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1 | Introduction

In this paper the behaviour of correlations between risk factors will be studied over time. In
this chapter one will �rst discuss the background of the research and then pose the problem that
we're looking to solve including. One will give a brief overview of the approach and the data
used in this paper and how this �ts into existing research in this �eld.

1.1 | Background

Insurance companies deal with many risk factors which have to be taken into account in their
models. These risk factors may be correlated, which means that the risk factors may move in
the same direction or in an opposite direction. Nowadays insurance companies that apply an
internal model to calculate their Solvency Capital Requirement1 tend to use stochastic simulation
models where they use static (deterministic) correlations between risk factors. The number of
risk factors an insurance company takes into account strongly depends on the company, however
it may easily be over 100 risk factors. Unstable or unpredictable correlations make it very hard
if not impossible to hedge the exposure of risk factors.

1.2 | Problem Statement

In the current situation insurance companies calculate the correlations between the di�erent
risk factors deterministically and keep them constant in their models for an entire year. The
aim of this research is to determine if it is possible and more importantly useful to change the
deterministic approach and make the correlations between risk factors dependent on time. The
aim is to know what happens to correlations in times of economic stress. The following two sub
questions should be answered in this paper:

- Can the correlations between certain market risk factors be linked to a probability density
function that can describe the correlations well?

- Can the correlations between certain market risk factors be incorporated in insurance
models in a non-deterministic way, such that they change over time? More speci�cally,
what is the impact of incorporating this for the insurance company?

The main goal of this research is to investigate if there exists a non-deterministic way to calculate
and incorporate correlations between risk factors in insurance models. This is done by �rst
examining if correlations between risk factors can be linked to a probability density function,
and second investigating non-deterministic methods to incorporate these correlations between
risk factors in insurance models. Hence, the main components of this paper are:

- Evidence that the correlations between di�erent risk factors can or can't be linked to a
probability density function (based on the data that will be used in the research). This
evidence can later be developed into a tool so that it can be used for insurance models.

- An indication of the e�ects of incorporating a non-deterministic approach in insurance
models.

1The required amount of funding that an insurance company in the European Union has to hold[10].
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1.3 | Approach

For this research we are focussing on market risks. The data on selected market risk factors is
obtained from Bloomberg2. The downloaded data is the historical prices of the AEX index, the
6 month Euribor rate, the S&P 500 index and the exchange rate between Euros and US Dollars.
The period in scope is January 4th, 1999 until August 1st, 2017. In this way one can investigate
if the correlations between risk factors can either be linked to a probability density function or
if they can be simulated by using for example stochastic modelling.

1.4 | Related work

In current literature there hasn't been written a lot about the correlations between risk factors.
However in 1999 Boyer, Gibson and Loretan[4] wrote an article together on the pitfalls in tests for
changing correlations. They argue that data should not be divided for normal and economically
stressed situations but should be investigated as a whole3. Robert F. Engle[5] wrote a book
on the importance of correlations in risk management, which does give a nice view on why this
research is important, but doesn't analyse what happens to the correlation between a pair of
commodities over time. Statistical analysis that will be the basis of this paper has rarely been
performed on the correlation between the logarithmic returns of risk factors.

2Bloomberg is a company that provides historical �nancial data
3This separation between normal and economically stressed situations is called �correlation breakdowns�
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2 | Methodology

For this research we are focussing on market risks. The downloaded data is the historical prices
of the AEX index, the 6 month Euribor rate, the S&P 500 index and the exchange rate between
Euros and US Dollars. The period in scope is January 4th, 1999 until August 1st, 2017. Note
that in this paper we will only investigate and discuss the pairwise correlations between two
risk factors and not more. The main reason for this is to keep the research a bit simplistic to
perform small and exploratory research on the behaviour of correlations.

2.1 | Data Preprocessing

To avoid big data gaps in the data, weekends are skipped, and if there is data missing for one
of the commodities, the value of the previous day will be taken.

A few demographics are being deduced from the date, such as the day of the week, the week-
number, the year, etcetera. These demographics are used later to easier select subsets of the data
and compute the correlation. Furthermore, a sequential number (or index) has been created for
each complete week of data; this is to make sure that partial weeks at the beginning and the
end of each year are taken together as one week.

