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Abstract

American call options are contracts that give the right, but not the obligation, to buy an asset underlying
the contract for a predetermined price at any time during the lifetime of the contract. A well known result
of quantitative finance is that it’s never optimal to exercise an American call option before the expiry date
of the contract if the underlying asset does not pay dividend. When the underlying asset does pay dividend
this changes. This paper examines in which situations its optimal to exercise the option on a dividend-
paying asset before the contract expires. The two types of assets that will be discussed are assets with a
continuous dividend yield and assets with a discrete dividend payment. Finding the particular value of
these assets at which it is optimal to exercise the option early can be posed as a free boundary problem,
where it is optimal to exercise the option early if the asset price falls above this boundary. In this paper early
exercise opportunities for American options are found by analyzing the behavior of these free boundaries
using both analytical and numerical methods.
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1 Introduction

An European call/put option gives the right, but not the obligation, to buy/sell an asset at the expiry date T
for strike price E. Fischer Black and Myron Scholes derived a formula to evaluate the price of an European
option called Black and Scholes Formula[8]:

Ceu(S, t) = SN (d1)− Ee−r(T−t)N (d2) for a call option

Peu(S, t) = Ee−r(T−t)N (−d2)− SN (−d1) for a put option

These equations are derived from a Partial Differential Equation called the Black and Scholes Differential Equa-
tion. These closed from solutions can be found because the time until expiry is fixed, and early exercise is
not allowed. An American option works in the exact same way, but the option can be exercised at any time
between the settlement date of the contract until the expiry date t∈ [0, T]. Causing there to be an asset price
S at each time t∈[0, T] for which it’s optimal to exercise. This value of S is called the optimal exercise bound-
ary. There is no prior knowledge on this optimal exercise boundary making pricing an American option a free
boundary problem. By reformulating the American option pricing problem into a linear complementarity problem
makes it possible to find the free boundary using numerical and asymptotic methods.

In the second section there will be a brief introduction in the economic theory behind option pricing. The
third section shows why its not optimal to exercise the American option on a non dividend paying asset be-
fore expiry by using this theory. Sections 4 and 5 define the properties of the two dividend paying assets and
pose the linear complementarity problem for the American options on these assets to find the free boundary. In
section 6 the linear complementarity problem for both options is solved using finite-difference methods. The results
of these methods are presented in section 7. In section 8 an asymptotic solution to the free boundary is derived
to analyze the behavior of the free boundary near the expiry date. The final section compares the results of the
finite-difference method with the asymptotic solution. This paper will in large part rely and extend on the work
done by Willmott, Howison and Dewynne in the Mathematics of Financial Derivatives [1].

2 Economic Theory Behind Option Pricing

There are two important economic theories underlying the process of pricing an option: the efficient market
hypothesis and arbitrage pricing theory. This section covers the parts of both theories which are relevant to this
paper.

2.1 Efficient Market Hypothesis

Option prices will obviously depend heavily on the fluctuations of the underlying asset. Fluctuations in asset
prices are explained by the efficient market hypothesis (EMH). The EMH states that in a competitive market all
market data regarding an asset is already reflected in the current price of the asset. For example, there would
exist a forecasting method that would predict that an asset price is going to rise in value. Each investor would
try to buy the asset before the price increases, causing a rapid increase in price. In other words a favorable
forecast or news on future performance leads into an immediate change in the current asset price. If asset
prices immediately change when new information arises and new information arrives randomly the asset
prices should move randomly [2]. Wilmott et al. in [1] model the relative changes in the asset prices caused
by the arrival of new information with a random walk:

dS
S

= σdX + µdt

Here S is the asset price, σ is the volatility of the asset and µ the average growth of the asset price. dX is a
Wiener process which is a random variable with mean 0 and variance dt.
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2.2 Arbitrage Pricing Theory

Option prices are often deduced by equating two economically equivalent portfolios. If two portfolios are
economically equivalent, but they have different prices arbitrage opportunities arise. An Arbitrage opportu-
nity is a situation in which an investor can make a risk-free profit larger than the risk-free rate. The risk-free
rate is the return on a risk-free asset. Practitioners use Treasury bills or Government Bond yields [4] as proxy
for this risk-free asset. Arbitrage pricing theory APT states that well-functioning markets do not allow long
persistence of arbitrage opportunities [2].

Say, there exists an arbitrage opportunity caused by to two portfolios that are economically equivalent,
but they have different prices. Each investor will take an as big as possible long position in the underpriced
portfolio and short the same amount in the overpriced portfolio regardless of their risk aversity. This activity
would drive the price of the underpriced portfolio up and the price of the overpriced portfolio down until
they converge to the same price.

3 Early Exercise of American Call Options without Dividend

In the introduction it was mentioned that it’s never optimal to exercise an American call option if the under-
lying asset does not pay dividend. Berk and DeMarzo in [3] give an intuitive explanation of this phenomenon
using APT and the Put-Call Parity.

3.1 Put-Call parity

European put options give the right to sell an asset at time T for a price E, thus at expiry the option pays
out MAX{E − S, 0}. Holding a portfolio of underlying asset and a European call option will protect the
investor from situations where the asset price falls below E. This portfolio is called the protective put and it’s
payoff is S + MAX{E− S, 0} = MAX{E, S}. European Call options give the right to buy an asset at time
T for a price E, thus at expiry the option pays out MAX{S− E, 0}. Holding a portfolio of the European call
option and a zero coupon bond that matures at time T with a face value of E will ensure that the investor raises
enough money to buy the asset at expiry. This portfolio is called the covered call and it’s payoff at time T is
E + MAX{S− E, 0} = MAX{S, E}.

Since these portfolios are equivalent they should have the same price. If this is not the case there will be
an arbitrage opportunity. Equating the prices of these portfolios gives the Put-Call Parity:

Ceu(S, t) + Ee−r(T−t) = Peu(S, t) + S

In figure 1 the payoffs of these portfolios are graphically shown.
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Figure 1: On the right the Covered Call and on the left the Protected Put both on the same asset and both
options have the same exercise price E = 99 and T = 1 (one year).

3.2 Adding an Early Exercise Opportunity to the European Call Option

As discussed in chapter 1 American options can be exercised at any time t∈ [0, T]. Having an early exercise
opportunity on an option is only beneficial if the option value is smaller or equal to the payoff. If the option
price is greater than the payoff an investor would always sell the option rather then exercising it. To look for
this situation for an European call option observe the Put-Call parity:

Ceu(S, t) + Ee−r(T−t) = Peu(S, t) + S

Define intr,t = E− Ee−r(T−t)

Ceu(S, t) = S− E︸ ︷︷ ︸
payoff

+ intr,t + Peu(S, t)︸ ︷︷ ︸
time value

The value of the European call option is composed of the time value and the payoff. An investor will only
exercise an option if the payoff is greater then 0, S− E > 0. The time value consists of the value of the put
option on the same asset with the same strike price and expiry date and the intr,t term. The price of the put
option is always greater or equal to 0 and if interest rates are positive intr,t = E− Ee−r(T−t) is also greater
then 0. This makes the value of a call option always greater then the payoff. Thus adding an early exercise
opportunity to an European call option does not add any value to the option if the underlying asset does
not pay any dividend. Because of this the prices of the American option and the European option are equal,
Ceu(S, t) = Cam(S, t). If this would not be the case there would be an arbitrage opportunity. Investors would
buy the cheaper one and write the expensive one and gain a risk-free profit.

