
An overview of neuroevolution techniques

Vincent Hoekstra

December 14, 2011

Preface

This paper is an obligatory part of the Business Mathematics and Informatics
course program at the VU university in Amsterdam. It is written by Vincent
Hoekstra, a student of the Business Mathematics and Informatics master
program. The goal of this paper is to provide the reader with a complete
overview of the field of neuroevolution, i.e. the field that uses evolutionary
algorithms to train neural networks.

I would like to thank Guszti Eiben and Berend Weel for their support
and advice during the process of writing this paper.

1

Contents

Preface 1

1 Introduction 3
1.1 Goal . 3
1.2 Neural networks . 4
1.3 Evolutionary computing . 5

2 Representations 7
2.1 Direct representations . 7

2.1.1 Weight vector representations 8
2.1.2 Neuron representations 9
2.1.3 Topology representations 10

2.2 Developmental representations 14
2.3 Indirect representations . 14
2.4 Taxonomy . 17

3 Neural Networks 19
3.1 Feedforward vs. Recurrent . 20
3.2 Other types of networks . 21

4 Applications 23
4.1 Benchmark problems . 23
4.2 Other applications . 24

5 Conclusions 26

Bibliography 27

List of Figures 34

2

Chapter 1

Introduction

1.1 Goal

The human brain is responsible for all of human’s inventions and societies,
it is a special object capable of incredible calculations. The system that
made this object possible was evolution. Over the last decades humans have
made progress in both making machines that are capable of handling a lot
of calculations in a short time span, and in understanding the underlying
mechanisms of the human brain. Nonetheless, computation done by com-
puters is not at all similar to how the human brain handles computations.
Artificial Neural Networks are an attempt to use the same structure as that
of the human brain, but now used by software and hardware.

Neural networks are networks of nodes connected in a similar way as how
the neurons in the brain are connected. But just as the human brain itself,
such a network is not of much use until it is properly trained. Many ways
exist to train these neural networks, and this paper concentrates on one of
them. Human brains were developed by biological evolution and in a similar
way neural networks can be trained by using evolution.

Evolutionary computing uses the same characteristics as biological evo-
lution to search for optimal solutions to computational problems. Neuroevo-
lution is a method to train neural networks by using this problem-solving
technique. The goal of this paper is to present an overview of all the neu-
roevolution techniques and to give a summary of this promising training
method.

To give this overview, the paper is divided in the following sections. First,
the underlying structures and computational techniques of both neural net-
works and evolutionary computing are explained to bring the reader up to
speed. Then the paper is divided in to three parts, in these parts neuroevo-

3

lution is discussed in terms of the evolutionary representation, the types of
neural networks and the applications for which neuroevolution is particu-
larly suitable. Of particular interest is the relative frequency of the different
techniques that are used for neuroevolution and the development of these
techniques over the years. By presenting the results in this way, the reader
is presented with a complete overview of the field of neuroevolution.

1.2 Neural networks
Artificial neural networks are computational structures modeled after tech-
niques in biology, particularly the brain and the nervous system. Neural
networks consist of three types of nodes: input nodes, hidden nodes and
output nodes. Normally the input and output nodes are given by the task
to which the neural network is assigned. For example, consider a network
that is used for controlling an artificial robot in search for food. Input nodes
could be assigned to the different sensors of the robot, output nodes could
be assigned to actions like eating, moving in a certain direction or staying
put.

Figure 1.1: An example of an artificial neural network structure. source:
Evolving Networks Using the Genetic Algorithm with Connectionist Learning,
[BMS90]

In a simple neural network, output nodes and hidden nodes have connec-
tions linking to them from other nodes, all these links have a specific weight.

4

The value of hidden or output nodes can be calculated by a function that
takes as input the weighted sum of all nodes linked to that specific node,
this function is called the transfer function. By training each weight in the
network, the network can provide the right output given some input values.
Figure 1.1 shows an example of an artificial neural network. The network
that is shown here is a feedforward network, which means a network without
any connection loops.

There are multiple characteristics that describe a neural network. The
opposite of a feedforward network is a recurrent network, recurrent networks
can have connection loops and even connections going to input nodes or
connections from output nodes. Some networks also have multiple layers of
hidden nodes. If a hidden node has a connection to another hidden node,
the second node is part of a higher layer within the network structure. The
overall amount of hidden nodes is a measure, albeit not an exact one, for the
complexity that the network can handle. More difficult tasks in general need
more hidden nodes. Another characteristic of neural networks is the type of
transfer function that is used by a neuron to calculate its output. Neural
networks are applied in many fields, they can, among other things, be used
for classification problems, optimization problems and controlling artificial
agents.

1.3 Evolutionary computing
Evolutionary algorithms are a class of problem solving algorithms that work
similar to biological evolution in that it improves a population of individuals
instead of just one individual. Biological evolution can be depicted in the fol-
lowing way. There is an environment that can only support a certain number
of individuals, these individuals compete for certain resources. Because the
environment can not support a limitless population size, there has to be some
selection which members of the species are able to survive and to reproduce.
The individuals that are able to compete for the resources in the best way
are favoured by this selection process, Darwin, [Dar], called this "Survival of
the fittest". Combined with the fact that some specific traits that makes a
individual fitter than its rivals can be inherited, this provides a system where
on average each generation is fitter than the previous one.

There is an important distinction between the phenotype of an individ-
ual and its genotype. The phenotype is the form of the individual in the
environment where its fitness is tested. The genotype is the encoding of
the phenotype which can be inherited by offspring. For example in biology,
Someone’s body and mind would be considered the phenotype and someone’s

5

chromosomes would be considered the genotype.
Evolutionary algorithms are based on this system. But in this case the

population does not consist of biological species but of potential solutions
to a problem. Evolutionary algorithms provide a structured search through
the solution space. It is an iterative procedure where each iteration equals
a generation. In each generation individual solutions are evaluated, the best
solutions recombined into offspring, the offspring is subject to some mutation
and at last the best solutions are select to survive to the next generation. In
this process the phenotype representation is the representation that is evalu-
ated and the genotype is the representation that is mutated and recombined
into offspring. For example in neuroevolution, the phenotype is the actual
neural network and the genotype is some representation of which the entire
network can be constructed, for example a vector of all the weights in the
network.