Before computing any correlations one �rst needs to compute the daily logarithmic return[1],
this can be computed using the following formula:

R = ln

(
Pt

Pt−1

)
where R represents the logarithmic return, Pt the price of the commodity at time t and Pt−1
the price of the commodity at time t − 1. Note that in this case the logarithmic return is the
same as the logarithmic rate of return as we compute it on a daily basis.

Correlation formula[3]: The correlation between two variables X and Y is computed using the
following equation:

ρ(X,Y ) =
Cov(X,Y )

σ(X) · σ(Y )
=

E(X · Y )− E(X) · E(Y )

σ(X) · σ(Y )

where ρ(X,Y ) depicts the correlation between variablesX and Y , E(·) represents the expectation
and σ(·) the standard deviation.

The everyday correlation between the logarithmic rate of return of two commodities can be
computed using the formula above. However the amount of data used to compute the correlation
can be chosen. For example one could compute a weekly, biweekly or monthly correlation, using
only the data within the given timeframe. Furthermore, one could use the data of two periods
the current and the one preceding the current period. This will partially smooth the curve, and
possibly make it better predictable.

After computing the correlations the investigation on distribution identi�cation and other data
patterns can take place. One can investigate whether the correlations �t a certain distribution
on a particular scale and furthermore investigate whether other patterns are present in the data.
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2.2 | Distribution identi�cation

Now that the correlations between the risk factors have been calculated one can investigate
whether the correlation data �ts a particular distribution. One can use several methods of
distribution investigation. First, a plot of the correlations over time will be given. After which
histograms for each pair of risk factors and the di�erent computation methods 1 will be created.
Then we will investigate whether the distribution of the data is remotely symmetrical, and we
will use QQ-plots to investigate whether the data �ts a known distribution. In addition, boxplots
will be created to give more insight as well.

If there will be a candidate distribution for a particular combination of risk factors, one needs to
test that more thoroughly by using statistical tests pending on the suspected distribution. If a
normal distribution is suspected one will use the Shapiro-Wilk normality test and for any other
distribution the Kolmogorov-Smirnov test can be applied.

2.2.1 Goodness of �t tests

The Shapiro-Wilk normality test[2]

With the Shapiro-Wilk normality test one can test the composite null hypothesis, H0, that the
sample belongs to a normal distribution with a real mean and a variance above 0 against the
alternative hypothesis, H1, that the sample is not normally distributed. That is:

H0 :F ∈ {N (µ, σ2);µ ∈ R, σ2 > 0}
H1 :F /∈ {N (µ, σ2);µ ∈ R, σ2 > 0}

where F is the sample distribution, and N (µ, σ2) represents a normal distribution with mean µ
and variation σ2.

The test statistic, W for the Shapiro-Wilk normality test for a random variable X is given by:

W =

(∑n
i=1 aiX(i)

)2∑n
i=1

(
Xi − X̄

)2 ∈ (0, 1]

where a1, . . . , an are certain constants and X(1), . . . , X(n) are the order statistics. Note that Xi

is the i-th value of variable X and that X̄ is the average value of the random variable X, that
is:

X̄ =
1

n

n∑
i=1

Xi

The null hypothesis,H0, is rejected for �small� values of W and p-value < 1− α, where α is the
desired con�dence level. Small is in this context a slightly vague expression, since a value of 0.9
for W could be considered small.

1biweekly, monthly, biweekly and monthly based on two periods and daily based on a speci�c number of days
back
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The Kolmogorov-Smirnov test[2]

Using a one-sample Kolmogorov-Smirnov test to test whether the sample originates from the
suspected distribution, tests the following:

H0 :F = F0

H1 :F 6= F0

where F represents the sample distribution and F0 the suspected distribution.

The test statistic, Dn, for the Kolmogorov-Smirnov test is given by:

Dn = sup
−∞<x<∞

|F̂n(x)− F0| with F̂n(x) =
1

n

n∑
j=1

1(Xj≤x)

where x1, . . . , xn are the realizations from random variables X1, . . . , Xn that are independent
and identically distributed. The indicator 1(Xj≤x) equals 0 or 1 when Xj > x or Xj ≤ x,

respectively. Hence, the random variable nF̂n(x) equals the number #(Xj ≤ x).