Figure 2: European call option with strike price E = 99, r = 0.06, T = 1 and σ = 0.2 at different times t before
expiry.
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4 Dividend Paying Assets

Before looking into options the dynamics of dividend paying assets need to be clearly defined. There are
several different dividend payment structures. As mentioned in the introduction this paper will go into
detail on two different payment structures: one discrete dividend payment and a continuous dividend yield.
A dividend payment reduces the price of an asset. If this would not be the case an investor would buy the
asset, receive the dividend payments and sell it right after giving the investor a risk-free profit. To incorporate
the dynamics of price changes caused by dividend payments the asset price model described in section 2.1 is
modified by subtracting a D(S, t) term from the average growth µ, where D(S, t) is a function that represents
on the dividend payment structure of the asset:

dS = σSdX + (Sµ− D(S, t))dt

4.1 A Single Discrete Dividend Payment

Many companies make dividend payments to their shareholders. The dates of these payments are known
and should be treaded discretely [1]. This paper will go into detail if there is one single dividend payment

Consider an underlying asset with the following dividend payment structure: During the lifetime of the
option the asset pays a percentage, yd, of the asset price at time t = td as dividend. The date and this per-
centage are known. Assuming efficient markets there should be a discontinuous drop in the asset price of yd
percent at td. Mathematically this gives a jump St+d

= St−d
(1− dy), where t−d and t+d are the moments right

before and after the dividend date td respectively. A discontinuous jump at time td can be added to a differ-
ential equation by using the shifted Dirac delta function, δ (t− td). Using this, the function D(S, t) should be
of the form DδSδ(t− td), where Dδ is a constant that is related to the percentage change yd. The Dδ is fitted
to yd by integrating across the dividend date:

dS = σSdX + (Sµ− DδSδ(t− td))dt∫ t+d

t−d

dS
S

=
∫ t+d

t−d
σdX +

∫ t+d

t−d
µdt− Dδ

∫ t+d

t−d
δ(t− td)dt

The moments in time t−d and t+d only differ infinitesimally causing the integral involving µ to be zero. The
integral regarding the Wiener process will be equal to zero as well, because it gives a normally distributed
random variable with mean 0 and variance σ2dt. In this integral we pass an infinitesimal point in time this
will be a normally distributed variable with mean 0 and variance 0. Leaving only the integral with the delta
function.1 ∫ t+d

t−d
d ln(S) = −Dδ

∫ t+d

t−d
dH(t− td)

ln
(

St+d

)
− ln

(
St−d

)
= −Dδ(H(t+d − td)−H(t−d − td))

St+d
= St−d

e−Dδ

Dδ = − ln(1− dy)

Thus the dynamics of the asset are given by dS = SσdX + S(µ + δ(t− td) ln(1− dy))dt.

1A complete mathematical explanation of why this is the case requires measure theory which falls out of the scope of this paper. For a
more detailed explanation see Measures, Integrals and Martingales by René L. Schilling [5].
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4.2 A Continuous Dividend Yield

The holder of an asset with a continuous dividend yield receives D0Sdt dividend over dt time, where D0 is
the continuous dividend yield. Plugging this into the differential equation gives dS = SσdX + S(µ− D0)dt.
Hull in [6] and Paul Wilmott et al. in [1] both give two applications of options on this asset model:

• A Foreign Exchange (FX) option
The asset underlying the FX option, S, is the exchange rate between domestic currency and foreign
currency. A FX call option give the possibility to buy foreign currency using exchange rate E. In this
model r will denote the domestic risk-free rate and the dividend yield D0 denotes the foreign risk-free
rate.

• An option on an index
An index, like the AEX and the S&P 500, is composed of many different shares paying dividend at
different times. Rather than modeling this as a succession of discrete payments one could view them as
a continuous stream of payments.

The Black and Scholes Differential Equation and the formula for the price for a European option on an asset with
a constant dividend yield is derived in appendix II. In figure 3 a European call FX option with a strike price
E = 1.1, domestic risk-free rate r = 0.06 and foreign risk-free rate D0 = 0.05 is shown. The strike price is in
this case the exchange rate at which the holder of the option can buy foreign currency. Contrary to the call
option without dividend the European call in figure 3 can fall below the the payoff.

Figure 3: European call option with strike price E = 1.1, r = 0.06, T = 1, σ = 0.2 and D0 = 0.05 at different
times t before expiry

5 American options on Dividend Paying Assets

In this section the American options on the dividend paying assets defined in section 4 are discussed. An
American option can be exercised at any time. This makes it impossible for the option value to be worth
less then its payoff, because else it gives way to arbitrage opportunities. If some American option ,Vam(S, t),
would be less then its payoff an investor would buy the option and immediately exercise it giving him/her
a risk-free profit. This gives American call options the following constraint Cam(S, t) > S− E. In figure 3 it
is shown that for an European option on a dividend paying asset there exists an asset price S such that the
option price falls below the payoff. This causes the American call to hit the constraint and become S − E,
making exercising the option preferable over holding it. The minimal value of S for which this is the case is
called the optimal exercise price and will be denoted as S f (t). There is no prior knowledge on the behavior of
S f (t) for this reason it’s called a free boundary [1]. This section will give a mathematical framework called a
linear complementarity problem in which it is possible to analyze the behavior of this free boundary.
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5.1 American Options on a Asset with a Continuous Dividend Yield

The previously mentioned constraint causes a violation in Black and Scholes Differential Equation if it’s optimal
to exercise an American Option. If S > S f (t) at time t if it’s optimal to exercise and thus the value of the
option becomes: Cam(S, t) = S− E. This causes the equality in the Black and Scholes Differential Equation to
come an inequality ∂Ceu

∂t + 1
2 S2σ2 ∂2Ceu

∂S2 + (r− D0)S ∂Ceu
∂S − rCeu(S, t) 6 0. S f (t) is the contact point of the Black

and Scholes Differential Equation and MAX{S− E, 0}. This leads to the following expression:

S < S f (t)

∂Cam

∂t
+

1
2

S2σ2 ∂2Cam

∂S2 + (r− D0)S
∂Cam

∂S
− rCam(S, t) = 0

Cam(S, t) > MAX{S− E, 0}

S > S f (t)

∂Cam

∂t
+

1
2

S2σ2 ∂2Cam

∂S2 + (r− D0)S
∂Cam

∂S
− rCam(S, t) 6 0

Cam(S, t) = MAX{S− E, 0}

Cam(S f (t), t) = S f (t)− E
∂Cam(S f (t), t)

∂S
= 1

with Cam(S, t) and
∂Cam

∂S
continuous

This expression can be reformulated into a linear complementarity problem:

(
∂Cam

∂t
+

1
2

S2σ2 ∂2Cam

∂S2 + (r− D0)S
∂Cam

∂S
− rCam(S, t)

)
(Cam(S, t)− S + E) = 0

∂Cam

∂t
+

1
2

S2σ2 ∂2Cam

∂S2 + (r− D0)S
∂Cam

∂S
− rCam(S, t) 6 0

Cam(S, t) > S− E

The Black and Scholes Differential Equation is solved by calculating the discounted expected payoff of the option
against the risk-free rate. Wilmott et al. model this as a diffusion process by transforming the Black and Scholes
Differential Equation into the Heat Equation using the following variable transformation:

Cam(S, t) = Eu(x, τ)eαx+βτ

t = T − τ

σ2/2
S = Eex

α = −1
2
(k′ − 1) and β = −1

4
(k′ − 1)2 − k

k′ =
r− D0

σ2/2
and k =

r
σ2/2
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Applying this transformation to
(

∂Cam
∂t + 1

2 S2σ2 ∂2Cam
∂S2 + (r− D0)S ∂Cam

∂S − rCam(S, t)
)

reduces it to ∂u
∂τ = ∂2u

∂x2 . In

this transformation t was set to T− τ/ σ2

2 implying that when τ = 0 , t is equal to T. At time T the option is at
expiry, thus the option is at the payoff. In the derivation of the European Call option in Appendix II this trans-

formation is shown in greater detail. The free boundary in this transformation changes to: x f (τ) = ln
(

S f (t)
E

)
.

The early exercise payoff in terms of the financial variables is Cam(S, t) = MAX{S− E, 0}. The early exercise
payoff in terms of the Heat Equation will be denoted as g(x, τ):

Cam(S, t) = MAX{S− E, 0}

Eg (x, τ) e−x k′−1
2 −τ

(
(k′−1)2

4 +k
)
= MAX{Eex − E, 0}

g(x, τ) = eτ
(

(k′−1)2

4 +k
)

MAX{ex k′+1
2 − ex k′−1

2 , 0}

Now all the ingredients are gathered it is possible to transform the linear complementarity problem in terms of
the Heat Equation:

(
∂u
∂τ
− ∂2u

∂x2

)
(u(x, τ)− g(x, τ)) = 0(

∂u
∂τ
− ∂2u

∂x2

)
> 0

(u(x, τ)− g(x, τ)) > 0

g(x, 0) = u(x, 0)

With u(x, τ) and
∂u
∂x

(x, τ) continuous

In section 6 this problem will be solved numerically using a finite difference method.

5.2 American Options with One Discrete Dividend Payment

In section 4.1 it was shown that the dividend payment of yd percent of the asset price at dividend date td
caused a jump in the stock price St+d

= St−d
(1− dy). To avoid arbitrage opportunities the option price should

be continuous in time when moving across the dividend date. To make this possible the following should
hold:

Cam(St+d
, t+d ) = Cam(St−d

, t−d )

Cam(S(1− dy), t+d ) = Cam(S, t−d )

This is called a jump condition and makes the option price change discontinuously for a fixed S when crossing
the dividend date, but it makes the option price a continuous function in time for each realization of the
asset’s random walk[1].