Due to this clear distinction between the genotype and phenotype evolu-
tionary algorithms perform well in unsupervised learning problems and more
complex problems. An important challenge in evolutionary algorithm design
is to keep the population as diverse as possible to keep the population from
converging prematurely.

6

Chapter 2

Representations

In this section the different representations of the genotype will be discussed.
This choice of representation is a crucial part of any evolutionary algorithm
and determines what kind of crossover and mutation can be applied. Floreano
et. al.[FDM08] distinguishes three types of representations.

• Direct representations.

• Developmental representations.

• Indirect or implicit representations.

Sections 2.1-2.3 will discuss each of these representations and what sets
that type of representation apart from the others. these sections will also
deal with specific representations that fall into that category and how mu-
tation and crossover work in each of these types of representation. Section
2.4 will provide the reader with a comparison and overall taxonomy of the
representations.

2.1 Direct representations
Direct representations are representations where (parts of) the genotype has
a 1-to-1 mapping with (parts of) the phenotype. This means that every part
of the genome can be translated into a specific part of the neural network.
An advantage of this representation is that it is easier to understand how
the network is constructed from the genotype representation. Though, there
are some negative effects as well. For example, when dealing with a bigger
network, the genotype representations gets bigger with a similar amount,
which means more computation time.

7

Most direct representations have a fixed number of neurons and the sole
task of the evolutionary algorithm is finding the weights of the links between
the nodes. This means that a priori knowledge is necessary to determine
the appropriate amount of hidden nodes and therefore that these fixed-size-
representations are less robust than other representations. In general a rule
of thumb is, if there are more hidden nodes in a neural network, then the
network can handle more complex problems (with more dimensions). That
these fixed-size representations are less robust was described by Stanley in
[Sta04] in the following way: when the chosen number of hidden nodes is too
small, the optimal solution might not exist in that search space. But if the
chosen number of nodes is too large the search space becomes too big to find
the optimal solution.

The alternative is to evolve the network structure as well. This involves
more complex representations and therefore a different search space. This
section will describe some of these fixed size direct neuroevolution represen-
tations and alternatively, the direct topology representations.

2.1.1 Weight vector representations
Some of the earliest neuroevolution algorithms (around 1990-1995, [BMS90,
Wie91] were weight vector representations of a fixed size and had a fixed
topology. A number of hidden nodes would be chosen and the genotype
would be a (real) vector of all the connection weights. For example, Belew
et. al. [BMS90] used a bit string representation for the weights. These types
of neuroevolution algorithms are often called conventional neuroevolution
(CNE) methods because these methods were the first succesful attempts
at neuroevolution. In these cases one genotype encompasses all the weights
in the network and can be translated into a full neural network. Mutation
was mostly done by letting every weight have a small chance of changing
between generations. Recombination could be done by swapping parts of
the vectors. These representations often had a big chance of premature
convergence and therefore other methods were developed, for example by
Moriarty and Miikkulainen, [MM96], These methods will be discussed later.

After a period of time that different techniques were preferred, weight
vector representation have again gained in popularity recently. Christian Igel,
[Ige03], had a very succesful attempt at creating a neuroevolution algorithm
based on real weight vectors which was based on (mu/mu,lambda) Covariance
Matrix Adaptation - Evolution Strategies (CMA-ES). This method proved
succesful when used with small population sizes. Recombination was done
by global intermediate recombination and gaussian mutation was applied.
Gomez et. al, [GSM06], also developed an effective algorithm that uses real

8

weight vectors, but they made use of a subpopulation for every individual
weight in the network, and permuting these subpopulations to create and
evaluate networks. This way they ensured that the population stayed as
diverse as possible. They called this technique CoSyNE.

In conclusion, weight vector representations are still applicable and have
been gaining popularity in recent years. The fixed topology is still quite
restricting, but recent attempts with fixed topology have been performing
better or equal to other more complex topology-evolving methods. This
added to the fact that weight vectors are easily comprehensible makes them
a viable class of neurevolution algorithms.

2.1.2 Neuron representations
In an attempt to improve diversity in populations of conventional neuroevolu-
tionary algorithms, Moriarty and Miikkulainen came up with an innovative
idea in 1994, [MM96]. Instead of using a vector representation of an en-
tire network, individuals in a population depicted single neurons (with their
respective weights). They called this method Symbiotic, Adaptive Neuro
Evolution (SANE). This method is only applicable when considering a fixed
size (feedforward) topology. Every individual in the population depicts a
hidden node in the form of a vector of its weights and all of the hidden nodes
have a link to each output/input node. The goal of this technique was to
create different species within the population. because in an optimal neural
network every hidden node performs a specific task within the network. In-
dividuals were evaluated by randomly selecting an amount of neurons equal
to the size of the network and measuring the performance of this network,
every node in the network would get this fitness value added to their set of
fitness values. After multiple evaluations every hidden node would have been
measured a couple of times and the overall fitness of a node would be the av-
erage of all of the performances of the networks that it was in. This method
ensures that at some point neurons start to specialize in certain tasks. Neu-
rons would be ranked according to average fitness and the top 25% was used
for crossover. Crossover would be performed by using one-point crossover
within the real valued vector of each neuron, which creates two children for
every two parents. Mutation would change individual weights with a chance
of 1%.

In 1999, Gomez and Miikkulainen extended the system of SANE by us-
ing sub-populations. They called this technique Enforced Sub-Populations
(ESP), it used a similar algorithm as SANE but it had a sub-population for
every hidden node in the network. ESP had two advantages over the orig-
inal neuron representation when considering the evolutionary process. For

9

one, the species that would evolve gradually when executing SANE would
already be in place and second, there would only be recombination within
a certain species. Another major advantage was that the prerequisite of a
only feedforward network is no longer necessary. Hidden nodes from different
sub-populations could develop links to each other after a sufficient amount
of generations. Another advantage of ESP in comparison to conventional
neuroevolution is that in CNE networks with a single "bad" node could still
have a high fitness, in ESP every type of node is evaluated by its own av-
erage performance, so this event is not likely to happen. In 2000, Kaikhah
and Garlick [KG00], made another extension to the neuron representation
technique. They extended the algorithm by allowing a variable amount of
hidden nodes.