The null hypothesis is rejected for large values of Dn.

2.3 | Impact of incorporating non �xed correlations

To investigate what the impact of the proposed method on an insurance company will be,
simulation will be used to give an idea of how much extra time is needed to compute the
necessary correlations several times per year. The simulation needs to estimate the additional
computation time on a yearly basis that is needed to compute the correlations.

In order to so a function has been created that will compute a new correlation based on the
number of risk factors involved, the number of times per year the correlations should be updated
and a number of simulations that should be performed.

The function should �rst compute the logarithmic rate of return for each risk factor. Then for
each combination of risk factors it should compute the new correlation based on the previous
data and the newly added logarithmic rate of return.

Pending on how many times a year one would like to update the correlations in the model, the
computation of the correlations should be performed multiple times, in the pseudo code this
amount is named numberOfComputationsPY.

The entire procedure should also be repeated multiple times, to �nd a reliable estimation of
the time necessary to perform the computations. The number of repetitions of the procedure is
given by numberOfTests in the pseudo code.

In the box below one can see the pseudo code of such a simulation function:

Simulation pseudo code:
simulationComptime <- function(numberOfComputationsPY,numberOfRiskFactor,numberOfTests){

numberOfRiskFactorCombinations <- choose(numberOfRiskFactor,2)
starttime <- Sys.time()

#compute the latest rate of returns
for(index in 1:numberOfRiskFactor){

new_RR1_riskfactor <- log(LastPrice[today]/LastPrice[yesterday])
}
for(i in 1:numberOfTests){
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for(j in 1:numberOfComputationsPY){
for(k in 1:numberOfRiskFactorCombinations){

#combine with a range of previous rate of returns from the same commodities
CORdata1 <- rbind(cbind(previous_RRX, previous_RRY),

c(new_RR1_riskfactorX,new_RR1_riskfactorY))
#and compute the correlation based on the latest data
cor(CORdata1,use = "pairwise.complete.obs")[1,2]

}
}

}

endtime <- Sys.time()
totalTime <- as.numeric(endtime-starttime, units="secs")
averageTime <- totalTime/numberOfTests

implications1 <- as.data.frame(cbind(numberOfComputationsPY
,numberOfRiskFactor
,numberOfRiskFactorCombinations
,numberOfTests
,starttime
,endtime
,totalTime
,averageTime))

return(implications1)
}

Note that the function choose(n,m) returns the number of possible combination given the
number of options, n and the amount that you want to choose, m2

2Compare the choose function from R to the nCr-button on a calculator.
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3 | Initial Data Analysis

Within the data analysis one has di�erentiated between the following methods of computing the
correlations between the risk factors:

- biweekly using only data from the two weeks in scope
- biweekly using data from the two weeks in scope and the data from the two weeks prior
to the current period

- monthly using only the data from the month at hand
- monthly using the data from the month at hand and the data from the month prior to the
current month

- daily using the data from an n number of days back, in this paper we will use n ∈ {15, 20}.

3.1 | A �rst glance

To get some basic idea of how the correlations between each pair of risk factors compares to
one another one has created a set boxplots for the biweekly, the monthly and the daily (20 days
based) computation of the correlation:

(a) Biweekly computed (b) Monthly computed (c) Daily (20) computed

Figure 3.1: Boxplots of the correlations between the di�erent risk factor combinations.

As depicted in Figure 3.1 the correlation between the AEX index and the S&P500 behaves
considerably di�erent than the other ones. Furthermore note that the boxes and whiskers are
smaller when using the monthly computation for all combinations of risk factors. When looking
at the daily computation this seems less clear but keep in mind that these boxplots contain
almost 22 times as many entries as the monthly computation and nearly 10 times as many as
the biweekly computation. Therefore it is more likely that certain data points are considered
outliers and that the spread might be bigger, but is probably more stable over time.

Note furthermore that the correlations �EURUSD exchange rate vs. 6 month Euribor� and
�S&P500 vs. 6 month Euribor� seem to be highly comparable to one another.