In section 3 it was shown that Ceu(S, t) = Cam(S, t) if the underlying asset does not pay any dividend. This is of
great relevance when evaluating an American option with discrete dividend payments, because if the option
is bought after the dividend date it will, obviously, behave in the same way. When bought before the dividend
date the payoff at expiry is MAX{S(1− dy)− E, 0}. By using the fact that (1− yd) is a scaling of S, which
leaves Black and Scholes Equation invariant, it is possible to change the payoff into: (1− dy)MAX{S− E

1−dy
}

[1]. This translates the drop in asset price to a jump in the exercise price, thus what’s left is the exact same
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linear complementary problem as an American option without dividend as described by Wilmott et al., but with
an discontinuous early exercise payoff:

Cam(S, t) = (1− dy)MAX{S− E
1− dy

} if S > S f (t) and t > td

Cam(S, t) = MAX{S− E, 0} if S > S f (t) and t < td

Using the transform to the Heat Equation gives:

g(x, τ) = eτ
(

(k+1)2

4

)
MAX{ex k+1

2 − ex k−1
2 , 0} if τ > τd

g(x, τ) = (1− yd)e
τ
(

(k+1)2

4

)
MAX{ex k+1

2 − ex k−1
2 /(1− yd), 0} if τ 6 τd

g(x, 0) = u(x, 0)

The τd represents the transformed dividend date: (T − td)
σ2

2 .

6 Finite-Difference Method for the Heat Equation

The finite-difference method is a class of numerical methods that is used to solve differential equations and linear
complementary problems using difference equations. In this section the finite-difference method will be used to
solve the linear complementary problems stated in section 5. After solving the problems in terms of the Heat Equa-
tion the results will be transformed back into financial variables. The finite-difference method uses discretized
derivatives with respect to x and τ to solve the Heat Equation for u(x, τ).

∂u
∂τ

=
∂2u
∂x2

There are multiple ways to take discretized derivatives. A forward, a backward and a central difference
approximation. For the derivative with respect to x a central difference method is used by taking a forward
followed by a backwards difference difference approximation:

∂u
∂x
≈ u(x + δx, τ)− u(x, τ)

δx

∂2u
∂x2 ≈

u(x+δx,τ)−u(x,τ)
δx − u(x,τ)−u(x−δx,τ)

δx
δx

=
u(x + δx, τ)− 2u(x, τ) + u(x− δx, τ)

(δx)2

For the derivative with respect to τ only the forward and backward approximation are used:

Forward difference in time:
∂τ

∂x
≈ u(x, τ + δτ)− u(x, τ)

δτ

Backward difference in time:
∂τ

∂x
≈ u(x, τ)− u(x, τ − δτ)

δτ

Using the forward difference with respect to τ and the central difference with respect to x is called the explicit
method. The backward difference with respect to τ and the central difference with respect to x is called the
implicit method.
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Explicit Method:
u(x, τ + δτ)− u(x, τ)

δτ
=

u(x + δx, τ)− 2u(x, τ) + u(x− δx, τ)

(δx)2

Implicit Method:
u(x, τ)− u(x, τ − δτ)

δτ
=

u(x + δx, τ)− 2u(x, τ) + u(x− δx, τ)

(δx)2

The eventual finite-difference method used is called the Crank-Nickolson method, which is the average of a explicit
method and a implicit method. Before defining the Crank-Nickolson method we look into this discretization.

6.1 Setting up the Finite-Difference Method

The x-axes and τ-axes of the (x,τ) plain are divided into a finite amount of steps of size δx and δτ. The space
variable x in the Heat Equation is transformed by S = Eex since S∈[0, ∞), x∈(−∞, ∞), since a computer cannot
separate an infinite amount of steps two big integers are used such that: N−δx 6 x 6 N+δx. Let M be the
amount of steps in the τ direction since the transformed lifetime of the option, Tσ2

2 , is finite this won’t cause
any problems. This discretization divides the (x, τ) plain into a mesh, see figure 4. In this mesh u(x, τ) is
only calculated at the mesh points (mδτ, nδx), define: um

n = u(nδx, mδτ).

Figure 4: The finite-difference mesh

um
n is the value of u(x, τ) evaluated at (mδτ, nδx). Using the limits of n and m its is possible to define

the boundary and initial conditions. The boundary conditions are obtained by looking at the boundaries
of the call option: Cam(S, t) behaves like S − E when S is going to ∞ and Cam(0, t) = 0. This makes the
boundary condition in terms of the Heat Equation um

N− = g(N−δx, τ) and um
N+ = g(N+δx, τ).2 These values

2g(x, τ) is the early exercise boundary from section 5
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can be calculated before the algorithm and are known throughout the entire algorithm. The initial condition,
u(x, 0), is also known before starting the algorithm. This is the transformed payoff of the option. These
conditions are highlighted in figure 4.

6.2 The Crank-Nickolson Method

By defining α = δτ
(δx)2 the explicit and implicit method are rewritten to:

Explicit Method: um+1
n = αum

n+1 + (1− 2α)um
n + αum

n−1

Implicit Method: um
n = −αum+1

n+1 + (1 + 2α)um+1
n − αum+1

n−1

The Crank-Nickolson method takes the average of these two:

um+1
n − α

2

(
um+1

n+1 − 2um+1
n + um+1

n+1

)
= um

n +
α

2
(
um

n+1 − 2um
n + um

n+1
)

(?)

The Crank-Nickolson method takes 3 values at timestep m to calculate the the 3 values at m + 1, see the black
dots in figure 4. This makes the entire right hand side of ? known at m+ 1 take Zm

n = um
n + α

2
(
um

n+1 − 2um
n + um

n+1
)
.

The method starts from m = 0, where the values are known from the initial condition. At timestep m + 1 the
values um+1

N+ and um+1
N− are known aswell from the boundary conditions.

um+1
n − α

2

(
um+1

n+1 − 2um+1
n + um+1

n+1

)
= Zm

n

(1− α)um+1
n − 1

2
α
(

um+1
n−1 + um+1

n+1

)
= Zm

n

When calculating um+1
N−+1 the algorithm wil use the known value from the boundary condition um+1

N− . The
same goes for um+1

N+ when calculating um+1
N+−1. This leads to the following expression:

(1− α)um+1
n − 1

2 α
(

um+1
n+1

)
= Zm

n + α
2 um+1

N− if n = N− + 1

(1− α)um+1
n − 1

2 α
(

um+1
n−1 + um+1

n+1

)
= Zm

n if N− + 1 < n < N+ − 1

(1− α)um+1
n − 1

2 α
(

um+1
n−1

)
= Zm

n + α
2 um+1

N+ if n = N+ − 1

This expression gives linear system of N+ − N− − 1 equations and N+ − N− − 1 unknowns.
1 + α − α

2 0 . . . 0
− α

2 1 + α − α
2 . . . 0

...
...

...
. . .

...
0 0 0 . . . 1 + α


︸ ︷︷ ︸

A

X


um+1

N−+1
um+1

N−+2
...

um+1
N+−1


︸ ︷︷ ︸

um+1

=


Zm

N−+1
Zm

N−+2
...