These neuron representations were one of the first deviations from the
conventional neuroevolution path, and are based on a quite unique repre-
sentation that is worth mentioning. However, both implicit and other direct
representations have been performing better over the last decade.

2.1.3 Topology representations
in 2002, Stanley and Miikkulainen [SM02b] argued that the topology of a neu-
ral network also affects their functionality. However, traditional neuroevolu-
tion focused on choosing a fixed topology in advance and just evolving the
network weights (See previous sections). The question was, if evolving the
topology would be advantageous compared to evolving only the weights and
assuming full connectivity between nodes. The main advantage of evolving
the structure would be that no heuristic methods would have to be used to
find the appropriate amount of hidden nodes and thus could lead to a more
robust algorithm.

One of the first attempts of evolving the network topology next to the
connection weights was done by Dasgupta and Mcgregor, [DM92], in 1992.
For their evolutionary algorithm they implemented a two-level structured ge-
netic algorithm. In this representation, the first level was a binary connection
matrix to determine which nodes had conections between them. The second
level was a bit string that represents the connection weights. This approach
could handle both feedforward and recurrent networks and had the property
that feedforward networks only used they upper triangle of the connectiv-
ity matrix. A drawback of this system was that a connection matrix was
necessary that was of size n x n where n is the number of hidden nodes.

In 1994, Angeline et. al. [ASP94] argued that crossover, and therefore
Genetic Algorithms, is not well-suited for evolving the network topology. In-
stead, they proposed a method that was based on evolutionary programming.

10

Evolutionary programming is a class of evolutionary algorithms where there
is no parent selection, offspring is solely created by mutation. They called
this technique the GNARL Algorithm (which stands for GeNeralized Acqui-
sition of Recurrent Links). The search space for this algorithm was relatively
big, because networks had only three restrictions, given a maximum number
of nodes, in each network: 1. There had to be no links to an input node. 2.
There had to be no links from an output node. 3. There should be at most
one link from node x to node y. This allowed a lot off useless nodes in the
network, for example, hidden nodes could exists with no links to it. Connec-
tivity weights were modeled as real weights and were mutated by gaussian
noise. structural mutation was done by adding nodes or links. To make
sure that these changes had no radical effects on the fitness compared to the
parent, new connections would be initialized with zero weight. Another mu-
tation was the deletion of a node, where there is no way of compensating for
an eventual radical change in fitness. An interesting feature of GNARL was
the fact that it uses an individuals temperature to determine the severity of
the mutation. The temperature T(i) of and individual i was calculated by:

T (i) = fitness(i)
fitnessmax

This way an individual with a fitness that is far less than the optimal
fitness is mutated severely, but an individual that is close to the optimal
solution is only mutated slightly. This is a way of ensuring that the search
converges to the optimal fitness.

One of the more succesful direct representations that can also evolve the
structure of the network is called NEAT (Neuro Evolution of Augmenting
Topologies) and is developed by Stanley and Miikkulainen in 2002 [SM02b,
Sta04]. They argued that one of the main problems for topology repre-
sentations and neuroevolution in general is that of Competing Conventions.
Which means that multiple different genotypes decode into the same pheno-
type, which could have a serious negative effect on the algorithm, because
two fit parents that accidentally have the same phenotype will likely produce
inferior offspring. NEAT brought two major innovations:

1. To battle the competing conventions problem, NEAT would store an-
cestral information of each individual.

2. Neat would use speciation and would use different fitness measures for
newly formed topologies and fully weighted networks.

NEAT uses explicit fitness sharing, which means that similar individuals
share their fitness values. Furthermore, because smaller networks are not

11

easily evolved when an initial population has a lot of bigger networks, NEAT
starts out with no hidden nodes, the simplest neural network possible. The
representation that NEAT uses is specifically developed to allow meaningfull
structural crossover, each genome consists of a list of connections. Each
connection specifies the in-node, out-node, connection weight, whether or
not the connection is enabled, and an innovation number. The innovation
number is used to find corresponding genes.

Figure 2.1: The genotype and phenotype representation of the NEAT algo-
rithm, consisting of nodes and connections. Source: Efficient Evolution of
Neural Networks through complexification, [Sta04].

Mutation can be done by altering the weights of a connection, or mutation
can be structural which is done in two ways: adding a node or adding a
connection. When adding a node, it is done by splitting one connection into
two parts seperated by the new node. It is clear that, in the NEAT system,
mutation is used to create bigger networks. Whenever a new connection is
created, it gets a new innovation number, NEAT ensures that each connection
between two of the same nodes (in every member of the population) have the
same innovation number. It creates speciation on the connection level. This
way, crossover can be done in a sensible way by comparing the innovation
numbers of the individual connections within both genomes. This is shown
in Figure 2.2.

12

Figure 2.2: Crossover in the NEAT algorithm. Both parents look different
but have a couple of similar connections, which is shown by the innovation
numbers. Each connection that exists in both parents also exists in the
offspring, whenever a connection is present in one of both parents it has a
chance of being added to the offspring. The same is true when connections
are disabled in one or both of the parents. Source: Efficient Evolution of
Neural Networks through complexification, [Sta04].

13

2.2 Developmental representations
Developmental representations were created to counter one of the disadvan-
tages of direct representations, direct representations faced difficulties when
larger neural networks had to be constructed. Developmental representa-
tions tried to tackle this problem by assuming that larger neural networks
are build up from smaller pieces. Gruau, [Gru95], made the assumption
that the human brain has to have some modular structure to be able to do
the computations that the brain is capable of, in a similar way that most
computer programmes use modularity. When assuming that larger neural
networks have these smaller modules for specific tasks, evolutionary algo-
rithms could benefit from this feature. Developmental representations are
representations that are specificially designed to exploit this characteristic.

