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Summary

This paper examines forecasting the mood for depressive patients in therapy on a short-term basis.

Specifically, it studies the impact of adding therapy andmessaging data, not used in previous research,

on the performance of three single-layer models: recurrent neural network (RNN), gated recurrent unit

(GRU), long short-term memory network (LSTM). Due to large variance in patients’ behavior, clusters

of patients are formed using hierarchical agglomerative clustering before training models. In addition,

this paper studies the effect of varying the amount of timesteps of historical data as input. Out of the

three models, the worst performing model is the RNN, with the GRU and LSTM having near identical

performance. No significant positive effect on the performance of the models is observed by adding

messaging and therapy data or by adding more timesteps of historical data. Additionally, no model

was able to outperform the baseline of the persistence model. Possible causes are the architectures

of the models, the manually extracted features, the clustering of the patients or the preprocessing

performed on the data.
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1 Introduction

1.1 Goal

With over 300 million people suffering from it worlwide, depression is the number one mental health

disorder globally [1]. An increased risk of mortality is associated with this disorder for both major de-

pression and subclinical forms, making it a life-threatening disorder [2]. Alongside these individual

effects, there is also a larger social effect, namely the economic burden. In Europe alone, the to-

tal annual economic cost of depression and its treatment in 2004 is estimated at €118 billion, 1% of

the total GDP of Europe [3]. Therapy for this mental disorder is evolving from the conventional psy-

chiatrist counseling to self-help therapy and a mix of both, such as the E-COMPARED project. The

rapid progression in technology leading to smartphones and widespread availability of fast internet

connections made this evolution possible. Nowadays, therapists have the option to contact patients

through their phones and are able to intervene in real-time. This is precisely how the EMA (Eco-

logical Momentary Assessment) dataset from the E-COMPARED project (European COMPARative

Effectiveness Research on blended Depression treatment versus treatment-as-usual) is produced:

self-therapy through modules in an app, self-reporting of the mental state and questionnaires of a

patient, and real-time intervention from the therapist.

This data can be used to forecast the mood of depressive patients in order to warn the patients them-

selves, the therapist or even relatives. However, several papers have already demonstrated that this

forecasting can be challenging [4, 5, 6, 7, 8]. One of the challenges is the large differences in individ-

ual mood reporting. Making a model per individual often leads to shortage of training data whereas

creating a single model leads to low performance. A possible solution to this is grouping patients on

their rating behavior and then training models on those groups [7, 8]. Another challenge is the limited

value of historical mood in predicting future mood. This problem can perhaps be tackled by smart

feature engineering such as incorporating extra therapy and message information [5], which are also

included in the E-COMPARED dataset. Both of these methods will be tested in this paper alongside

using advancedmachine learning models capable of capturing information from historical input.

Most papers that try to forecast mood among depressive patients only use the self-reported data

from the patients. This is mostly due to an absence of extra data recorded from these depressive

patients. On top of that, the papers also tend to use only a long short-term memory network (LSTM)

and gated recurrent units (GRU) [6, 8]. The goal of this paper is to predict the mood of depressive

patients using historical self-reported data, therapy data and messaging data, on a short-term basis.

For this purpose, this paper will compare the effectiveness of a LSTM, GRU and a regular recurrent

neural network (RNN). The dataset used in this paper comes from the E-COMPARED project. The

research question will be: ”How accurately can we predict a depressive patient’s mood given their

self-reported, therapy and messaging data?” In order to properly answer that, two sub-questions will

be defined: ”Does including messaging and therapy data improve the performance of forecasting

mood, given their self-reported data?” and ”Which of three models LSTM, GRU and RNN, performs

the best in predicting a depressive patients’ mood given their self-reported, therapy and messaging

data?”.
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1.2 Structure

The report is structured as follows: first, relevant literature regardingmood prediction usingmobile data

and time series prediction in general will be examined in Section 2. Then, the complete methodology

of this paper, including modeling techniques and metrics, will be discussed in Section 3. Next, the

collection, transformation, clustering and analysis of the dataset will be shown in Section 4. Before

the results are discussed, information about the benchmark creation and model setups will be shown

in Section 5. After that, the results will be shown in Section 6 and the discussion and conclusion will

be presented in Section 7.
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2 Literature Review

This section will give an overview of relevant literature on forecasting mood of depressive patients and

forecasting timeseries in general. We will start by examining papers discussing time series in general

in Section 2.1 and will then move to papers that discuss the problem at hand in more detail in Section

2.2.

2.1 Timeseries forecasting

The papers examined here are papers that employ the same techniques used in this paper regarding

timeseries forecasting, namely RNN, GRU and LSTM. These papers study timeseries forecasting in

various domains, demonstrating the effectiveness of the chosen models on varying problems.

In the paper written by Weron [9] they examine the state-of-the-art methods used for electricity price

forecasting. The authors note that the price of electricity depends on weather and other external

influences, much like mood. For the purpose of forecasting the electricity price, they look at five

different types of models: multi-agent models, fundamental models, reduced-form models, statistical

models and computational intelligence models. For the purpose of our research, we are not interested

in the last category as a whole, but rather a sub-category: recurrent neural networks. The authors note

that the major strengths of recurrent neural networks are, alongside their ability to handle complexity

and non-linearity, their flexibility. In their survey, they find that computational intelligence models in

general are better at forecasting the electricity price than statistical models.