Zm
N+−1

+
α

2


um+1

N−
0
...

um+1
N+


︸ ︷︷ ︸

bm

This leaves the matrix equation Aum+1 = bm which can be solved for um+1 using a number of different
methods.
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6.3 Successive Over-Relaxation

The method used to solve the linear system is Aum+1 = bm is Successive Over-Relaxation (SOR). SOR loops
through the vector um+1 iteratively updating each um+1

n until convergence. Define um+1,k
n as the k-th iteration

of um+1
n . To start the iteration an initial guess is required for the values in um+1. Since the algorithm takes

small steps in time the values in the known vector um are really close to um+1, thus for the initial guess um+1,0
n

the value um
n is used. During these iterations the early exercise boundary, g(x, τ), comes into play. At each

iteration it is checked whether it’s optimal to exercise by taking the maximum of um+1,k
n and g(nδx, (m +

1)δτ) = gm+1
n . To properly define the iterative process each individual equation in Aum+1 = bm is rewritten

to:

um+1
n =

1
1 + α

(
bm

n +
α

2
(um+1

n−1 + um+1
n+1 )

)
SOR starts at um+1,0

N−+1, thus when it arrives at um+1,0
N−+2 the value of um+1,1

N−+1 is already calculated and can be used

in the calculation of um+1,1
N−+2. More general at (k + 1)-th itteration of um+1

n , um+1,k+1
n , the value of um+1,k+1

n−1 is

used instead of um+1,k
n−1 . Further more SOR speeds up the convergence by multiplying the correction done on

um+1
n at each itteration by over-relexation parameter, ω.

um+1,k+1
n = MAX

((
um+1,k

n + ω

(
1

1 + α

(
bm

n +
α

2
(um+1,k+1

n−1 + um+1,k
n+1 )

)
− um+1,k

n

))
, gm+1

n

)
The SOR method used to solve the linear complementarity problems in section 5 ω is set to, the somewhat trivial
value, 1.3 Leaving the following inteative method:

um+1,k+1
n = MAX

(
1

1 + α

(
bm

n +
α

2
(um+1,k+1

n−1 + um+1,k
n+1 )

)
, gm+1

n

)
This SOR method runs through the entire grid from m = 0 to m = M. After calculating the option value at
each grid point the Free Boundary is found by evaluating the following expression at each timestep m:

x f (mδτ) = MIN(nδx | um
n = gm

n ∪ Eenδx > 0)

This returns the minimal asset price for which it is optimal to exercise the option. The condition Eenδx > 0 is
added because if S = Eex = 0 , Cam(S, t) = 0. This makes um

n = gm
n , but at this value there is no early exercise

opportunity.

7 Results Finite-Difference Method

In this section the finite-difference method is used on the two different American call options discussed in this
paper.

7.1 Constant Dividend Yield

In this section we look at the American variant of the FX option shown in figure 3 with E = 1.1, r = 0.06,
D0 = 0.05, T = 1 and σ = 0.2. In figure 5 the results of the finite-difference method are shown.

3Setting ω to 1 defeats the purpuse of introducing an over-relexation parameter, because at ω = 1 the two um+1,k
n terms cancel. The SOR

method with ω = 1 is called the Gauss-Seidel method[1]
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Figure 5: Results finite-difference method for an American Option with an constant dividend yield. The plot on
the left shows the option value (blue) and the payoff (red). The center plot gives the ∆ = ∂C

∂S and the plot on
the right shows the free boundary.

On the left the value of the call option at time t = 0 is shown. This plot shows the option value never falls
below the constraint Cam(S, t) > S− E. On the right the free boundary is shown. The free boundary starts at
expiry. At expiry it is obviously optimal to exercise if S > E. This is clearly shown in figure 5, where at t = T
the free boundary is at S = 1.1. While the boundary moves away from expiry it jumps up to a certain value
and gradually increases from there. In figure 6 the free boundaries on the same option with different dividend
yields are shown. For each option we see the exact same behavior when moving away from expiry. This
behavior will be discussed in section 8. When the dividend yield is set to 0 the option becomes equivalent
to the American option without dividend payments. In the plot on the top left of figure 6 the free boundary
jumps up right after expiry and then never comes down. This is consistent with the result obtained section 3
that its never optimal to early exercise an American option if the underlying does not pay dividend.

Figure 6: Free boundaries for the same option as in figure 5, but with different yields.
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7.2 Discrete Dividend Payment

Hull in [6] states that for an American option on an asset with one dividend payment in its life time its only
optimal to exercise right before the dividend payment. In figure 7 the results of the finite-difference method
of an American option with one dividend payment are shown. This is the American variant of the option
shown in figure 2 in section 3 with an added dividend payment yd = 0.1 at dividend date td = 0.5. At expiry
the free boundary is equal to the exercise price and when it moves away from expiry it jumps up just as in the
continuous case without dividend. This is an obvious result, because the option does not pay any dividend
after the dividend payment at td = 0.5. Then figure 7 shows, just as Hull said, that the free boundary drops
down right before the dividend date td = 0.5 and jumps up right after. This is caused by the jump condition
introduced in section 4.2. In section 4.2 the drop in asset price was translated to a jump in exercise price. Thus
the exercise price at expiry is higher then the one at t∈[0, td). This causes the asset price to hit the payoff at
t−d , just before the dividend date td. A second consequence of the jump is that the asset price does not hit the
payoff at any moment before t−d .

Figure 7: Results finite-difference method for an American Option with one discrete dividend payment.

8 An Asymptotic Solution to the Free Boundary

In section 7 it was observed that right before expiry the free boundary of the call option with continuous div-
idend payments expressed a downwards jump to the exercise price E at expiry. Willmott et al. give an
asymptotic solution for the free boundary to explain this behavior when 0 < D0 < r. This section gives
a walk-through on how Willmott et al. reach this asymptotic solution. This asymptotic approach starts at
the same problem statement as at the start of section 6.1, before it was reformulated to a linear complementary
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problem:

S < S f (t)

∂Cam

∂t
+

1
2

S2σ2 ∂2Cam

∂S2 + (r− D0)S
∂Cam

∂S
− rCam(S, t) = 0

Cam(S, t) > MAX{S− E, 0}

S > S f (t)

∂Cam

∂t
+

1
2

S2σ2 ∂2Cam

∂S2 + (r− D0)S
∂Cam

∂S
− rCam(S, t) 6 0

Cam(S, t) = MAX{S− E, 0}

Cam(S f (t), t) = S f (t)− E
∂Cam(S f (t), t)

∂S
= 1

with Cam(S, t) and
∂Cam

∂S
continuous

Just like in section 5.1 the Black Scholes Differential Equation is transformed to the Heat Equation, but with one
difference. Paul Wilmort et al. in [1] suggests that its best to subtract the payoff from the option value
rather than transforming the entire option value. Mathematically the transform will be Cam(S, t)− (S− E) =
Ec(x, τ) instead of Cam(S, t) = Ec(x, τ).

Cam(S, t) = Eex − E + Ec(x, τ)

t = T − τ

σ2/2
S = Eex

This transformation changes the partial derivatives in the Black and Scholes Differential Equation to:

∂Cam

∂t
=

∂

∂t
[S− E + Ec(x, τ)] = −Eσ2

2
∂c
∂τ

∂Cam

∂S
=

∂

∂S
[S− E + Ec(x, τ)] = 1 +

E
S

∂c
∂x

∂2Cam

∂S2 =
∂

∂S
∂Cam

∂S
=

∂

∂S

[
1 +

E
S

∂c
∂x

]
=

E
S2

(
∂2c
∂x2 −

∂c
∂x

)
Filling these partial derivatives into the Black and Scholes differential equation the following is obtained:

− Eσ2

2
∂c
∂τ

+
1
2

S2σ2 E
S2

(
∂2c
∂x2 −

∂c
∂x

)
+ (r− D0)S

(
1 +

E
S

∂c
∂x

)
− r(Ec(x, τ) + s− E) = 0

− ∂c
∂τ

+
∂2c
∂x2 + (k′ − 1)

∂c
∂x
− kc + f (x) = 0 (?)

where k =
r

σ2/2
, k′ =

r− D0

σ2/2
and f (x) = (k′ − k)ex + k
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This transformation changes the free boundary, S f (t), to x f (τ). Because of the subtraction of the payoff the
conditions on the free boundary are greatly relaxed.

c(x f (τ), τ) = 0
∂c(x f (τ), τ)

∂x
= 0

The payoff of the option changes in the following manner. The time variable t is transformed to τ in the Heat
equation at time t = T, τ is equal to 0. Thus at τ = 0 the Heat Equation is at the payoff.