Kitano, [FDM08], was one of the first to use this encoding method. He
used a technique that is similar to the structured genetic algorithm, [DM92],
discussed earlier. Kitano also used a connectivity matrix consisting of 1’s
and 0’s. Instead of encoding the entire matrix, the representation was in the
from of a 2 x 2 matrix of symbols and some rules which specified how to
develop the entire connectivity matrix. Recursively, each symbol in a 2 x 2
matrix of symbols would develop into its own 2 x 2 matrix, up until a point
is reached where each 2 x 2 matrix is a predetermined matrix consisting of
1’s and 0’s. Figure 2.3 shows how this process works.

Gruau, [Gru95], created another developmental representation called Cel-
lular Encoding, which was inspired by cell division in biology. It is based on
a language that is used to construct networks from a single cell. A cell would
represent a node in the network and when the cell divided into two childcells
specific rules would describe how the links between the two new cells and the
already existing cells would be established. Floreano et. al., [FDM08], con-
cluded that despite that ability for developmental representations to create
large networks with compact representations, it is not clear to what extent
this contributes to solving a problem. The modular architectures that are
used by developmental representations can be useful in specific situations,
for example controlling a multi-legged robot. However, in these cases, de-
velopmental representations still needed additional mechanisms to deal with
several other problems.

2.3 Indirect representations
Indirect representations are inspired by biological genes, in particular Gene
Regulatory Networks and DNA. biological gene networks can be seen as a se-

14

Figure 2.3: Kitano’s developmental representation consisting of evolvable
rules and fixed rules.Source: Neuroevolution: From architecture to learning,
[FDM08].

quence of genetic characters, with a coding region that is specified by specific
coding patterns, called promoter and terminator regions, [FDM08]. Implicit
encodings are based on this system and the most succesful and well-known ap-
plication is the technique called Analog Genetic Encoding or AGE, [DMF06].

The genome in AGE is represented by a sequence of characters from a
finite alphabet, for example the ASCII uppercase alphabet. Special strings of
characters are defined as device tokens and terminal tokens that respectively
signal the start and end of specific coding regions in the genome. Each node
in the network is encoded in the genome string in the following way: Device
token - sequence of characters - terminal token - sequence of characters -
terminal token. The first sequence of characters is used to find all the weights
of connections going to the node and the second is used to find the weight
for connections from the node. This means that, just as is the case with
developmental representations, a specific set of fixed rules is necessary that
are used to calculate the weights from the character sequences. This set of

15

rules is called an interaction map, a weight is calculated by combining the
characters of the outgoing node with those of the ingoing node and using the
interaction map to find the weight. This is explained in Figure 2.4.

Figure 2.4: The representation and phenotype-genotype mapping of the AGE
algorithm. Source: Neuroevolution with Analog Genetic Encoding, [DMF06].

In the genome, if a device token is not followed by enough terminal tokens
that part of the genome is considered invalid. This way there is no protection
needed for genetic operators like mutation and crossover and they can be
applied to the token, coding, and non-coding parts of the genome. The
initial population is created by generating individuals with a given number of
neurons with random terminal tokens. The following mutation and crossover
methods can be used in the AGE algorithm, from [DMF06].

• Character deletion, insertion and substitution. A character is
removed, inserted or substituted in the genome.

• Fragment deletion, transposition and duplication. Two points
of the genome are chosen and the intervening fragment is deleted, trans-
ferred or copied to another point of the genome.

• Device insertion. A device token is inserted in the genome (with
randomly generated terminal tokens.

• Homologous Crossover Fragments of the genome are recombined
using a randomly chosen crossover point and searching another parent
which has a sequence of characters similar to that in the area around

16

the crossover point. Then children are created by swapping the strings
on both sides of the crossover point, [Mat05].

• Genome duplication. The entire genome is duplicated.

Implicit representations are robust and are modeled after a succesful bio-
logical system. Its disadvantage is that it is a complex way of encoding and
at this point simpler representations are able to do the same task. It also
needs a set of fixed rules to construct the phenotype but does not have the
advantage of developmental encodings that the size of the genome is reduced
effectively. Indirect representations are relatively new and new developments
might improve its popularity.

2.4 Taxonomy
Neuroevolution has been developed over the last couple of decades, it is in-
teresting to know which types of algorithms are used more frequently and
in which direction the field is heading. The first representations had a fixed
topology and a fixed number of hidden nodes. These representations had
some drawbacks and other representations were developed to circumvent
these disadvantages. These methods ranged from direct representations,
like NEAT, to developmental and indirect representations. Recently how-
ever, fixed topology networks like CMA-evolution strategies and CoSyNE
are gaining popularity. This might be because these simpler representations
do have a smaller search space, because they do not have to search for the
right topology. Figure 2.5 shows the overall taxonomy of previously men-
tioned representations. Figure 2.6 shows a timeline from the first application
of neuroevolution until now. NEAT is still the most popular representation
to date, followed by CMA-ES. Developmental approaches have not seen much
use in recent years and AGE is by far the most succesful implicit representa-
tion. AGE, CoSyNe, and CMA-ES have all had similar or better results than
NEAT at several benchmark tests, the popularity of the NEAT algorithm
could be ascribed to its understandability combined with its robustness.

17

Figure 2.5: The taxonomy of neuroevolution representations.

Figure 2.6: Timeline with the years that the most important neuroevolution
techniques were developed. the type of representation of each technique is
between the brackets.

18

Chapter 3

Neural Networks

There are multiple types of neural networks, the purpose of this section is to
discuss which kind of networks are typically used combined with evolutionary
algorithms. One of the characteristics of neural networks is the type of
transfer function that is used by the neuron within the network. figure 3.1
shows a typical artificial neuron.

Figure 3.1: A typical artificial neuron, The input for the transfer function is
the weighted sum of the input connections. Source: Computing with Spiking
Neurons, [FBoTDoES98].

The transfer function f(x) can differ, using a binary threshold is an ex-
ample of a discrete transfer function. A sigmoid function is an example of
an analog transfer function. Both examples are shown in figure 3.2. The sig-
moid function is the transfer function that is most used in neural networks,

19

[FBoTDoES98]. Usually the transfer function is chosen in advance and is
not incorporated in the genome representation, because evolving the weights
already has the desired effect.