Sainath et al. wrote a paper called ’Convolutional, Long Short-Term Memory, Fully Connected Deep

Neural Networks [10]. In their paper, they examine the effectiveness of combining convolutional neu-

ral networks (CNN) with LSTM and deep neural networks (DNN). The datasets used in their paper are

multiple large vocabulary sets, ranging from 200 to 2000 hours. They compare the individual models

and combinations, using various weight initialization methods and feature engineering setups. Their

proposed new modeling architecture called CLDNN outperforms the baselines, gaining 4-6% perfor-

mance in terms of word error rate (WER) over the strongest individual model, LSTM. Their proposed

CLDNN is mainly useful when there is an abundance of data, due to the large amount of weights that

need to be optimized.

In 2017, Lipton et al. wrote a paper on diagnosing patients using LSTM [11]. The dataset used in their

paper contains multivariate timeseries of observations. It includes sensor data and lab results that

are obtained each time a patient makes a visit to the intensive care unit. The authors note that, due

to the varying length of the sequences and missing data, mining their dataset is challenging, but that

RNN are powerful solutions to their problem. Their best performing setup is an LSTM network with a

classification performance of 0.8643 in terms of microAUC compared to 0.7128 of the base ratemodel.

They note that their model, trained solely on raw time series, outperforms all their baselines, which

include logistic regression and multilayer perceptrons trained on hand-engineered features.
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2.2 Mood forecasting

The papers examined in this section are papers closely aligned with the work in our research. Since

only five papers are examined, we choose to examine them thoroughly in this section.

The first work that is examined is a paper by John Pastor and Ward van Breda from 2015 [4], in which

they try to accurately predict future mood, while also examining what the most important features in

their models are. In their work they use a dataset consisting of 27 users with data collected through a

mobile phone app over a period of six weeks, in which mood is rated with a number between one and

ten. They apply an ARIMA, linear model, regression tree, random forest and support vector machine

(SVM) to their dataset. To gauge performance of the models, they calculate the mean squared error

and the accuracy. In order to measure accuracy, they transform the predictions by rounding them to

one decimal and then check if the prediction lies within a certain interval around the actual prediction,

in order to determine if it is correct or not. The baseline used in their paper is the overall mean of

mood. Only the random forest and SVM models outperform the baseline (64.359%, 0.441), with the

SVM performing the best in terms of their accuracy (68.880%) and the random forest model in terms of

mean squared error (0.402). Despite the variable importance varying significantly between patients,

they find that the most important features are statistics about mood itself, such as lagged variables

and the mean.

The next paper that is examined is written by Mehrotra et al. in 2016 [5]. In their paper, they create

an approach for the monitoring of depressive states and display a relation between smartphone in-

teraction and depressive states. For this, they use multi-modal sensing via smartphones and various

interaction features such as location, call, sms and usage logs. Their dataset contains 25 participants

with data collected over a period of 30 days. They implement Kendall’s Rank correlation coefficient in

order to analyze the mood of the depressive patients and the association with notification processing

and with phone usage. Features that correspond to notification processing are features such as the

acceptance rate of notifications, the average amount of time a notification is left unopened, the av-

erage amount of time between opening and deciding on the notification, and the average amount of

time between delivery and deciding on a notification. Features included in the phone usage metrics

are, for example, the total amount of launched applications, total application usage time, total time

the phone was used, and the number of times the phone was unlocked. Their results indicate that

there is a modest correlation between the depressive state and notification metrics calculated over

14 days. This also holds when the metrics are calculated over 7 days but becomes far weaker when

it is calculated solely on the previous day. The resulting correlations for the phone usage features

are weaker. There is only moderate correlation when the metrics are calculated over 14 days, low

correlation when calculated over 7 days and no significant correlation when calculated over 1 day.

From these results they conclude that forecasting performance benefits from using historical phone

interaction data, to a certain extent.

Suhara et al. wrote a paper in 2017 on forecasting severly depressed days and do so by developing

a recurrent neural network model with embedding layers [6]. The research goal of their paper is

to predict whether the user has at least one severely depressed day in the upcoming n days given

information from the previous k days. Their definition of a severely depressed day is when a user
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”has negative feelings all day and exhibits inactive behavior in which he or she avoids leaving home”.

In this paper they use a relatively large dataset containing almost 2400 patients, who are all self-

declared depressive patients. It contains measurements of mood, behavior and sleep, from which

they then create two datasets: a dataset containing only mood and a dataset containing all features.

They compare both datasets on two different models, namely a SVM and a long short-term memory

network (LSTM). They start by testing on three scenarios: fixing k at 14, due to the nature of most

of the questions in their data, while setting n at 1, 3, or 7. From this experiment they conclude that

predicting one day ahead (n = 1) is the best setting, as the AUC-ROC decreases as n increases.

This follows the intuition that the further in the future you try to forecast, the harder it gets. They also

find that the LSTM model outperforms the SVM model in each case and continue forward with just the

LSTM model. Some features in their model show no positive influence on the performance whereas

they did in previous studies. They conclude that this results from fitting one large model over all users

instead of splitting up the users as individuals or in groups. Next, they fix n at 1 and vary k from 1 to

21. From the results they conclude that using two weeks of historical information is enough to predict

severely depressed days. Another conclusion drawn is that the most recent day contains the most

predictive power, but the previous 13 days before that also have significant predictive power, with the

same day of the week having extra predictive power. They examine this further and show that Fridays,

Saturdays and Sundays are generally the happier days, whereas Monday through Thursday are the

overall sadder days.