Cam(S, T) =

{
S− E , if S > E
0 , if S < E

c(x, 0) =

{
0 , if x > 0
1− ex , if x < 0

8.1 Behavior near the Free Boundary

Armed with the just defined transformation of the Black and Scholes Differential Equation it is possible to define
a differential equation that describes the behavior of the free boundary as it moves away from expiry x f (0). To
find this equation we look closer to the f (x) term in (?). The f (x) term implies the existence of the optional
exercise price. At expiry τ = 0 if x > 0 the function c(x, τ) = ∂c

∂x = ∂2c
∂x2 = 0. Filling this into the Black and Scholes

differential equation only leaves the terms: ∂c
∂τ − f (x) = 0. If f (x) is negative then c(x, τ) will become negative

if τ increases. This leads to a problem, because this violates the constraint c(x, τ) > MAX{1− ex, 0}. This
gives the Free boundary at τ = 0+, where 0+ is the moment just after τ = 0. At this moment the Free boundary
is at x f (0+) = x0, where x0 is the value such that f (x0) = 0. f (x) = (k′ − k)ex − k, thus x0 = ln

(
k′−k

k

)
. In

terms of the Black and Scholes differential equation to S f (T−) = Er
D0

, where T− is the moment just before time T.
This is the value to which the free boundary of the option in figure 5 jumps when moving away from T. When
D0 = 0 the free boundary jumps to infinity at T−, which is the same result as observed in figure 6. When τ
starts increasing x f (τ) moves away from x0 and does not have an exact solution. Willmott et al. approximate
near x = x0 and for small values of τ a solution by taking a Taylor approximation of f (x) around x0.

f (x) = f (x0) +
d f (x0)

dx
(x− x0) + O((x− xo)

2)

f (x0) = 0
d f (x0)

dx
= (k′ − k)ex0 − k

f (x) ≈ −k(x− x0)

When c(x, τ) is getting near the optimal exercise price the values of c(x, τ) and ∂c
∂x should be close to 0. This

makes ∂2c
∂x2 higher then c(x, τ) and ∂c

∂x . Thus the equation that describes the local behavior is defined as:

∂ĉ
∂τ

=
∂2 ĉ
∂x2 − k(x− x0) (??)

with free boundary conditions: ∂ĉ
∂x = ĉ(x, τ) = 0 at x = x f (τ). When x → −∞, ∂2 ĉ

∂x2 will go to 0 and the
−k(x− x0) term will behave as −kx. Leaving only ∂u

∂τ = −kx. Integrating this expression shows that ĉ(x, τ)
will look like −kxτ if x goes to −∞. The behavior of ĉ(x, τ) when x → −∞ will become of great relevance
further on.
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8.2 Solving for the Free Boundary Using an ODE

The partial differential equation (??) is solved finding a similarity solution, where one reduces a partial differential
equation into an ordinary differential equation. This similarity solution is found using the following transforma-
tion:

γ =
x− x0

τ
ĉ(x, τ) =τ3/2c∗(γ)

The free boundary Wilmott suggests has the form x f (τ) = x0 + γ0
√

τ

Before executing the transformation on ĉ(x, τ) it is worth noting that the derivative ∂γ
∂τ = − x−x0

2τ3/2 = − γ
2τ .

Using this information this transformation on the partial derivatives in ĉ(x, τ) to:

∂ĉ
∂τ

=
∂

∂τ
τ3/2c∗(γ) =

3
2
√

τc∗(γ) + τ3/2 ∂c∗

∂γ

∂γ

∂τ
=

3
2
√

τc∗(γ)−
√

τ
γ

2
∂c∗

∂γ

∂2 ĉ
∂x2 =

∂2

∂x2 τ3/2c∗(γ) = τ3/2 ∂

∂x

(
∂c∗

∂γ

1√
τ

)
=
√

τ
∂2c∗

∂γ2

By filling in these partial derivatives into (??) gives an ordinary differential equation:

√
τ

(
3
2

c∗(γ)− γ

2
dc∗

dγ

)
=
√

τ
d2c∗

dγ2 − k(x− x0)

3
2

c∗(γ)− γ

2
dc∗

dγ
=

d2c∗

dγ2 − k
x− x0√

τ

d2c∗

dγ2 +
γ

2
dc∗

dγ
−3

2
c∗(γ) = kγ (? ? ?)

This transformation causes the condition on ĉ(x, τ) when x going to −∞ and the free boundary conditions to
change in the following way:

ĉ(x, τ) =
∂c
∂x

= 0 at x = x f (t) becomes c∗(γ) =
∂c∗

∂γ
= 0 at γ = γ0

ĉ(x, τ)→ −kxτ if x → −∞ becomes c∗(γ)→ −kγ if γ→ −∞

(? ? ?) is a inhomogeneous second-order linear differential equation which has a solution of the following form:
c∗(γ) = c∗h(γ) + c∗p(γ). The c∗h(γ) = Ac∗h1

(γ) + Bc∗h2
(γ) with A and B constants is the homogeneous solution.

The term c∗p(γ) term is called the particular solution which is any solution to the homogeneous equation [7].
The particular solution is easily found by observing that (? ? ?) is solved by −kγ. Now for the homogeneous
solution, c∗h(γ). a solution to d2c∗

dγ2 + γ
2

dc∗
dγ −

3
2 c∗(γ) = 0.The first part of the homogeneous solution c∗h1

(γ) is
found by fitting a third order polynomial using the method of unknown coefficients:

c∗h1
(γ) = β0 + β1γ + 2β2γ2 + β3γ3

dc∗h1
(γ)

dγ
= β1 + β2γ + 3β3γ2

d2c∗h1
(γ)

dγ2 = 2β2 + 6β3γ

(2β2 + 6β3γ) +
γ

2
(β1 + 2β2γ+3β3γ2)− 3

2
(β0 + β1γ + 2β2γ2 + β3γ3) = 0
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The coefficients (β0, β1, β2, β3) can be found by solving the following system of equations:

3
2

β3 −
3
2

β3 = 0⇒ β3 = free

β2 −
3
2

β2 = 0⇒ β2 = 0

6β3 +
1
2

β1 −
3
2

β1 = 0⇒ β1 = 6β3

2β2 −
3
2

β0 = 0⇒ β0 = 0

Since c∗h1
(γ) is multiplied with a constant A in the homogeneous solution β3 can be set to 1 without loss.

To find the second part of the homogeneous solution the variation of parameters method is used. In this method
the second part of the homogeneous solution is found by c∗h2

(γ) = c∗h1
(γ)α(γ):

c∗h2
(γ) = c∗h1

(γ)α(γ) = α(γ)(γ3 + 6γ)

dc∗h2
(γ)

dγ
= α(γ)(3γ2 + 6) +

dα

dγ
(γ3 + 6γ)

d2c∗h2
(γ)

dγ2 = α(γ)6γ + 2
dα

dγ
(6 + 3γ2) +

d2α

dγ2 (6γ + γ3)

Filling this back into the homogeneous solution gives:

α(γ)6γ + 2
dα

dγ
(6γ + 3γ2) +

d2α

dγ2 (6γ + γ3) +
γ

2

(
α(γ)(3γ2 + 6) +

dα

dγ
(γ3 + 6γ)

)
− 3

2
α(γ3 + 6γ) = 0

dα

dγ

(
12 + 9γ2 +

γ4

2

)
+

d2α

dγ2

(
6γ + γ3

)
= 0

By defining a function v(γ) = dα
dγ one can solve for α(γ) using the separation of variables method.

v(γ)

(
12 + 9γ2 +

γ4

2

)
+

dv
dγ

(
6γ + γ3

)
= 0

dv
v(γ)

=
12 + 9γ2 + γ4

2
6γ + γ3 dγ

∫ dv
v(γ)

=
∫ 12 + 9γ2 + γ4

2
6γ + γ3 dγ

ln |v(γ)| = −
∫

γ

2
dγ−

∫ 6γ2

γ3 + 6γ
dγ−

∫ 12
γ3 + 6γ

dγ

ln |v(γ)| = −γ2

4
− 2 ln |γ| − 2 ln |γ3 + 6γ|+ ω

v(γ) = e−
γ2
4

ω∗

γ2(γ2 + 6)2 with ω∗ = eω
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To avoid confusion ω denotes the integrating constant instead of the usual c. By integrating v(γ) the function
α(γ) is found:

α(γ)

ω∗
=
∫

e−
γ2
4

1
γ2(γ2 + 6)2 dγ

=
∫ e−

γ2
4

36γ2 dγ︸ ︷︷ ︸
I1

−
∫

(γ2 + 12)e−
γ2
4

36(γ2 + 6)2 dγ︸ ︷︷ ︸
I2

The integrals I1 and I2 are calculated separately.

I1 =
∫ e−

γ2
4

36γ2 dγ =
1

36

∫
e−

γ2
4

(
d

dγ
− 1

γ

)
dγ

=
1
36

− e−
γ2
4

γ
− 1

2

∫ γ

a
e−

s2
4 ds


=− 1

36
e−

γ2
4

γ
− 1

72

∫ γ

a
e−

s2
4 ds

Before calculating I2 the integral of γ2+12
36(γ2+6)2 needs to be found:

∫
γ2 + 12

36(γ2 + 6)2 dγ =
1
36

(∫
γ2

(γ2 + 6)2 dγ +
∫ 12

(γ2 + 6)2 dγ

)
These two separate integrals can be solved by an inverse trigonometric substitution θ = tan−1

(
γ√

6

)
[7].