Figure 3.2: Two examples of transfer functions, the sygmoidal transfer func-
tion is most used in practice. Source: Computing with Spiking Neurons,
[FBoTDoES98].

3.1 Feedforward vs. Recurrent
The goal of this section is to give an overview when feedforward networks
are used and when recurrent networks are preferred. Clearly, the type of net-
work that is used depends on the representation of the genome and the task
for which the neural network is used. While recurrent networks are capable
of computing more complex tasks, allowing for recurrent connections also
increases the amount of networks that encompass the search space. Most
topology evolving algorithms do not have restrictions considering recurrent
networks, so when such a structure is used it automatically allows recurrent
connections. Some algorithms, like SANE, do not allow for recurrent con-
nections and some, like ESP and CoSyNE, allow for the user to determine
himself what kind of fixed topology needs to be used. In general, recurrent
networks are more often used in applications that involve artificial agents
or robots, because recurrent connections allow for memory to be involved in
the decision process, [AbBR01, KG00]. The application that uses the neural
network should determine whether or not a recurrent network is necessary

20

and an appropriate representation needs to be chosen.

3.2 Other types of networks
Spiking neural networks are neural networks that behave more similar to bi-
ological neural networks than standard artificial networks because biological
neural networks also display spiking behavior, [FBoTDoES98]. It has also
been proved that spiking neural networks are computationaly more powerful
than some of its original artificial neural network counterparts, [OCBM+11].
Neurons in spiking networks behave differently than neurons in other artifi-
cial neural networks. In general, each neuron in a spike network has a voltage
potential and a threshold level and a neuron emits a spike whenever the volt-
age potential is higher then the threshold level. After a spike a neuron needs
some time to cool down before it can emit another spike. The voltage level
is raised by incoming spikes or incoming sensory data for input nodes, con-
nections weights are used to calculate the change in voltage potential that a
spike causes. This model is called the integrate-and-fire model and is most
frequently used when considering spiking networks.

When evolving spiking neural networks, usually both the connection
weights and threshold levels are evolved. Both of these are real values, so
this does not change much for the already existing representations except for
adding another dimension. Both fixed topology and topology evolving rep-
resentations can be applied when using spiking neural networks. O’halloran
et. al. [OCBM+11], used the NEAT algorithm for spiking neural networks to
classify breast cancer tumours as either benign or malignant. Floreano and
Mattiussi, [FM01], used a fixed topology spiking neural network to evolve
the behavior of a robot.

Spiking neural networks are not as frequently used as networks that use
a sigmoid transfer function. This could be because it is a relatively new
technique and more difficult to implement and comprehend. However, it
has been able to solve tasks that sigmoid networks were not able to solve,
[FDM08, FM01].

Another relatively new type of neural network is the Echo State Net-
work, echo state networks use a sigmoidal transfer function and are always
recurrent networks, [Jae01, DBS08]. The hidden nodes are fully connected
to the input and output nodes. The main idea of echo state networks is that
only the weights directly to the output nodes need to be learned, the other
nodes are randomly chosen and stay fixed, Figure 3.3 shows this model of an
echo state network.. These types of networks have mostly been succesful at
supervised learning tasks but have been combined with neuroevolution and

21

unsupervised learning settings recently, [Jae01, DBS08]. To date, echo state
networks have been combined succesfully with the CMA-evolution strategies
technique. These studies also conclude that evolving more than just the out-
going weights, like topology or other weights, will probably have a positive
effect on the results.

Figure 3.3: The model of an Echo State Network, the weights of the plain
connections are randomly chosen and stay fixed, the dashed connections need
to be evolved. Source: Unsupervised learning of Echo State Networks: A
Case Study in Artificial Embryogeny, [DBS08].

22

Chapter 4

Applications

This chapter will discuss for what kind of problems neuroevolution is partic-
ularly suitable. In general, neuroevolution is more suitable for unsupervised
learning problemes. Unsupervised learning can be described as the area of
machine learning where a training set of of input-output pairs does not ex-
ist, [WGP95]. Therefore another performance measure is needed to evaluate
an algorithm’s performance, this works well together with evolutionary algo-
rithms, which need a fitness measure as well. Many articles present neuroevo-
lution techniques and test them on a couple of benchmark problems to test
the algorithms performance against its rivals. While this provides interesting
information, certainly from a scientist’s point of view, it is also interesting to
see on what kind of real-world problems neuroevolution shows promise. This
chapter will discuss both the popular benchmark problems and some of the
other problems to which neuroevolution has been succesfully applied.

4.1 Benchmark problems
In 1991, Wieland [Wie91], started the trend to use standard control theory
problems as benchmark problems for neuroevolution algorithms. He used a
genetic algorithm to find the solution for a pole balancing problem. Which
consisted of a cart with a pole on top of it that could tilt both left and
right. The card could move left or right on a finite track to try to keep the
pole balanced. Input variables to this problem are the angle of the pole,
the angular velocity of the pole, the velocity of the cart and the position
of the cart. Output would be the force that needs to be exerted on the
cart. This original problem is not very complicated and can be solved by
a neural network where the weights are guessed at random, [GSM06]. For
this reason researchers created similar benchmark tests that are harder to

23

solve, such as balancing two poles on one card that have a different length
and balancing poles without knowing all the information available. On these
tasks neuroevolution outperforms other reinforcement learning techniques
and for the more difficult pole balancing tasks the more effective algorithms
to date are NEAT, AGE, CMA-ES and CoSyNE. it is interesting to note that
most of these algorithms are direct representations and that half of them use
a fixed size and a fixed topology.