In 2018 Jaques et al. also performed research on the subject of forecasting mood[7]. In their paper

they propose a deep neural network (DNN) and a Gaussian process (GP) to predict a person’s mood

tomorrow. They compare the generic models to a more sophisticated counterpart. For the DNN they

add multitask learning and for the GP they add domain adaptation. The dataset used in their paper

contains data of 206 undergraduate students, with 30 days of data per participant. The dataset con-

tains a vast amount of information, from which they engineer 343 features in total. These features can

be split up into six categories, namely physiology, location, phone, surveys, weather and mood. They

then scale down their dataset to only the participants with at least 25 days of data from all sources.

The resulting dataset then contains 69 participants, a significant reduction in size. To this data they fit

the four models and compare them. Their results show that both improved models outperform their

generic counterparts in terms of mean absolute error, but only the improved DNN having a significant

performance boost. On top of that, they investigate if the improved models are better at capturing the

underlying mood of participants. They again find that both improved models outperform the generic

models in terms of intraclass correlation coefficients, with both improved models outperforming signif-

icantly. From these results they conclude that personalizing these models to participants significantly

improves the performance of said models, if it is done in a principled way.

The final paper that is examined is written by Mikus et. al in 2018 [8]. Their objective is to create

a model that predicts short term mood developments using adherence and usage data as additional

predictors. For this purpose, they use two different modeling techniques, namely LSTM and Gated

Recurrent Unit (GRU), and vary both model’s architectures for a total of six different setups (single

layer, multiple layers, added recurrent project layer). In addition, they create a benchmark using

support vector regression with a radial basis function kernel. The dataset used in their paper consist
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of data between 9 and 425 days of 143 patients with amajor depressive disorder. They split the dataset

in two, one containing just the mood ratings and basic information such as nationality, one containing

additional features they created through feature engineering. Before fitting the models, they create

clusters from the patients, ultimately choosing 12 from the hierarchical clustering dendrogram they

create. Next, they create three scenarios: train a model on all patients, train a model per cluster of

patients, train a model per individual patient. They then train 18 models: both datasets, on all three

three scenarios, using 3 different architectures and use the RMSE as metric. The obtained results

indicate that there is little difference in the best variants of the models. Interesting to see is that the

clustered model performs worse on the extended dataset (0.075) than on the original (0.066). Overall,

they note that forming clusters of the patients slightly improves the performance (0.066) in comparison

to the single model (0.070) and the individual model (0.086). They also note that the mood ratings

themselves have the most predictive power and that a 7 day historical time window provides the best

fit.
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3 Methodology

In this section, the general methodology of this paper is explained. We will start by giving a short

overview of the complete process, followed by theoretical background on the methods used in this

paper.

3.1 Overview

First, the data is transformed from a timestamp format to a sequence of discrete timesteps per patient

format and extra features are created. This results in missing values, as there are days on which a

patient does not perform any activity or does not fill in his or her ratings. To fix this, missing value

imputation is performed. After the missing value imputation is performed, the dataset is split up into

clusters of patients. This is one of the ways, as explained in the literature study in Section 2, to

balance the available data size and variance between users. After clustering is performed, the dataset

is analyzed on correlation per cluster. The complete dataset is used to create two datasets: one

containing all the features, which include the therapy and messaging data, one containing only the

basic information of the patients and their self-reported data. Both datasets are then again split up into

50% training data and 50% testing data, per user sequence, using the first half of each sequence as

training data and the second half as testing data. The data is then scaled using a so called ’MinMax

Scaler’, which linearly scales the data between 0 and 1. The scaler is fitted on only the training data

and then used to scale both training and testing data, as scaling the entire dataset at the same time

includes information about the test set in the training set [12]. Both datasets are then used for training

multiple RNN, GRU and LSTM models.

3.2 Clustering

The two most common approaches for clustering are hierarchical clustering and centroid-based clus-

tering. This section will shortly discuss the differences between these two categories, such as their

parameters to be chosen and their advantages and disadvantages.

Data: set of N points

Result: set of k clusters

create a cluster for each separate point xi;

create a proximity matrix;

while more than 1 cluster do

merge the two least dissimilar clusters based on similarity metric;

update the proximity matrix;

end

Algorithm 1: Hierarchical agglomerative clustering

Hierarchical clustering

Hierarchical clustering algorithms, in short, are methods that uses the idea that distance of objects to

each other determines their likeliness: objects that are further away have less in common with objects

that are closer by. These methods start with a seperate cluster for each datapoint and then merge the
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two closest clusters, iteratively, until there is one cluster containing all datapoints (agglomerative), or

the other way around (divisive). Pseudo-code for the agglomerative version are displayed inAlgorithm

1. The user will have to decide the threshold for which the clusters are no longer merged or split up

or the maximum amount of resulting clusters. The algorithms distinguish from one another based on

the type of distance metric and linkage criteria. Advantages are, but not limited to, the flexibility of

choosing a distance or similarity metric and performance on different types of clusters in the data [13,

14]. One of the major disadvantages however is the time complexity (O(n2)) of the algorithm [13,

14].