∫
γ2 + 12

36(γ2 + 6)2 dγ =
1

144

(
2γ

γ2 + 6
+
√

6 tan−1
(

γ√
6

))
Knowing this integral makes it possible to use the product rule for I2:

I2 =
∫

(γ2 + 12)e−
γ2
4

36(γ2 + 6)2 dγ =
∫

e−
γ2
4

(
d

dγ

1
144

(
2γ

γ2 + 6
+
√

6 tan−1
(

γ√
6

)))
dγ

=
1

144

(
2γ

γ2 + 6
+
√

6 tan−1
(

γ√
6

))
e−

γ2
4 −

∫ 1
144

(
2γ

γ2 + 6
+
√

6 tan−1
(

γ√
6

))(
−γ

2

)
e−

γ2
4 dγ

=
1

144

(
2γ

γ2 + 6
+
√

6 tan−1
(

γ√
6

))
e−

γ2
4 +

1
288


∫ 2γ2e−

γ2
4

γ2 + 6
dγ︸ ︷︷ ︸

I3

+
∫ √

6 tan−1
(

γ√
6

)
γe−

γ2
4 dγ


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Now the integral I3 is solved:

I3 = 2
∫

γ2e−
γ2
4

γ2 + 6
dγ

= 2
∫ ( d

dγ

(
γ−
√

6 tan−1
(

γ√
6

)))
e−

γ2
4 dγ

= 2

(γ−
√

6 tan−1
(

γ√
6

))
e−

γ2
4 +

∫
γ2

2
e−

γ2
4 dγ︸ ︷︷ ︸

I4

−
∫

γ

2

√
6 tan−1

(
γ√

6

)
e−

γ2
4 dγ


Integral I4 is solved by:

I4 =
∫

γ2

2
e−

γ2
4 dγ =

∫ γ

a
e−

s2
4 ds− e−

γ2
4 γ

Now I4 is filled back into I3:

I3 = 2
((

γ−
√

6 tan−1
(

γ√
6

))
e−

γ2
4 +

∫ γ

a
e−

s2
4 ds− e−

γ2
4 γ−

∫
γ

2

√
6 tan−1

(
γ√

6

)
e−

γ2
4 dγ

)
Now I3 is filled back into I2:

I2 =
1

144

(
2γ

γ2 + 6
+
√

6 tan−1
(

γ√
6

))
e−

γ2
4 +

1
288

(
2
(

γ−
√

6 tan−1
(

γ√
6

))
e−

γ2
4 +

∫ γ

a
e−

s2
4 ds
)

+
2

288

(
−γe−

γ2
4 −

∫
γ

2

√
6 tan−1

(
γ√

6

)
e−

γ2
4 dγ

)
+

1
288

∫ √
6 tan−1

(
γ√

6

)
γe−

γ2
4 dγ

=
1
72

 γe−
γ2
4

γ2 + 6
+

1
2

∫ γ

a
e−

s2
4 ds


Filling this back into α(γ)

ω∗ gives:

α(γ)

ω∗
=
∫ e−

γ2
4

36γ2 dγ︸ ︷︷ ︸
I1

−
∫

(γ2 + 12)e−
γ2
4

36(γ2 + 6)2 dγ︸ ︷︷ ︸
I2

= − 1
36

e−
γ2
4

γ
− 1

72

∫ γ

a
e−

s2
4 ds− 1

72

 γe−
γ2
4

γ2 + 6
+

1
2

∫ γ

a
e−

s2
4 ds


α(γ) =

((
− 1

36γ
− γ

72(γ2 + 6)

)
e−

γ2
4 − 1

48

∫ γ

a
e−

s2
4 ds
)

ω∗

Because the homogeneous solution has the following form c∗h(γ) = Ac∗h1
(γ) + Bc∗h2

(γ) and c∗h2
(γ) = c∗h1

(γ)α(γ)

the constant ω∗ will be absorbed in the constant B, thus without loss ω∗ can be set to 1.
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c∗h2
(γ) = c∗h1

(γ)α(γ)

=
(

γ3 + 6γ
)((

− 1
36γ
− γ

72(γ2 + 6)

)
e−

γ2
4 − 1

48

∫ γ

a
e−

s2
4 ds
)

= −
(

γ3 + 6γ

36γ
+

γ4 + 6γ2

72(γ2 + 6)

)
e−

γ2
4 − γ3 + 6γ

48

∫ γ

a
e−

s2
4 ds

=
1
12

(
−
(

γ2

3
+

6
3
+

γ2

6

)
e−

γ2
4 − 1

4

∫ γ

a
e−

s2
4 ds
)

=
1
12

(
−
(

γ2

2
+ 2
)

e−
γ2
4 − γ3 + 6γ

4

∫ γ

a
e−

s2
4 ds
)

= −1
6

((
γ2 + 4

)
e−

γ2
4 +

γ3 + 6γ

2

∫ γ

a
e−

s2
4 ds
)

First, the factor − 1
6 term is moved to the constant B. Secondly, the lower limit of the integral

∫ γ
a e−

s2
4 ds will

only add a multiple of c∗h1
, thus without loss a can be set to −∞. By incorporating these observations into the

second homogeneous solution we obtain:

c∗h2
(γ) =

(
γ2 + 4

)
e−

γ2
4 +

γ3 + 6γ

2

∫ γ

−∞
e−

s2
4 ds

Now both the homogeneous solutions and the particular solution are found it’s possible to fill in (? ? ?).

c∗(γ) = −kγ + A(γ3 + 6γ) + B
((

γ2 + 4
)

e−
γ2
4 +

γ3 + 6γ

2

∫ γ

−∞
e−

s2
4 ds
)

Now the condition c∗(γ) → −kγ as γ → −∞ is applied. For this condition to hold A has to be 0, because
(γ3 + 6γ) will go to −∞ if γ goes to −∞.

c∗(γ) = −kγ + B
((

γ2 + 4
)

e−
γ2
4 +

γ3 + 6γ

2

∫ γ

−∞
e−

s2
4 ds
)

The part of the equation multiplied by B will remain, because it will go to 0 leaving only −kγ, which satisfies
the condition.

The free boundary has the following form x f (τ) = x0 + γ0
√

τ. All what is left to do is to find γ0 using the
free boundary conditions of c∗(γ):

c∗(γ) =
dc∗(γ)

dγ
= 0 at γ = γ0

− kγ0 + Bc∗(γ0) = −k + B
dc∗h2

(γ0)

dγ

− γ0 + B∗c∗(γ0) = −1 + B∗
dc∗h2

(γ0)

dγ
with B∗ = B/k

B∗c∗h2
(γ0) = γ0 & B∗

dc∗h2
(γ0)

dγ
= 1
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This leaves two equations with two unknowns: γ0 and B∗. By taking B∗ = γ0
c∗h2

(γ0)
an equation in terms of γ0

is obtained:

γ0
dc∗h2

(γ0)

dγ
= c∗h2

(γ0)

The derivative
dc∗h2

(γ)

dγ at γ0 is:

dc∗h2
(γ0)

dγ
=

d
dγ

((
γ2 + 4

)
e−

γ2
4 +

γ3 + 6γ

2

∫ γ

−∞
e−

s2
4 ds
)∣∣∣

γ=γ0

= 3γ0e−
γ2
4 +

3γ2
0 + 6
2

∫ γ0

−∞
e−

s2
4 ds

Solving for γ0:

γ0

(
3γ0e−

γ2
4 +

3γ2
0 + 6
2

∫ γ0

−∞
e−

s2
4 ds

)
=

((
γ2

0 + 4
)

e−
γ2

0
4 +

γ3
0 + 6γ0

2

∫ γ0

−∞
e−

s2
4 ds

)

2γ2
0e−

γ2
0

4 − 4e−
γ2

0
4 = 2γ3

0

∫ γ0

−∞
e−

s2
4 ds

2(2− γ0) = γ3
0e−

γ2
0

4

∫ γ0

−∞
e−

s2
4 ds

Which can be solved using symbolic toolbox of Matlab:
syms x
req = (x3) ∗ exp((x2)/4) ∗ 2 ∗ (pi1/2) ∗ normcd f (x, 0, (21/2)) == 2 ∗ (2− x2);
solve(req)
x = 0.90344659788434394725487986458608

Now the only thing left to do is transforming the free boundary back in financial variables.

x f (τ) = x0 + γ0
√

τ as τ → 0

S f (t) =
rE
D

(
1 + γ0

√
σ2

2
(T − t)

)
as t→ T
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8.3 Comparison with the Finite-Difference Method

In this section the free boundary obtained in section 7 is compared with the asymptotic solution S f (t) =

rE
D0

(
1 + γ0

√
σ2

2 (T − t)
)

. These two solutions are compared by looking at the FX option that is used through-

out this paper. In figure 8 the free boundary from figure 5 and the asymptotic solution are shown.