4.2 Other applications
While neuroevolution techniques are mostly tested with the help of bench-
mark problems, there are multiple examples of other applications where neu-
roevolution performs well. a promising field is perhaps the evolution of agents
in computer games. Schrum and Miikkulainen, [SM08], evolved opponents in
computergames that were able to distinguish between objectives of different
importance in a simple two dimensional game. In [AbBR01], Aharonov-Barki
et. al. evolved a controller for an agent that used memory to search for food,
and Bryant and Miikkulainen, in 2003, [BM03], set up an experiment where
a team of identical agents could work together and perform different tasks
to achieve a team objective. While these experiments involve games that are
much simpler than the average game that is played nowadays, the need for
intelligent behavior of non-player characters in computer games is increas-
ing and reinforcement learning techniques like neuroevolution could provide
this behavior. Bryant and Miikkulainen performed another interesting ex-
periment in 2007, [BM07] , where the goal was to develop visibly intelligent
behavior in NPC’s. They argued that good behavior for an NPC does not
necessarily need to be optimal behavior, but behavior that mimicks human
behavior. They conducted an experiment and concluded that a form of neu-
roevolution performed best when non-player characters had to mimick human
behavior.

Neuroevolution has also been applied to evolve systems that can play spe-
cific games. [CF99] used neuroevolution to evolve a controller that could play
checkers and that could beat a master player on several occasions. Kaikhah
and Garlick, [KG00], used their version of the ESP algorithm to evolve a
blackjack player that used card counting strategies to gain an advance of the
house. Neurevolution has also been used as a succesful controller in vehicle
simulations for a car, [CLL10], and a helicopter, [KW09].

Neuroevolution can also be used for classification tasks, classification is
a supervised learning task because the classes are known in advance. Evo-
lutionary algorithms are not specifically suited for these tasks. Johan Hägg,

24

[H0̈8], compared the CMA-evolution strategies method against the back-
propagation algorithm for a gesture recognition task. He concluded that
backpropagation was more succesful at the task. However, there have been
occasions were neuroevolution did give the best results on classification tasks,
Montana and Davis performed an experiment, [MD89], where backpropaga-
tion and neuroevolution was used to classify sonar data. In their experiment
the genetic algorithm outperformed the backpropagation algorithm on the
classification task, they also stated that algorithms that use both techniques
were perhaps the most promising. A very different application of neuroevolu-
tion was in the field of physics, Aaltonen et. al. [CA09] used neuroevolution
to calculate the mass of a quark particle.

Neuroevolution is most succesful in reinforcement learning problems where
controllers need to be evolved. especially when considering controlling an
object that needs to stay balanced, a helicopter or pole, or controlling non-
player characters in computer games or board games. Neuroevolution has
been succesful in classification tasks at some occasions, but is not clear what
the true potential is for neuroevolution algorithms in this area.

25

Chapter 5

Conclusions

Neuroevolution representations can be divided amongst three categories:

• Direct representations.

• Developmental representations.

• Indirect or implicit representations.

Direct representations can again be divided into three types, weight vector
representations, neuron representations and topology representations. The
advantage of a direct representation is that it is understandable and does
not need an external set of rules to decode it to a phenotype. The major
drawback of this kind of representation is that bigger networks get gradu-
ally bigger genotype representations. The NeuroEvolution of Augmenting
Topologies (NEAT) algorithm is the most widely used algorithm at this mo-
ment, although both CMA-ES and CoSyNE have shown better results at
certain benchmark tests. The popularity of NEAT could be ascribed to the
fact that it is more robust, because the amount of hidden nodes is not chosen
in advance.

Developmental representations are relatively older compared to their ri-
vals and are not frequently used, they were developed to exploit modularity
within larger neural networks. But exploiting this characteristic only helped
in certain applications, where other measures had to be taken to deal with
other problems. Indirect representations are relatively new and are based
on Gene Regulatory Networks. The most succesful implicit representation,
called Analog Genetic Encoding, reported performances similar to those of
the best direct representations.

Recently, a couple of new neural network techniques have been used in
combination with neuroevolution. Both spiking neural networks and echo

26

state networks show promise. Spiking neural networks trained with the
NEAT algorithm performed tasks of which normal artificial neural networks
were not capable.

Neuroevolution is most suitable in unsupervised learning situations, espe-
cially in situations where some sort of artificial controller needs to be evolved.
Neuroevolution has been used for supervised learning tasks as well, but does
not perform significantly better than other algorithms. But for reinforcement
learning problems neuroevolution is top of the line. In the future it might be
the key for computers to behave similar to the human brain.

27

Bibliography

[Abb03] H A Abbass. Pareto neuro-evolution: constructing ensemble
of neural networks using multi-objective optimization. The
2003 Congress on Evolutionary Computation 2003 CEC 03,
3(4):2074–2080, 2003.

[AbBR01] Ranit Aharonov-barki, Tuvik Beker, and Eytan Ruppin.
Emergence of memory-driven command neurons in evolved
artificial agents. Neural Computation, 13:691–716, 2001.

[ASP94] Peter J. Angeline, Gregory M. Saunders, and Jordan B. Pol-
lack. An evolutionary algorithm that constructs recurrent
neural networks. IEEE Transactions on Neural Networks,
5:54–65, 1994.

[ATM05] A. Agogino, K. Tumer, and R. Miikulainen. Efficient credit
assignment through evaluation function decomposition. In
The Genetic and Evolutionary Computation Conference,
Washington, DC, June 2005.

[Bis95] C.M. Bishop. Neural networks for pattern recognition. Ox-
ford University Press, USA, 1995.

[BLLS11] R. Batllori, C.B. Laramee, W. Land, and J.D. Schaffer.
Evolving spiking neural networks for robot control. Procedia
computer science, 6:329–334, 2011.

[BM03] Bobby D. Bryant and Risto Miikkulainen. Neuroevolution
for adaptive teams. In Proceedings of the 2003 Congress on
Evolutionary Computation (CEC 2003), pages 2194–2201,
Piscataway, NJ, 2003. IEEE.

[BM07] Bobby D. Bryant and Risto Miikkulainen. Acquiring visibly
intelligent behavior with example-guided neuroevolution. In

28

Proceedings of the Twenty-Second National Conference on
Artificial Intelligence, Menlo Park, CA, 2007. AAAI Press.

[BMS90] Richard K. Belew, John Mcinerney, and Nicol N. Schrau-
dolph. Evolving networks: Using the genetic algorithm
with connectionist learning. In In, pages 511–547. Addison-
Wesley, 1990.