Data: set of N points

Result: set of k clusters

choose the amount of clusters k;

initialize the center of each cluster cj randomly;

while change in centers or iterations left do

(re)assign each point xi to the closest cluster based on cluster centers;

update the centers of each cluster cj
end

Algorithm 2: Centroid-based clustering

Centroid-based clustering

Centroid-based clustering algorithms try to find k cluster centers and assign every datapoint to one

cluster by representing a cluster center with a single mean vector [13, 14]. They do so by starting with k

cluster centers and moving these by minimizing the distance in the clusters, or sometimes maximizing

the distance between clusters [13, 14]. In this case, the user has to determine how many resulting

clusters there have to be upfront. Pseudo-code for a general centroid-based clustering algorithm

are shown in Algorithm 2. Different algorithms exist with different initialization methods and different

objective functions. These algorithms are generally faster than hierarchical algorithms (O(n logn))

but as a drawback have less flexibility and generally have low performance when the data has non-

spherical clusters [13, 14].

Choice of clustering techniques

In this paper, we will try one hierarchical clustering technique, agglomerative clustering, and one

centroid-based technique, k-means clustering, as both methods are the most common in their re-

spective domain [13, 14]. We will then compare both results on the total number of clusters, the size

of the clusters and the correlation between the feature and target variable per cluster. We will then

choose one clustering method and use those to split up the patients in the dataset.

For agglomerative clustering, several linkage functions are available. The most common ones are the

single linkage, complete linkage and mean linkage function, and Ward’s criterion or Ward’s method.

Ward’s method minimizes the total variance within clusters, which is exactly what we try to accomplish.

We want to create clusters in which the there is as little variance possible in the habits of the patients

regarding mood rating. Ward’s method is formulated as follows:

d(u, v) =

√
|v|+ |s|

T
d(v, s)2 +

|v|+ |t|
T

d(v, t)2 − |v|
T

d(s, t)2
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, where T = |v| + |s| + |t|, u is the cluster merged from clusters s and t, v is an unused cluster and

| · | is the cardinality of the given cluster. In essence, Ward’s method calculates the resulting total

variance within clusters for every possible merger and chooses the best merger, in a greedy manner.

There are also many distance metrics available for hierarchical clustering. The most common distance

metric is the Euclidean distance. It measures the distance between two vectors as the square root of

the summed quadratic differences of the individual elements. Alternatives are the squared Euclidean

distance,Manhattan distance ormaximum distance. The choice of metric in this paper is the Euclidean

distance, as it is the only metric suited for use with Ward’s criterion.

For k-means clustering, there are also two parameters that needs to be chosen, namely the amount

of clustersk and the distance metric. It is possible to also define the starting location of these clusters,

but we will refrain from doing this. Instead, we will run several iterations of k-means with the same

k and see which one results in the ’best’ clusters: the clusters which result in the smallest distortion,

which is defined as the sum of the squared distances between each observation and its corresponding

centroid, and use the Euclidean distance as distance metric.

3.3 Time series forecasting

In this section the three types of model used in this paper are discussed. Abrief conceptual explanation

per model is given alongside their advantages and disadvantages regarding timeseries forecasting.

For more information on all three models, there are more comprehensive papers and guides that

epxlain the process in more detail, such as [15, 16, 17]. Including this information would increase

the size of this paper significantly without benifit. All three models are versions of recurrent neural

networks. In comparison to regular feed-forward neural networks, a connection is established between

successive units along a sequence. This in turn allows the network to capture dynamic temporal

behavior from a sequence, making them suited for timeseries forecasting. In order to ’learn’, these

models employ backpropagation through time, a more complex version of backpropagation found

in feed-forward neural networks. Discussing this is outside the scope of this paper and we refer to

external resources for more information, such as [15].

Basic RNN

The basic variant of recurrent neural networks is the basis on which the advanced models are built.

The mathematical formulation is given in the set of equations below.

a<t> = g(Wa · [a<t−1>, x<t>] + ba)

ŷ<t> = g(Wy · a<t> + by)

Here, x<t> is the input vector at timestep t, Wi is a weight in the matrix of weights W , a<t> is the

output at timestep t, y<t> is the prediction at timestep t, bj are the biases and g(x) is the activation

function. The information that is passed along between the units is the output a<t> from timestep

t−1 to t, allowing temporal information to travel from prediction to prediction. A common problem with
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this type of network is the ’vanishing gradient problem’, which occurs when the gradient of the error

approaches zero as the length of the input sequence increases. This is a result of multiplication of

the activation outputs, as these typically take values between 0 and 1. The performance of this model

type typically worsens as the length of the dependencies in the data increases.

