θ θ= + + + +  

 

Therefore: 

1

1
( ) ( )

1 1

( ) k

k

k j kz
k j

G z D C A Bθ θ

−∞

−
= =

  
= +   

   
∑ ∏ . 

 

Thus if we would simulate multiple realisation of the transfer function (for a fixed z ), 

“the goddess Fortuna” would always choose different realisation of the Markov process ( )kθ , 

nevertheless nothing can stop us from taking the expectation of this stochastic transfer 

function. 

 

So we have a stochastic variable zG , defined on the space ( , , )Ω Σ P , where: 

• Sample spaceΩ is the space of all infinite Markov 
processes: { }{0,1,1,0,0,1.....},{1,0,1,0,0,1.....},{0,1,0,0,1,1.....},...Ω = , sometimes 

noted as {0,1}∞Ω = , 

• With its corresponding sigma-algebraΣ , generated as usually by the “cylinder sets”, 
actually aπ -system consisting of all infinite sequences of{0,1}with fixed 
first n terms: 

1 2

( ) :  is a -system such that:

 { (1), (2),..., ( ) : (1) , (2) ,..., ( ) , {0,1}, }n in

I I

I n n n

σ π

θ θ θ θ α θ α θ α α

Σ =

= = = = ∈ ∈N
 

• Probability measureP , actually a law of a sequence of independent and identically 

distributed Bernoulli random variables (with “chance of success” p ), as our Markov 

process with , , {0,1}ij jp p i j= ∀ ∈ is actually a Bernoulli process, thus: 

1 2( (1) , (2) ,..., ( ) ) (1 ) , where # : 1k n k

n i in p p kθ α θ α θ α α α−= = = = − = =P . 
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We start by stating that the problem of calculating zGE is well-posed/consistent/meaningful, 

because the set ofθ ’s where the system is “less stable than specified p ” has 
measure/probability zero: 

1
( )

lim 0

k

j

k

j
p

k

θ
=

→∞

  
  ≠ =      

∑
P . 

 

In other words: the set of possible realizations/trajectories where the probability of packet-loss 

is different than pre-specified p is aP -negligible/null set. 

 

Now we calculate the expectation of zG : 

1 1

1 1
( ) ( ) ( ) ( )

1 11 1{{0,0,...},
{0,1,...},...}

k k

k k

z k j k k j kz z
k kj j

G D C A B D C A B dθ θ θ θ θ
θ

µ
− −∞ ∞

− −
= == ==

         
   = + = +                     

∑ ∑∏ ∏∫E E , 

where θµ is a measure/law of the Markov processθ . 
 

Because the system is SMS (stable), the expectation is finite and then we can use the Fubini 

theorem (see [10]) to switch the integration order (the infinite sum is actually a discrete 

integral), thus expectation becomes: 

1 1

1 1
( ) ( ) ( ) ( )

1 11 1{{0,0,...},
{0,1,...},...}

k k

k k

k j k k j kz z
k kj j

D C A B d D C A Bθ θ θ θ θ
θ

µ
− −∞ ∞

− −
= == ==

            + = +                   

∑ ∑∏ ∏∫ E . 

 

Now we use the fact that the individual “steps” in the Markov process are independent, 

getting: 

1 1

1 1
( ) ( ) ( ) ( )

1 11 1

k k

k k

k j k k j kz z
k kj j

D C A B D C A Bθ θ θ θ

− −∞ ∞

− −
= == =

      
+ = +               
∑ ∑∏ ∏E E E E . 

 

But moreover they are also identically distributed, thus this becomes: 

( )( )1
1

(1) (1)

1

k

k

z
k

D C A Bθ θ

∞ −

=

+∑ E E . 

 

Now we see that because: 

(1) 0 1(1 )A pA p Aθ = + −E and (1) 0 1(1 )B pB p Bθ = + −E , where indexes by the matrices means 

network packet received/lost, we can simplify this transfer function like in the deterministic 

case, and finally arriving at: 

 

[ ]( ) ( )
1

0 1 0 1(1 ) (1 )zG D C zI pA p A pB p B
−

= + − + − + −E . 

 

With this formula we can perform “standard” frequency domain analysis, thus searching for: 

1
max z
z

G
=
E , for given packet-loss probability p . 
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5.1 Frequency domain simulations 

 

Here we present a couple of zGE gain graphs, with varying packet-loss probability, to see if 

the theoretical expectation of the transfer function is consistent with the simulations. We will 

display only the “left-most” part of the frequency spectrum, as the maximum is always there. 