[Bon02] J. Bongard. Evolving modular genetic regulatory networks.
In Proceedings of the Evolutionary Computation on 2002.
CEC ’02. Proceedings of the 2002 Congress - Volume 02,
CEC ’02, pages 1872–1877, Washington, DC, USA, 2002.
IEEE Computer Society.

[CA09] CDF Collaboration and T. Aaltonen. Measurement of the
top quark mass with dilepton events selected using neuroevo-
lution at cdf. PHYS.REV.LETT., 102:152001, 2009.

[CF99] K Chellapilla and D B Fogel. Evolution, neural net-
works, games, and intelligence. Proceedings of the IEEE,
87(9):1471–1496, 1999.

[CF01] Kumar Chellapila and David B. Fogel. Evolving an expert
checkers playing program without using human expertise.
IEEE TRANSACTIONS ON EVOLUTIONARY COMPU-
TATION, 5:422–428, 2001.

[CLL10] L. Cardamone, D. Loiacono, and P. L. Lanzi. Learning to
drive in the open racing car simulator using online neuroevo-
lution. Computational Intelligence and AI in Games, IEEE
Transactions on, 2(3):176 –190, sep. 2010.

[cZFLM02] Jean christophe Zufferey, Dario Floreano, Matthijs Van
Leeuwen, and Tancredi Merenda. Evolving vision-based fly-
ing robots. In In Bulthoff, Lee, Poggio, Wallraven (Eds.),
Proceedings of the 2nd International Workshop on Biolog-
ically Motivated Computer Vision (BMCV, pages 592–600.
Springer-Verlag, 2002.

[Dar] Charles Darwin. On the origin of
species. New York :D. Appleton and Co.,.
http://www.biodiversitylibrary.org/bibliography/28875.

29

[DBS08] Alexandre Devert, Nicolas Bredeche, and Marc Schoenauer.
Unsupervised learning of echo state networks: a case study
in artificial embryogeny. In Proceedings of the Evolution arti-
ficielle, 8th international conference on Artificial evolution,
EA’07, pages 278–290, Berlin, Heidelberg, 2008. Springer-
Verlag.

[DM92] Dipankar Dasgupta and Douglas R. Mcgregor. Designing
application-specific neural networks using the structured ge-
netic algorithm. In In Proceedings of the International Con-
ference on Combinations of Genetic Algorithms and Neural
Networks, pages 87–96. IEEE Computer Society Press, 1992.

[DM00] Nirav S. Desai and Risto Miikkulainen. Neuro-evolution and
natural deduction. In Proceedings of The First IEEE Sym-
posium on Combinations of Evolutionary Computation and
Neural Networks, pages 64–69, Piscataway, NJ, 2000. IEEE.

[DMF06] Peter Durr, Claudio Mattiussi, and Dario Floreano. Neu-
roevolution with analog genetic encoding. In PPSN, volume
4193 of Lecture Notes in Computer Science, pages 671–680.
Springer, 2006.

[FBoTDoES98] T.S. Frank, J.W. Burdick, California Institute of Technol-
ogy. Division of Engineering, and Applied Science. Comput-
ing with spiking neurons. CIT theses. California Institute of
Technology, 1998.

[FDM08] Dario Floreano, Peter Durr, and Claudio Mattiussi. Neu-
roevolution: from architectures to learning. Evolutionary
Intelligence, 1(1):47–62, 2008.

[FLM03] James Fan, Raymond Lau, and Risto Miikkulainen. Utilizing
domain knowledge in neuroevolution. In Tom Fawcett and
Nina Mishra, editors, Machine Learning, Proceedings of the
Twentieth International Conference (ICML 2003), August
21-24, 2003, Washington, DC, USA, pages 170–177. AAAI
Press, 2003.

[FM01] Dario Floreano and Claudio Mattiussi. Evolution of spiking
neural controllers for autonomous vision-based robots. In in:
T. Gomi (Ed.), Evolutionary Robotics IV. Springer-Verlag,
2001.

30

[GHLM02] Brian Greer, Henri Hakonen, Risto Lahdelma, and Risto
Miikkulainen. Numerical optimization with neuroevolution,
2002. Undergraduate Thesis, Department of Computer Sci-
ences, The University of Texas at Austin.

[GM99] Faustino J. Gomez and Risto Miikkulainen. Solving non-
markovian control tasks with neuroevolution. Disserta-
tion Proposal, Computer Science Department, University of
Texas at Austin, 1999.

[Gru95] Frederic Gruau. Automatic definition of modular neural net-
works. Adaptive Behaviour, 3(2):151–183, 1995.

[GSM06] Faustino Gomez, Juergen Schmidhuber, and Risto Miikku-
lainen. Efficient non-linear control through neuroevolu-
tion. In Proceedings of the European Conference on Machine
Learning, pages 654–662, Berlin, 2006. Springer.

[H0̈8] Johan Hägg. Gesture recognition using neuroevolution. In
Proceedings of IDT Workshop on Interesting Results in Com-
puter Science and Engineering, pages 18–26, 2008.

[HBL10] Gerard David Howard, Larry Bull, and Pier Luca Lanzi. A
spiking neural representation for xcsf. In IEEE Congress on
Evolutionary Computation, pages 1–8, 2010.

[HO01] Nikolaus Hansen and Andreas Ostermeier. Completely de-
randomized self-adaptation in evolution strategies. Evolu-
tionary Computation, 9:159–195, 2001.

[Ige03] Christian Igel. Neuroevolution for reinforcement learning
using evolution strategies. In R. Reynolds, H. Abbass, K. C.
Tan, B. Mckay, D. Essam, and T. Gedeon, editors, Congress
on Evolutionary Computation (CEC 2003), volume 4, pages
2588–2595. IEEE, 2003.

[Jae01] Herbert Jaeger. The echo state approach to analysing and
training recurrent neural networks with an erratum note 1.
Technical report, pages 1–47, 2001.

[JBS08] Fei Jiang, Hugues Berry, and Marc Schoenauer. Supervised
and evolutionary learning of echo state networks. In Proceed-
ings of the 10th international conference on Parallel Problem

31

Solving from Nature: PPSN X, pages 215–224, Berlin, Hei-
delberg, 2008. Springer-Verlag.