GRU

Amore complex variant of the basic recurrent neural network is the Gated Recurrent Unit (GRU) which

is able to combat the vanishing gradient problem. In this model, there are two ’gates’, the update gate

Γu and reset gate Γr, that both have influence on the output and indirect influence on the prediction

of the model. The set of equations below describes the model mathematically.

c̃<t> = tanh(Wc · [Γr ∗ c<t−1>, x<t>] + bc)

Γu = σ(Wu · [c<t−1>, x<t>] + bu)

Γr = σ(Wr · [c<t−1>, x<t>] + br)

c<t> = Γu ∗ c̃<t> + (1− Γu) ∗ c<t−1>

y<t> = g(Wy · c<t> + by)

Here, x<t> is the input vector at timestep t,Wi is a weight in the matrix of weightsW , c<t> is the output

at timestep t, c̃<t> is the candidate output at timestep t, y<t> is the prediction at timestep t and bj are

the biases. The increase in complexity allows the model to learn longer time dependencies better than

the previously mentioned RNN, but comes at the cost of higher computational requirements.

LSTM

The last variant we will discuss is the Long Short-Term Memory network (LSTM). It is very similar to

the previously mentioned GRU, but differs in two aspects. First, the reset gate has been split up into

two gates: the forget gate Γf and the output gate Γo, and second, the addition of a memory cell a<t>.

The equations below formulate the model mathematically.

c̃<t> = tanh(Wc · [a<t−1>, x<t>] + bc)

Γu = σ(Wu · [a<t−1>, x<t>] + bu)

Γf = σ(Wf · [a<t−1>, x<t>] + bf )

Γo = σ(Wo · [a<t−1>, x<t>] + bo)

c<t> = Γu ∗ c̃<t> + Γf ∗ c<t−1>

a<t> = Γo ∗ tanh(c<t>)

y<t> = g(Wy · a<t> + by)

Here, x<t> is the input vector at timestep t, Wi is a weight in the matrix of weights W , c<t> is the

output at timestep t, c̃<t> is the candidate output at timestep t, a<t> is the memory cell at timestep t,
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y<t> is the prediction at timestep t and bj are the biases. The addition of the third gate and memory

cell allow the LSTM to model even more complex patterns and typically outperforms the GRU, at the

cost of being less computationally efficient.
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Loss functions

The previously mentioned models have several loss functions available for regressive objectives, such

as themean squared error (MSE), root mean squared error (RMSE),mean absolute error (MAE). The

MAE calculates the loss as the total sum of absolute errors between the predictions and true target

values, but gives no additional weight to larger errors in the way that the MSE and RMSE do. The

MSE calculates the loss as the total sum of quadratic errors and the RMSE is simply the square root

taken over this loss. Due to the quadratic term in the loss function, both the MSE and RMSE penalize

larger errors more, which is useful when the data exhibits spiky behavior. We choose to use the RMSE

as the loss function over the MSE due to the RMSE being in the same unit size as the predicted value

due to the square root factor.
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4 Dataset

In this section, the collection, transformation, clustering and analysis of the dataset will be discussed.

We will start by giving an overview of the origin of the data, followed by a brief insight into the raw

dataset and then discuss what data is filtered out. Then, we will show which transformations are ap-

plied, followed by how the missing values are imputed. Next, the clustering of the patients is explained

and the dataset is briefly analyzed for insights.

4.1 Collection

The dataset used in this paper stems from the E-COMPARED project [18]. The E-COMPARED project

is a study in which patients received blended treatment for their depression, where blended treatment

stands for a mix of online and offline contact with a therapist. It contains data from 8 research sites,

from which 5 have additional log file data from the Moodbuster system. This system automatically logs

system usage from the patients, such as which module is being looked at and at which specific page

from said module. For this paper, we look at the data of the countries which do include Moodbuster

data, as we’re investigating if including therapy data significantly improves performance. We will also

filter out patients that have less than 8 days of data as we want to vary the historical window between 1

and 7 days for input. This filtering results in a dataset with records of 8-888 days of 202 patients.

4.2 Insight

In this section, we will show the mood sequence from three random patients, which are shown in

Figure 1, 2 and 3. Pay attention to the scale of the x-axis as it varies between the figures. Figure 1,

the first of the three figures, shows a patient who’s mood rating fluctuates between roughly 8 and 9,

with some extreme values towards 6.5. The patient’s mood does not show a clear up- or downwards

trend over a period of 170 days. In contrast to that is the second patient’s graph. Figure 2 shows a

relatively fast upwards trend, starting at around 4 and ending around 7, with bigger fluctuations than

the first patient. The third graph is also completely different from the first two: An upwards ’peak’

from roughly 1.25 to around 2.5, then slowly decaying back to 1, without any fluctuation. These three

figures illustrate the significant amount of variance between different patients.

4.3 Transformation

First, a dataframe describing the rating habits of patients is created. This information can be used

further in this paper to create the clusters of patients to train the models on. For this purpose, we

calculated several statistics, which are shown in Table 1.
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Figure 1: Mood sequence for random patient 1, spanning 170 days
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Figure 2: Mood sequence for random patient 2, spanning 120 days
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Figure 3: Mood sequence for random patient 3, spanning 45 days
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Table 1: Description of statistics of mood ratings behavior

Statistic Description

Count Total number of days with daily average mood ratings

Maximum Maximum of daily average mood ratings

Minimum Minimum of daily average mood ratings

Mean Mean of daily average mood ratings

Median Median of daily average mood ratings

Standard Deviation Standard deviation of daily average mood ratings

First quantile First quantile of daily average mood ratings

Third quantile Third quantile of daily average mood ratings

Percentage The percentage of days with daily average mood ratings

Max separate Maximum consecutive amount of days without daily average mood ratings