Next to the created boxplots, plots of the correlations over time, also known as timeseries[6], have
been made. In Figure 3.2 one can see how the correlation between AEX and S&P500 �uctuates
over time. In Figure 3.3 one can see how the correlation between the EURUSD exchange rate
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and the 6 month Euribor moves. As can been seen in both �gures the correlation shows very
volatile behaviour.1

Figure 3.2: The timeline of daily (20 days based) computed correlations between the AEX and
the S&P500.

Figure 3.3: The timeline of daily (20 days based) computed correlations between the EURUSD
exchange rate and the 6 month Euribor.

1The other correlations between risk factors show the same kind of volatility. The corresponding timeline
�gures (Figures B.4 to B.7) have been placed in Appendix B.
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The volatility of the correlations even when using an rolling horizon approach means that a
predictive model will most likely not improve the current method of �xing the correlation between
two risk factors for an entire year.

3.2 | The in�uence of the data taken into account per correla-
tion

Now that one has some basic idea of how the correlations compare to each other one moves to
investigate the individual correlations. The �rst investigation into the individual correlations is
on the histograms of the correlations between the AEX index and the S&P500. One will show
all the created histograms to investigate not only the distribution of the correlation but also
investigate the in�uence of the computation technique.

(a) Biweekly based on 1 period (b) Biweekly based on 2 period

Figure 3.4: Histograms of the biweekly correlations between the AEX index and the S&P500
index.
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(a) Monthly based on 1 period (b) Monthly based on 2 period

Figure 3.5: Histograms of the monthly correlations between the AEX index and the S&P500
index.

(a) 15 days based (b) 20 days based

Figure 3.6: Histograms of the daily correlations between the AEX index and the S&P500 index.

The 20 day based daily computation evidently creates the most distinctive picture. This has
a couple of underlying causes, such as the amount of data that goes into each computation of
one correlation value, the daily computation which results in smaller di�erences between every
two computations and furthermore generates daily data-points instead of one every two weeks
or one a month.
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3.3 | Distribution identi�cation

In this section we will investigate whether the correlations can be linked to a probability dis-
tribution function[2], which if found may be a suitable starting point to model the correlation
properly over time.

3.3.1 Histograms

For investigating the distribution of the correlations for each of the other combinations of risk
factors one will keep on using the daily computation as it helps to give a more distinctive picture.

(a) AEX vs. S&P500 (b) AEX vs. EURUSD exchange rate

Figure 3.7: Histograms of the daily correlations based on 20 days of data.

In Figure 3.6b one can see that the correlation between AEX and S&P500 is mostly positive
and that the seems to have a parabolic shape. In Figure 3.7b one can see that the correlations
have been positive and negative and not evenly distributed.
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(a) AEX vs. 6 Month Euribor (b) EURUSD exchange rate vs. 6 Month Euribor

Figure 3.8: Histograms of the daily correlations based on 20 days of data.

Given the histogram in Figure 3.8a one could suspect that the correlation between AEX and 6
month Euribor follows a normal distribution and that it peaks a little over zero. In Figure 3.8b
one can see that the correlation between the EURUSD exchange rate and the 6 month Euribor
shows even stronger indications of a normal distribution.

(a) EURUSD exchange rate vs. S&P500 (b) S&P500 vs. 6 Month Euribor

Figure 3.9: Histograms of the daily correlations based on 20 days of data.

In Figure 3.9a one can see that the correlation between EURUSD exchange rate and S&P500
seems to have a some sort of an uneven parabolic shape. In Figure 3.9b one can see that the
correlation between S&P500 and 6 month Euribor has an eminent peak around zero and has a
steep slope directly surrounding zero which becomes less steep as the correlation moves further
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away from zero.

3.3.2 QQ-plots

Investigating these distributions more thoroughly one has created QQ-plots for di�erent dis-
tributions with di�erent degrees of freedom if applicable. The majority of the QQ-plots are
shown in Figures B.8 to B.13 in Appendix B. As one could previously see in the histograms the
most interesting QQ-plot will be the QQ-plots considering a normal distribution, therefore the
QQ-plots for the normal distribution and the daily (20 days based) correlations will be shown
here.