[KG00] Khosrow Kaikhah and Ryan Garlick. Variable hidden layer
sizing in elman recurrent neuro-evolution. Applied Intelli-
gence, 12:193–205, May 2000.

[KNG98] Michael Korkin, Norberto Eiji Nawa, and Hugo De Garis. A
"spike interval information coding" representation for atr’s
cam-brain machine (cbm). In Proceedings of the Second
International Conference on Evolvable Systems (ICES’98),
volume 1478 of Lecture Notes in Computer Science, pages
256–267. Springer-Verlag, 1998.

[KW09] Rogier Koppejan and Shimon Whiteson. Neuroevolutionary
reinforcement learning for generalized helicopter control. In
GECCO 2009: Proceedings of the Genetic and Evolutionary
Computation Conference, pages 145–152, July 2009.

[Mat05] C. Mattiussi. Evolutionary synthesis of analog networks. s.n.,
2005.

[MD89] David J Montana and Lawrence Davis. Training feedforward
neural networks using genetic algorithms. Machine Learning,
123:762–767, 1989.

[MD09] Jean-Baptiste Mouret and Stéphane Doncieux. Using be-
havioral exploration objectives to solve deceptive problems
in neuro-evolution. In Proceedings of the 11th Annual con-
ference on Genetic and evolutionary computation, GECCO
’09, pages 627–634, New York, NY, USA, 2009. ACM.

[MM96] David E. Moriarty and Risto Miikkulainen. Efficient rein-
forcement learning through symbiotic evolution. Machine
Learning, (AI94-224):11–32, 1996.

[OCBM+11] M. O’halloran, S. Cawley, R. C. Conceicao B. McGinley,
F. Morgan, E. Jones, and M. Glavin. Evolving spiking neu-
ral network topologies for breast cancer classification in a
dielectrically heterogeneous breast. Progress in Electromag-
netics research letters", 25:153–162, 2011.

[RM07] Joseph Reisinger and Risto Miikkulainen. Acquiring evolv-
ability through adaptive representations. In In Proc. of

32

Genetic and Evolutionary Computation Conference, pages
1045–1052, 2007.

[SKR04] Keren Saggie, Alon Keinan, and Eytan Ruppin. Spikes that
count: rethinking spikiness in neurally embedded systems.
Neurocomputing, 58-60:303–311, 2004.

[SM02a] Kenneth O. Stanley and Risto Miikkulainen. Efficient rein-
forcement learning through evolving neural network topolo-
gies. In Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO-2002), page 9, San Francisco,
2002. Morgan Kaufmann.

[SM02b] Kenneth O. Stanley and Risto Miikkulainen. Evolving neu-
ral networks through augmenting topologies. Evolutionary
Computation, 10(2):99–127, 2002.

[SM08] Jacob Schrum and Risto Miikkulainen. Constructing com-
plex npc behavior via multi-objective neuroevolution. In
Proceedings of the Fourth Artificial Intelligence and Interac-
tive Digital Entertainment Conference (AIIDE 2008), pages
108–113, Stanford, California, 2008.

[SM09] Jacob Schrum and Risto Miikkulainen. Evolving multi-
modal behavior in npcs. In IEEE Symposium on Computa-
tional Intelligence and Games (CIG 2009), pages 325–332,
Milan, Italy, September 2009. (Best Student Paper Award).

[Sta04] Kenneth O. Stanley. Efficient Evolution of Neural Networks
Through Complexification. PhD thesis, Department of Com-
puter Sciences, The University of Texas at Austin, 2004.

[WGP95] Darrell Whitley, Frederic Gruau, and Larry Pyeatt. Cel-
lular encoding applied to neurocontrol. In L. Eshelman,
editor, Genetic Algorithms: Proceedings of the Sixth Inter-
national Conference (ICGA95), pages 460–467, Pittsburgh,
PA, USA, 15-19 July 1995. Morgan Kaufmann.

[Wie91] Alexis Wieland. Evolving neural network controllers for un-
stable systems. In Proceedings of the International Joint
Conference on Neural Networks (Seattle, WA), pages 667–
673. Piscataway, NJ: IEEE, 1991.

33

List of Figures

1.1 An example of an artificial neural network structure. source:
Evolving Networks Using the Genetic Algorithm with Connec-
tionist Learning, [BMS90] . 4

2.1 The genotype and phenotype representation of the NEAT al-
gorithm, consisting of nodes and connections. Source: Effi-
cient Evolution of Neural Networks through complexification,
[Sta04]. 12

2.2 Crossover in the NEAT algorithm. Both parents look different
but have a couple of similar connections, which is shown by
the innovation numbers. Each connection that exists in both
parents also exists in the offspring, whenever a connection is
present in one of both parents it has a chance of being added to
the offspring. The same is true when connections are disabled
in one or both of the parents. Source: Efficient Evolution of
Neural Networks through complexification, [Sta04]. 13

2.3 Kitano’s developmental representation consisting of evolvable
rules and fixed rules.Source: Neuroevolution: From architec-
ture to learning, [FDM08]. 15

2.4 The representation and phenotype-genotype mapping of the
AGE algorithm. Source: Neuroevolution with Analog Genetic
Encoding, [DMF06]. 16

2.5 The taxonomy of neuroevolution representations. 18
2.6 Timeline with the years that the most important neuroevolu-

tion techniques were developed. the type of representation of
each technique is between the brackets. 18

3.1 A typical artificial neuron, The input for the transfer func-
tion is the weighted sum of the input connections. Source:
Computing with Spiking Neurons, [FBoTDoES98]. 19

34

3.2 Two examples of transfer functions, the sygmoidal transfer
function is most used in practice. Source: Computing with
Spiking Neurons, [FBoTDoES98]. 20

3.3 The model of an Echo State Network, the weights of the plain
connections are randomly chosen and stay fixed, the dashed
connections need to be evolved. Source: Unsupervised learning
of Echo State Networks: A Case Study in Artificial Embryo-
geny, [DBS08]. 22

35