Max consecutive Maximum consecutive amount of days with daily average mood ratings

Table 2: Description of features in basic dataset

Feature Type Description

Day Integer Number of the therapy day for a patient

Weekday i Boolean Denotes if the current day is weekday i

(i ∈ {1, 2, ..., 7})
Rating i Float Average daily rating of a patient for question i

(i ∈ {1, 2, ..., 7})
Country i Boolean Denotes if the data is recorded in country i

(i ∈ {1, 3, 4, 6, 8})
Gender Integer Gender of the patient

Male (i = 1), female (i = 2)

Status i Boolean Denotes if marital status of patient is i

(i ∈ {1, 2, ..., 5})
Education i Boolean Denotes if education of patient is i

(i ∈ {1, 2, 3})

Next, an input dataframe has to be created for the models to be trained on. This dataframe should

consist of sequences of dates with information per patient. A row consists of a patient id and date

followed by all the features in the files. The list of features is shown in Table 2. For the rating, country,

status and education features and their corresponding values, see Appendix A.1 to A.4.

In order to see if the message and therapy data improve the performance of the models, we create a

second dataset including all data available, shown in Table 3. The features are calculated on a daily

basis and as a running total. The messaging features, with prefix message and char, are calculated

separately for sent by the patient and received by the patient. This means that these features are cal-

culated twice: once for the messages from patient to therapist, once for the other way around.
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Table 3: Description of features additionally in complete dataset

Feature Type Description

Pages total day Integer Daily total number of pages read

Pages total Total number of pages read

Time total day Integer Daily total time spent by reading

Time total Total time spent by reading

Time average day Float Daily average time per page spent reading

Time average Average time per page spent reading

Message total day Integer Daily total number of messages sent/received

Message total Total number of messages sent/received

Char total day Integer Daily total number of characters sent/received

Char total Total number of characters sent/received

Char average day Float Daily average number of characters per message sent/received

Char average Average number of characters per message sent/received

The therapy features (top half in Table 3) are provide information about the quantity and quality of the

therapy sessions of the patients. We hypothesize that when the amount of pages read or time spent

reading increases, the patient’s mood would increase. This also count for the running total: we expect

that when a patient has progressed through more therapy modules, the average mood of the patient

increases, as that would be the intended purpose of the modules.

The messaging features (bottom half in Table 3 summarize the amount of contact that has taken place

between the patient and their therapist via text messaging. We would expect that the mood of a patient

should increase when he/she has had contact with their therapist, or atleast that the decline in mood

is dampened a bit. This would be a result of counseling or guidance provided by the therapist. Longer

messages would probably contain amoremeaningful conversation, which we expect would havemore

influence on the mood of the patient.

4.4 Missing value imputation

Due to the transformation from a long format to multiple sequences, a lot of gaps in the data are

created. These can result from, for example, dates on which a patient does not fill in his mood, not

message their therapist or not read one of the modules. Filling in this missing information is done

differently per feature. The descriptive statistics for the behavior of rating mood contain no missing

values, as all these statistics are calculated on mood. If a patient has not rated mood at all, he or she

we will not be present in te dataset in the first place. For the basic features in Table 1, no imputation

is needed as there are no missing values. The missing values in the ratings i have been filled as

follows: if the gap is at most three days, the values are interpolated linearly. If the gap is larger, the

values are filled with the mean over the originally computed daily averages. This follows the same

protocol as stated in the paper from Mikus et. al [8]. The missing values in the daily features included

in the complete set are all imputed with 0, as an absence of these values means an absence of that
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event. The running totals contain no missing values, as they are simple cumulative sums over the

daily features.

4.5 Patient clustering

The clustering of the patients is done by agglomerative hierarchical clustering, using Ward’s criterion

as linkage function with the Euclidean distance. This is a result from comparing agglomerative clus-

tering and k-means clustering, as discussed in Section 3.2. Both methods produce similar results with

a slight advantage to hierarchical clustering, which led us to prefer agglomerative clustering, as the

results of this method are also deterministic, whereas the results from k-means clustering can vary.

The features used to perform the clustering are listed in Table 1.

The goal is to create several clusters of patients that exhibit similar rating behavior while maintaining

enough patients per cluster to have a sizable training and test set. This resulted in 13 clusters, with

most clusters containing 10 to 20 patients, the smallest cluster containing 5 and the largest cluster

containing 41. This is based on visual inspection of the dendrograms, which are shown and analyzed

in Section 6.1, and balancing the distribution of patients per cluster.

4.6 Analysis

Before we start with the results, we will take a look at the data. Specifically, we will analyze the correla-

tion between the features and the target variables and show a sample sequence from a patient. First,

let us look at the correlation plots. These are computed using Pearson’s R between the target variable,

tomorrow’s mood, and the features, per cluster of patients. The correlation heatmap resulting from

agglomerative clustering is shown in Figure 4. For the features ’rating_1’ to ’rating_7’, a table with the

corresponding questions is given in Appendix A.1. The question regarding mood is ’rating_2’.
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Figure 4: Correlation coefficients for features versus y, per cluster

Figure 4 shows that the highest correlation can be found between the mood of today (rating 2) and the

17



mood of tomorrow. The figure also shows that there is a significant correlation between the other 6 rat-

ings and the mood of tomorrow. There is also significant correlation between the long-term messaging

and therapy features and the target variable, whereas the daily features show little to no correlation.