(a) AEX vs. S&P500 (b) AEX vs. EURUSD exchange rate

Figure 3.10: QQ plots of the daily correlations based on 20 days of data.
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(a) AEX vs. 6 month Euribor (b) EURUSD exchange rate vs. 6 month Euribor

Figure 3.11: QQ plots of the daily correlations based on 20 days of data.

(a) EURUSD exchange rate vs. S&P500 (b) S&P500 vs. 6 month Euribor

Figure 3.12: QQ plots of the daily correlations based on 20 days of data.

As one can easily see in Figures 3.12 and 3.12b, the correlations between the 6 month Euribor
and the other risk factors seem to follow some sort of the normal distribution2. The remaining
combinations of risk factors (those where the 6 month Euribor is not involved) do evidently not
follow a normal distribution.

2They show a more or less straight diagonal line from the left bottom corner to the right upper corner of the
QQ-plot[2].
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4 | Results

4.1 | Goodness of �t tests

To test the hypotheses that the 6 month Euribor and the AEX, S&P500 and EURUSD exchange
rate follow indeed a normal distribution one can use the Shapiro-Wilk test. Recall that the
composite null hypothesis and the alternative hypothesis are given by:

H0 :F ∈ {N (µ, σ2);µ ∈ R, σ2 > 0}
H1 :F /∈ {N (µ, σ2);µ ∈ R, σ2 > 0}

The test statistic, W , for the Shapiro-Wilk normality test is given by:

W =

(∑n
i=1 aiX(i)

)2∑n
i=1

(
Xi − X̄

)2 ∈ (0, 1]

In Table 4.1 one can see the results of the Shapiro-Wilk normality tests that have been performed.
Note that in the last column one can see whether the (composite) null hypothesis, H0, is rejected
or not.

Risk factor Test-statistic (W ) p-value Testresult

AEX 0.99492 5.56× 10−12 H0 is rejected
EUR-USD exchange rate 0.99809 1.17× 10−5 H0 is rejected
S&P500 0.99823 2.88× 10−5 H0 is rejected

Table 4.1: The results of the Shapiro-Wilk normality test of the correlation between the 6 month
Euribor and the names risk factor.

The composite null hypothesis is rejected since all p-values are less then 1− α even if α would
have been set to 0.995 which corresponds with a con�dence level of 99.5%. Furthermore, W
is not small as it is almost as big as it can be. The results of the Shapiro-Wilk test suggest
that the correlations between the 6 month Euribor and the other commodities are not normally
distributed. This is not a surprise as the normal distribution could also get a value below −1 or
above 1.

4.2 | Simulation

The average time that is needed to implement the frequently updating correlations is evidently
dependent on the number of risk factors. The number of correlations that should be computed is

given by the number of possible combinations of two di�erent risk factors, that is,
n× (n− 1)

2× 1
.

In Table 4.2 an overview is given of the amount of risk factors involved and the update frequency
in number of times per year. In the column �Average Time (s)� the average computational time
is given on a yearly basis. The results have been obtained by �nding the average time to perform
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the necessary computations of correlations between each pair of risk factors 100 times. Note
that the correlations computed in this simulation are pairwised en based on 20 datapoints each.

Risk factors Computations
per year

Starttime Endtime Total Time
(hh:mm:ss)

Average Time
(s)

50 365 22/04/2018
13:37:20

22/04/2018
14:08:06

0:30:45 18.4589

52 22/04/2018
14:08:06

22/04/2018
14:12:27

0:04:21 2.6102

26 22/04/2018
14:12:27

22/04/2018
14:14:47

0:02:20 1.4002

12 22/04/2018
14:14:47

22/04/2018
14:15:52

0:01:05 0.6516

100 365 22/04/2018
14:15:52

22/04/2018
16:20:49

2:04:57 74.9722

52 22/04/2018
16:20:49

22/04/2018
16:38:20

0:17:31 10.5124

26 22/04/2018
16:38:20

22/04/2018
16:47:08

0:08:47 5.2748

12 22/04/2018
16:47:08

22/04/2018
16:51:11

0:04:03 2.4343

200 365 22/04/2018
16:51:11

23/04/2018
01:11:08

8:19:56 299.9648

52 23/04/2018
01:11:08

23/04/2018
02:21:35

1:10:27 42.2773

26 23/04/2018
02:21:35

23/04/2018
02:56:46

0:35:10 21.1072

12 23/04/2018
02:56:46

23/04/2018
03:13:00

0:16:13 9.7396

Table 4.2: The simulation results

From Table 4.2 it becomes clear that even when considering 200 risk factors to be in scope on
average it takes a mere 5 minutes per year to compute the correlation daily when basing the
correlation on 20 datapoints.
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5 | Conclusion

In this chapter one will answer the questions posed in the introduction:

- Can the correlations between certain market risk factors be linked to a probability density
function that can describe the correlations well?