Figure 8

Initially it is observed that both solutions are relatively close to each other and after a certain point they
move away from each other. This is because the asymptotic solution is only correct around expiry for small
changes in S and t, thus for t << T it will not be correct. Secondly it is observed that the asymptotic solution
does not display the same drop in option price when it reaches T. This is because the asymptotic solution
describes the behavior of the free boundary when t → T. When T is plugged in it describes the value of the
option right before at T−. By definition the option value at expiry is MAX{S− E, 0}. When observing the
free boundary obtained by the finite-difference method is moving away from expiry it jumps up it comes very
close to this value. Due to the discretization used in obtaining the finite-difference method in section 6 it is not
possible to correctly evaluate an expression like T− (see figure 9). However this asymptotic solution does
describe the previously unexplained drop in the free boundary right before expiry: Just before the free boundary
goes to E at time T it is at Er

D0
.
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(a) Figure 8 zoomed into time interval [0.88,1] (b) Figure 8 zoomed into time interval [0.94,1]

Figure 9

9 Conclusion/Discussion

For an American option on an asset with one dividend-payment during the lifetime of an option it is optimal
to exercise it either right before the dividend payment or at expiry, For the American Option on an asset with
a continuous dividend yield there exists an optimal exercise price during the entire lifetime of the contract.
The asymptotic solution to the free boundary posed in this paper is only valid for assets with a dividend yield
strictly lower then the risk-free rate. Due to the limited time for writing this paper the asymptotic solution
for assets with an higher dividend yield is not derived. Further Research will be required for finding this
solution.
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Appendix I: Ito’s Lemma

Ito’s Lemma

Let a stochastic process dG = A(G, t)dG + B(G, t)dt with dG a Wiener Proses. Then the dynamics of a
function of G and t, f (G, t), are given by:

d f (G, t) =
∂ f (G, t)

∂G
A (G, t) dX +

(
∂ f (G, t)

∂G
B(G, t) +

∂ f (G, t)
∂t

+
1
2

∂2 f (G, t)
∂G2 A(G, t)2

)
dt

proof:
We look at a small change in d f (G, t) = f (G + dG, t + dt)− f (G, t). With Taylors Theorem we get:

f (G + dG, t + dt) = f (G, t) +
∂ f (G, t)

∂G
(G + dG− G) +

∂ f (G, t)
∂t

(t + dt− t)

+
1
2

∂2 f (G, t)
∂G2 (G + dG− G)2 +

∂2 f (G, t)
∂t2 (t + dt− t)2

+
∂2 f (G, t)

∂G∂t
(t + dt− t)(G + dG− G) + . . .

Filling this back into d f (G, t) = f (G + dG, t + dt)− f (G, t) we get:

d f (G, t) = f (G, t) +
∂ f (G, t)

∂G
dG +

∂ f (G, t)
∂t

dt +
1
2

∂2 f (G, t)
∂G2 dG2 +

∂2 f (G, t)
∂t2 dt2

+
∂2 f (G, t)

∂g∂t
dtdG + . . .− f (G, t)

Now we fill in dG = A (G, t) dX + B (G, t) dt into the Taylor Expansion:

d f (G, t) = f (G, t) +
∂ f (G, t)

∂G
(A (G, t) dX + B (G, t) dt) +

∂ f (G, t)
∂t

dt +
1
2

∂2 f (G, t)
∂G2 (A (G, t) dX + B (G, t) dt)2

+
∂2 f (G, t)

∂t2 dt2 +
∂2 f (G, t)

∂g∂t
dt(A (G, t) dX + B (G, t) dt) + . . .− f (G, t)

d f (G, t) =
∂ f (G, t)

∂G
A (G, t) dX +

∂ f (G, t)
∂G

B (G, t) dt +
∂ f (G, t)

∂t
dt +

1
2

∂2 f (G, t)
∂G2 A (G, t)2 dX2

+
∂2 f (G, t)

∂G2 B (G, t) A (G, t) dtdX +
1
2

∂2 f (G, t)
∂G2 B (G, t) dt2 +

∂2 f (G, t)
∂t2 dt2

+
∂2 f (G, t)

∂g∂t
A (G, t) dXdt +

∂2 f (G, t)
∂g∂t

B (G, t) dt2 + . . .

Now we let dt go to 0. When dt− > 0 dX2− > dt, thus all terms grater then dt fall off:

d f (G, t) =
∂ f (G, t)

∂G
A (G, t) dX +

∂ f (G, t)
∂G

B (G, t) dt +
∂ f (G, t)

∂t
dt +

1
2

∂2 f (G, t)
∂G2 A (G, t)2 dt

d f (G, t) =
∂ f (G, t)

∂G
A (G, t) dX +

(
∂ f (G, t)

∂G
B(G, t) +

∂ f (G, t)
∂t

+
1
2

∂2 f (G, t)
∂G2 A(G, t)2

)
dt
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Appendix II: European Call Option on an asset with a constant dividend yield

European Call Option on an asset with a constant dividend yield

The dynamics of an asset with a constant dividend yield are given by: dS = σSdX + S(µ − D0)dt.
The Black and Scholes differential equation with an asset like this as underlying is given by:

∂Ceu

∂t
+

1
2

∂2Ceu

∂S2 σ2S2 + (r− D0)S
∂Ceu

∂S
− rCeu = 0

Ceu(S, t) denotes the price of the call option. Solving the differential equation for Ceu(S, t) gives:

Ceu (S, t) = Se−D0(T−t)N (d10)− Ee−r(T−t)N (d20)

with d10 =
ln(S/E) + (r− D0 +

σ2

2 (T − t))
σ
√

T − t
and d20 =

ln(S/E) + (r− D0 − σ2

2 (T − t))
σ
√

T − t

The value of a European call option is denoted as Ceu (S, t). Ceu (S, t) is calculated by plugging dS =
σSdX + S(µ− D0)dt into Ito’s lemma:

dCeu (S, t) =
∂Ceu

∂S
σSdX +

(
∂Ceu

∂S
S(µ− D0) +

∂Ceu

∂t
+

1
2

∂2Ceu

∂S2 σ2S2
)

dt

Now we make a replicating portfolio consisting of ∆ stocks and π zero coupon bonds. This portfolio
replicates the value of the option, such that we always have: Ceu = ∆S + π. The dynamics of holding this
replicating portfolio are: dπ + ∆dS + D0∆Sdt, thus we get dCeu = dπ + ∆dS + D0∆Sdt. Filling this into our
expression from the call option gives:

dπ + ∆dS + D0∆Sdt =
∂Ceu

∂S
σSdX +

(
∂Ceu

∂S
S(µ− D0) +

∂Ceu

∂t
+

1
2

∂2Ceu

∂S2 σ2S2
)

dt

dπ =
∂Ceu

∂S
σSdX +

(
∂Ceu

∂S
S(µ− D0) +

∂Ceu

∂t
+

1
2

∂2Ceu

∂S2 σ2S2
)

dt− ∆dS− D0∆Sdt

dπ =
∂Ceu

∂S
σSdX +

(
∂Ceu)

∂S
S(µ− D0) +

∂Ceu

∂t
+

1
2

∂2Ceu

∂S2 σ2S2
)

dt

− ∆(σSdX + S(µ− D0)dt)− D0∆Sdt

The goal of this replicating portfolio is to eliminate the randomness of the option. The only term that is
causing this equation to be random is dX. To eliminate the dX we take ∆ = ∂Ceu

∂S in stocks. This will make
both terms involving dX cancel:

dπ =
∂Ceu

∂S
σSdX +

(
∂Ceu)

∂S
S(µ− D0) +

∂Ceu

∂t
+

1
2

∂2Ceu

∂S2 σ2S2
)

dt

− ∂Ceu

∂S
σSdX− ∂Ceu

∂S
S(µ− D0)dt− D0

∂Ceu

∂S
Sdt

dπ =
∂Ceu

∂t
dt +

1
2

∂2Ceu

∂S2 σ2S2dt− D0
∂Ceu

∂S
Sdt
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Now we use the fact that a zero coupon bond has the following value: π (t) = Ke−r(T−t) with K the current
value of the bond and r the risk free rate rate. This is the result of a separable differential equation: dπ = πrdt.