This could be an indication that therapy does have an impact in the long run, but less in the short-term.

In contrast of this is the low correlation between the day of the week and the mood rating of tomorrow.

Several papers examined in Section 2 showed performance increases after adding the day of the

week as variable. These coefficients do not prove that they will have low impact on performance as

only direct correlation is measured. The general information about patients also seems to correlate

with the target variable.
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5 Experimental Setup

This section will cover the creation of the benchmark and the experimental setups for the models. A

concise overview of the choice of benchmark and an overview of the different parameter settings for

the models will be shown. The results of these setups will be discussed in Section 6.

5.1 Benchmark

In order to provide a good comparison between the performance of the models, a benchmark is cre-

ated. For this purpose, we create a simple persistence model, where the forecast for the next timestep

is equal to the previous observed value. We believe this is a better choice than predicting the mean,

as there is a lot of fluctuation and variance in the ratings of mood. Predicting the mean would result

in a error that is significantly higher than the persistence model.

5.2 Clustering setups

Clustering the patients is done using two methods: hierarchical agglomerative clustering and k-means

clustering. For hierarchical clustering, the optimal amount of clusters k will be chosen based on the

amount and size of clusters using the resulting dendrogram. Since this clustering method is deter-

ministic, there is no need for repeated experiments. In contrast to that is k-means clustering which is

non-deterministic. For this method, several values for k will be tested in repeated experiments to cre-

ate confidence intervals for the resulting distortion metric. For both clustering methods, a correlation

heatmap between the features and the mood rating will be created.

5.3 Model setups

Table 4: List of parameter values to be explored

Parameter Values

Neurons [5, 10, 25, 50]

Epochs [10, 50, 100, 250]

Batch size [2, 4, 8, 16]

Timesteps [1, 3, 7]

For all three model variants, we will use the same test setup, where we create a single-layer model and

train one variant per cluster. The architecture is a result of the literature review in which no significant

performance gain was found when increasing the amount of layers in the network. We will vary the

amount of neurons per layer between 5 and 50, vary the amount of epochs between 10 and 250, vary

the batch size between 2 and 16 and vary the amount of historical timesteps between 1 and 7 (days).

Each model setup will be run 5 times, as all three models are of a stochastic nature. From these 5

runs, we will average the obtained error and calculate the standard deviation among these errors. For

a full list of values of the parameters that will be explored, see Table 4.
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For each cluster, we reserve the first 50% of a patient’s data for training and the last 50% of the data

for testing. A training set for a specific cluster will therefore be multiple sequences originating from

different patients. In order not to mix the historical data of these patients, we will reset the hidden stats

of the models between different sequences.
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6 Results

This section will show the results of the clustering methods, the benchmark and the models. We

will start by showing the clustering results of the agglomerative clustering and k-means clustering

methods and compare their effectiveness using the correlations between the features and the target

variable. We will then show the results of the benchmark before comparing the different models on

their performance and on the different datasets.

6.1 Clustering results
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Figure 5: Dendrogram for agglomerative clustering

Figure 5 shows the dendrogram created using the hierarchical agglomerative clustering method. The

different colors for the leaves and edges show the distinct clusters. The height of the edges show the

relative distance expressed as Ward’s criterion. The horizontal line roughly shows the cutoff value

chosen, marking the maximum distance for which clusters can be merged. This value is determined

based on the visual inspection of the dendrogram: the resulting clusters contain a relatively even

number of patients, while keeping the relative distance in the clusters also relatively close. Setting

the threshold higher would result in having two extra relatively larger clusters, setting it lower would

disperse a lot of clusters into many smaller ones. We determined that this value would balance the

amount of clusters and the amount of variance per cluster the best.

In order to get the value for k for the k-means clustering approach, we use the elbow method, shown

in Figure 6. This figure is the result of running 5 iterations of the same k value and taking its mean

distortion value. Unfortunately, we see that there is no ’hard’ elbow in the graph. We do see a small

stagnation of the error at k = 13, which is the value of k we choose.
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Figure 6: Elbow graph for k-means clustering

The corresponding correlation heatmap between the features and target variables has already been

shown in Section 4.6, but we will show it here again for better comparison between k-means and

agglomerative clustering, in Figure 7 and 8. It is clear that the strength of the correlations in both

heatmaps is about the same for the same features, with the correlations for hierarchical agglomerative

clustering being slightly stronger.

Table 5 shows the size of the clusters per clustering method. As can be seen, most clusters for the

hierarchical method contain between 8 and 22 patients, with one cluster containing just 5 patients and

one cluster containing 41. The clusters sizes resulting from the k-means method are almost as evenly

spaced, but with more small clusters and no extra large cluster.
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Figure 7: Correlation coefficients for features versus y, per cluster, agglomerative clustering
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Figure 8: Correlation coefficients for features versus y, per cluster, kmeans clustering

Table 5: Cluster sizes of resulting from agglomerative and k-means clustering

Cluster 1 2 3 4 5 6 7 8 9 10 11 12 13

Size K-means 4 5 6 13 14 14 16 17 17 20 24 24 28

Size Agglomerative 5 8 9 11 12 13 13 15 16 18 19 22 41

6.2 Model results

We start by presenting the results from the benchmark model, the persistence model. This model

achieved an RMSE of 0.0978. Next, the results from the model setups are shown in Figure 6, 7,

8. None of the model setups lead to an increased performance compared to the persistence model.

23



The best test results for all three model variants are: RNN 0.120 (0.003), GRU 0.113 (0.005), LSTM

0.112 (0.002). If we perform t-tests to inspect the difference in performance, we see that only the RNN

is statistically worse than both the GRU and LSTM (p = 0.0277, p = 0.0011) at the 95% confidence

interval.