 

We begin “on the safe side”, there is full feedback information, the packet-loss probability is 

zero: 
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With this type of the graph the x-axis should be interpreted in the following way: 

 

0 frequency  (actually equal to the sampling period)← →∞ , 

 

or equivalently: 

 

period of frequency 1 (in units of the sampling period)∞ ← → . 
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Now we jump right into a “disaster zone”, there is no network feedback available, only the 

information form the on-board radars: 
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We see a “smooth” maximum of 1.7525  at a frequency of 127k = (for the fifth vehicle), and 

because we are using the discretization step of 100000N = , we get the “dangerous” period of 

the disturbance frequency: 787N
k
≈ , so let’s disturb the system with the periodic disturbance 

(sinusoid) with this period and amplitude of30 : 
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And indeed that frequency with the period of 787 causes the largest error in the tracking error 

of the last vehicle: 4max( ) 1, 7525.30 52,57
t

t = = , as expected by zGE calculation. 
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The next diagram shows the result of the simulation, where we disturb the system with 2000 

different frequencies and look for the maximum amplitude in the tracking error of the last 

vehicle: 
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Notice again “smooth” maximum at 787, the results are consistent. 

 

To make the picture complete, we also used the build-in MATLAB function to draw a Bode 

plot for the tracking error of the last vehicle for the same probability 1: 

 
We see that the maximum is attained at 0.399≈ , interpretation is that the maximum resonance 

frequency period for this input-output combination is 787 (from 
787

1
max N

z
z

G
=

=E ), but 

expressed in 20ms units (sampling frequency period), therefore we recalculate the period: 

787.0, 02 15, 74T = = seconds, and this gives frequency 1 0,0635
T

f = = Hz, and finally in 

radians per seconds: 0, 0635.2 0,399rsf π= ≈ . 
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Let’s also try the other packet-loss probability: 
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Again the maximum of1.5213  at the same spot, and the second diagram shows the 

consistency as: 4max( ) 1,5213.30 45, 63
t

t = = . 
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Notice also that the maximum tracking error amplitude for the last vehicle gets smaller with 

decreased packet-loss probability, exactly as expected.
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Next diagram again shows the result of the simulation, where we disturb the system with 2000 

different frequencies and look for the maximum amplitude in the tracking error of the last 

vehicle, now for different packet-loss probabilities: 
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The maximal amplitude gets smaller with decreasing probability, also notice how the graph 

gets “stochastic” for {0,1}p∉ . 
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5.2 Linear matrix inequality analysis 

 

Here we reproduce the LMI analysis of the smallest achievableH∞ gain for a specific packet-

loss probability. 

 

This actually means that for different values of the packet loss probability [0,1]p∈ we let 

MATLAB (see [3]) solve the LMI defined by: 

• objective of minimizingγ , that is:H∞ gain of the system, 

• and constraints 

[ ] [ ]

[ ]

2

,1 ,1

1

,1 ,1

,2 ,2

2

,2 ,2

0
* *

0

0
* 0, 0

0

0 0 0

0 0 0

T T

Tcl cl

cl cl

cl cl

cl cl

Z

I

A Z B Z
p Z

C Z D I

A Z B Z
p

C Z D I

γ

  
  

  
      > >      
 

      
      

     

. 

 

The resulting minimal gain is plotted against its packet-loss probability: 

 
 

The diagram resembles the one in the paper [1], see figure 5, the scale and the “knee” position 

are different, nevertheless the curve has the same general shape. The differences are to be 

blamed on the modelling differences, as the authors of the paper apparently did not reveal 

everything about exact form of their LMI analysis model. 
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6 Conclusion/Discussion: 
 

We could rebuild the model based on the paper [1], the qualitative results obtained are 

also consistent (degradation of stability/frequency domain analysis/LMI analysis), 

nevertheless there were (small) quantitative differences. These are due to the ambiguity of 

authors in [1] to describe their used model. Often these ambiguities were very small details, in 

one particularly crucial case literally one word has made the whole difference: this was the 

case when we originally set-up the system based on the incorrect control objective: trying to 

force all spacing errors to zero, exactly as suggested by the corresponding formulas. 

Nevertheless these were inconsistent with the textual description which mentioned tracking 

errors, and voila! - all worked like a charm. 
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