πrdt =
∂Ceu

∂t
dt +

1
2

∂2Ceu

∂S2 σ2S2dt− D0
∂Ceu

∂S
Sdt

(Ceu − S∆)rdt =
∂Ceu

∂t
dt +

1
2

∂2Ceu

∂S2 σ2S2dt− D0
∂Ceu

∂S
Sdt

(Ceu −
∂Ceu

∂S
S)rdt =

∂Ceu

∂t
dt +

1
2

∂2Ceu

∂S2 σ2S2dt− D0
∂Ceu

∂S
Sdt

(Ceu −
∂Ceu

∂S
S)r =

∂Ceu

∂t
+

1
2

∂2Ceu

∂S2 σ2S2 − D0
∂Ceu

∂S
S

By rearranging the terms we obtain the Black and Scholes Differential Equation for a dividend paying asset.

∂Ceu

∂t
+

1
2

∂2Ceu

∂S2 σ2S2 + (r− D0)S
∂Ceu

∂S
− rCeu = 0

To find a solution to this equation it is transformed to the Heat Equation using the following variable
transformation:

Ceu(S, t) = Ev(x, τ)

t = T − τ

σ2/2
S = Eex

This transformation changes the partial derivatives in the Black and Scholes Differential Equation to:

∂Ceu

∂t
= E

∂v
∂τ

∂τ

∂t
= E

∂v
∂τ

∂

∂t
(T − t)

σ2

2
= −Eσ2

2
∂v
∂τ

∂Ceu

∂S
= E

∂v
∂x

∂x
∂S

= E
∂v
∂x

∂

∂S
ln
(

S
E

)
=

E
S

∂v
∂x

∂2Ceu

∂S2 =
∂

∂S
∂Ceu

∂S
=

∂

∂S
E
S

∂v
∂x

=
E
S2

(
∂2v
∂x2 −

∂v
∂x

)

Filling these transformed partial derivatives into the Black and Scholes Differential Equation gives:

− Eσ2

2
∂v
∂τ

+
1
2

S2σ2 E
S2

(
∂2v
∂x2 −

∂v
∂x

)
+ (r− D0) S

E
S

∂v
∂x
− Ev (x, τ) = 0

∂v
∂τ

+
∂2v
∂x2 +

∂v
∂x

(k′ − 1)− kv(x, τ) = 0

where k′ =
r− D0

σ2/2
and k =

r
σ2/2

Wat is left is a differential equation with constant coefficients. With the transformation v (x, τ) = u (x, τ) exα+τβ

we obtain the partial derivative:
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∂v
∂τ

= βexα+τβu (x, τ) +
∂u
∂τ

exα+τβ

∂v
∂x

= αexα+τβu (x, τ) +
∂u
∂x

exα+τβ

∂2v
∂x2 =

∂2u
∂x2 exα+τβ + 2α

∂u
∂x

exα+τβ + α2u (x, τ) exα+τβ

filling this into ∂v
∂τ + ∂2v

∂x2 +
∂v
∂x (k

′ − 1)− kv(x, τ) = 0 and dividing out all exα+τβ terms gives:

− βu (x, τ)− ∂u
∂τ

+ α2u (x, τ) + 2α
∂u
∂x

+
∂2u
∂x2 + (k′ − 1)

(
αu(x, τ) +

∂u
∂x

)
− ku(x, τ) = 0

by setting α = −1
2
(k′ − 1) and β = −1

4
(k′ − 1)2 − k

∂u
∂τ

=
∂2u
∂x2

∂u
∂τ = ∂2u

∂x2 this equation is the single dimensional Heat equation which has a fundamental solution: 1
2
√

τπ

∫ ∞
−∞ u(x, 0)e−

(s−x)2
2τ ds

. The starting point of the Heat equation is found by looking at the transformation done on the time variable t
in the Black and Scholes differential equation. When the transform to the Heat equation was preformed t was set
to T − τ/ σ2

2 implying that when τ = 0 t is equal to T. At time T the European call option is at expiry, thus
the value of the option is the payoff: MAX{S− E, 0}.

Ceu (S, T) = MAX{S− E, 0}
Ev (x, 0) = MAX{Eex − E, 0}

Eu (x, 0) e−x k′−1
2 −0

(
(k′−1)2

4 +k
)
= MAX{Eex − E, 0}

u(x, 0) = MAX{ex k′+1
2 − ex k′−1

2 , 0}

With the fundamental solution to the Heat equation and the initial condition u (x, 0) we can setup the
solution:

u(x, τ) =
1

4
√

τπ

∫ ∞

−∞
u(x, 0)e−

(s−x)2
2τ ds

z =
s− x√

2τ
dz =

ds√
2τ

u(x, τ) =

√
2τ

2
√

τπ

∫ ∞

−∞
u(z
√

2τ + x, 0)e−
z2
2 dz

u(x, τ) =
1√
2π

∫ ∞

−∞
MAX{e(z

√
2τ+x) k′+1

2 − e(z
√

2τ+x) k′−1
2 , 0}e−

z2
2 dz

u(x, τ) =
1√
2π

∫ ∞

− x√
2τ

e(z
√

2τ+x) k′+1
2 − e(z

√
2τ+x) k′−1

2 e−
z2
2 dz

u(x, τ) =
1√
2π

∫ ∞

− x√
2τ

e(z
√

2τ+x) k′+1
2 e

−z2
2 dz− 1√

2π

∫ ∞

− x√
2τ

e(z
√

2τ+x) k′−1
2 e

−z2
2 dz

Only the first integral will be worked out, because the second integral is very similar to the first one.
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1√
2π

∫ ∞

− x√
2τ

e(z
√

2τ+x) k′+1
2 e−

z2
2 dz =

ex k′+1
2 + τ

4 (k
′+1)2

√
2π

∫ ∞

− x√
2π

e−
1
2 (z− 1

2 (k
′+1)
√

2τ)
2

dz

ρ = z− 1
2
(k′ + 1)

√
2τ dρ = dz

=
ex k′+1

2 + τ
4 (k
′+1)2

√
2π

∫ ∞

− x√
2τ
− 1

2 (k
′+1)
√

2τ
e
−ρ2

2 dρ

= ex k′+1
2 + τ

4 (k
′+1)2
N
(

x√
2τ

+
1
2
(k′ + 1)

√
2τ

)
1√
2π

∫ ∞

− x√
2τ

e(z
√

2τ+x) k′−1
2 e−

z2
2 dz = ex k′−1

2 + τ
4 (k
′−1)2
N
(

x√
2τ

+
1
2
(k′ − 1)

√
2τ

)
To be consistent with the notation of the book The Mathematics of Financial Derivatives the quantity x√

2τ
+

1
2 (k
′ + 1) will be called d10 and x√

2τ
+ 1

2 (k
′ − 1) d20.

u (x, τ) = ex k′+1
2 + τ

4 (k
′+1)2
N (d10)− ex k′−1

2 + τ
4 (k
′−1)2
N (d20)

v (x, τ) ex k′−1
2 +τ

(
(k′−1)2

4 +k
)
= ex k′+1

2 + τ
4 (k
′+1)2
N (d10)− ex k′−1

2 + τ
4 (k
′−1)2
N (d20)

v (x, τ) = ex+k′τ−kτN (d10) = e−kτN (d20)

filling k′ =
r− D0

σ2/2
and k =

r
σ2/2

back in

v (x, τ) = ex+ r−D0
σ2/2

τ− r
σ2/2

τN (d10) = e−
r

σ2/2
τN (d20)

filling v(x, τ) =
Ceu(S, t)

E
, τ = (T − t)

σ2

2
and x = ln(

S
E
) back in

Ceu(S, t)
E

=
S
E

e−D0(T−t)
σ2
2

σ2/2N (d10)− e−r(T−t)
σ2
2

σ2/2N (d10)

Working the last expression out and transforming d10 and d20 gives the value of an European call option
on a continuous dividend paying asset:

Ceu (S, t) = Se−D0(T−t)N (d10)− Ee−r(T−t)N (d20)

with d10 =
ln(S/E) + (r− D0 +

σ2

2 (T − t))
σ
√

T − t
and d20 =

ln(S/E) + (r− D0 − σ2

2 (T − t))
σ
√

T − t
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