There is no significant difference in the performance of the GRU and LSTM (p = 0.689). Both the

GRU and LSTM did not benefit from adding extra timesteps of historical data, achieving their best

performance for t = 1. The RNN performed consistently worse on the complete dataset than on the

base dataset. For the GRU and LSTM this differs between the amount of timesteps t, but showing

no consistent improvement. Interesting to see is that for several model setups the test performance

is higher than the train performance. After investigating the train and test dataset, we found that test

set contained a significant amount more imputed mean values than the training set (43%).

When we inspect the effect of increasing the amount of epochs on the train and test error, we see that

the models rapidly start overfitting: after a mere 25 epochs, the training error decreases steadily while

the test error increases. A figure of this can be seen in Appendix B, displaying the errors for the three

best model setups.

Table 6: RMSE(SD) of the models trained on the base and complete set, 1 timestep,

Model Base

Train Test

RNN 0.127 (0.005) 0.120 (0.006)

GRU 0.123 (0.006) 0.113 (0.005)

LSTM 0.124 (0.011) 0.115 (0.013)

Complete

Train Test

0.126 (0.020) 0.134 (0.020)

0.118 (0.001) 0.116 (0.004)

0.116 (0.001) 0.112 (0.002)

Table 7: RMSE(SD) of the models trained on the base and complete set, 3 timesteps

Model Base

Train Test

RNN 0.124 (0.003) 0.122 (0.006)

GRU 0.129 (0.013) 0.120 (0.013)

LSTM 0.118 (0.004) 0.110 (0.004)

Complete

Train Test

0.119 (0.003) 0.128 (0.006)

0.118 (0.003) 0.116 (0.003)

0.116 (0.004) 0.114 (0.005)

Table 8: RMSE(SD) of the models trained on the base and complete set, 7 timesteps

Model Base

Train Test

RNN 0.121 (0.003) 0.120 (0.003)

GRU 0.125 (0.014) 0.121 (0.016)

LSTM 0.138 (0.026) 0.136 (0.028)

Complete

Train Test

0.118 (0.005) 0.122 (0.005)

0.128 (0.018) 0.132 (0.020)

0.113 (0.003) 0.115 (0.002)
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7 Conclusions

From the results, it is clear that the model setups did not perform adequately. None of the models

succeeded in outperforming the baseline. Next, we do not observe a consistent performance increase

when we extend the basic dataset with messaging and therapy data. Clear from the results is that the

GRUand LSTMperform the same in our scenarios, with the basic RNN performance being significantly

worse. The worse performance cannot be attributed to the vanishing gradient problem, since the

basic RNN performs best with 7 timesteps, whereas both the GRU and LSTM perform best with 1

timestep.

The low performance obtained by all the model setups could have several causes. First, it seems

that the single-layer architectures are not appropriate for this dataset. From the wide grid-search per-

formed, even the best performing models started overfitting with few epochs of training, showing sig-

nificantly worse performance on the test set than the baseline. Second, the handmade features from

the messaging and therapy data could carry no predictive power, although the correlation heatmap

showed significant direct correlations between the features and target variable, making this less likely.

Another reason for inadequate performance of the models could be the clustering performed prior to

the modeling. It could be that the clusters obtained do not represent the underlying clusters in the

patients, or perhaps, that these clusters do not exist at all. Lastly, due to many missing values in the

data, it could be that imputation transformed the dataset in a way that it ceased reflecting the actual

mood of the patients.

For future research, it would be interesting to create other handmade features that could have more

predictive power. It would also be worthwhile to increase the complexity of the models, such as more

recurrent layers or adding dense fully-connected layers, moving more towards Deep Learning. Finally,

imputing the mean for missing values could perhaps be replaced by a more sophisticated imputing

process, possibly avoiding the test error being smaller than the training error.
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Appendices

A Feature legends

A.1 Rating features

The rating features with corresponding EMA question

Feature Value

rating_1 How well did you sleep last night?

rating_2 How is your mood right now?

rating_3 How much do you worry at the moment?

rating_4 How do you feel about yourself right now?

rating_5 How much did you enjoy activities today?

rating_6 How much were you involved in social interactions today?

rating_7 To what extend did you accomplish pleasant activities today?

A.2 Country features

The country features with corresponding country

Feature Value

country_1 Poland?

country_3 United Kingdom

country_4 Germany

country_6 The Netherlands

country_8 Switzerland

A.3 Status features

The status features with marital status

Feature Value

status_1 Single

status_2 Divorced

status_3 Widowed

status_4 Living together

status_5 Married
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A.4 Education features

The education features with corresponding education level

Feature Value

education_1 Low

education_2 Middle

education_3 high

B Errors vs epochs
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