- Can the correlations between certain market risk factors be incorporated in insurance
models in a non-deterministic way, such that they change over time? More speci�cally
what is the impact of incorporating this for the insurance company?

Furthermore the some suggestions for further research will be discussed and what could be a sim-
ple intermediate solution for updating the correlation within the bigger model more frequently.

5.1 | Findings

During this small research it became clear that the correlation between two risk factors doesn't
always show the same behavioural pattern. Therefore a simple solution as to �nding a non-
deterministic approach to �nd or predict the correlation is ambiguous. Given the Shapiro-Wilk
test results one can conclude that there is no evidence that the correlation between any of the
risk factors in this behaviour follows a normal distribution. This result is expected as a normal
distribution will not have a clear cut o� at −1 and 1 which does happen with correlations.
Furthermore one doesn't seem to have another candidate distribution that might �t better.

One has looked at the in�uence of computation methods, that is, the amount of data points
that should be taken into account for the computation of one single correlation. From the tested
computational methods the daily computed correlation based on 20 days of data seems to be
most suitable for research. However one could increase this number to 25 or 30, which may lead
to higher stability in the timeseries. In this paper the number 20 has been chosen as it is the
closest to the average number of trading days in a month and doesn't take partial weeks. This
is in agreement with the methods posed by McNeil, Frey and Embrechts (2015)[8].

In addition, one has looked into how frequently such a computation should be performed. Fre-
quently updated computations should be preferred to less frequently updated. However the
computational time is possibly not available and therefore an insurance company might opt for
updating only once a week, or even once a month. The number of risk factors in scope is leading
in this, as it in�uences the number of necessary computations the most. Note that the compu-
tational time is highly dependable on the machines speci�cations and whether the machine is
performing more tasks simultaneously.1

5.2 | Further Research

The found results de�nitely ask for more research on correlations between market risk factors,
as they do not all behave in the same way, there is not just one simple solution that can directly
substitute current methods. In this paper we have looked into pairwise correlations, but we

1The computations in this paper have been performed on a HP EliteBook, with a Intel(R) Core(TM) i5-6300U
CPU @ 2.40GHz 2.50 GHz processor and 16 GB (15.9 GB usable) memory.
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haven't looked at the increasing dimensionality, that is, what happens between has not been
investigated. Furthermore one could also look into the possibility of applying copulas.

Clearly in this paper we've strictly looked at the correlations between the logarithmic returns
of two commodities, and not at the underlying commodities. In further research one could also
look at more than two commodities simultaneously and investigate the underlying commodities
as well.

In the meantime one could implement a simple �scraper� that pulls the necessary closing prices2

on a daily bases and then computes the rate of return and subsequential computes the correla-
tions. This will at least update the used information on a daily basis.

Pending on the existing model, computation time and associated costs of updating (running)
the model on a daily basis, this would be a feasible and satisfying solution. Furthermore the
solution doesn't involve a highly complicated model that needs to be updated itself3.

2The term necessary is used as it di�ers per company which closing prices are relevant.
3Cathy O'Neil wrote a book called Weapons of Math Destruction on the problems with complicated mathe-

matical systems and their use of such systems in our daily lives.
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A | Tables

Correlation Min. 1st Qu. Median Mean 3rd Qu. Max.

AEX vs. S&P500 -0.41 0.35 0.56 0.51 0.74 0.97
AEX vs. EURUSD -0.96 -0.44 -0.09 -0.06 0.34 0.92
AEX vs. EUR6M -0.90 -0.21 0.05 0.05 0.31 0.88
EURUSD vs. S&P500 -0.84 -0.27 -0.01 0.02 0.36 0.90
EURUSD vs. EUR6M -0.92 -0.25 -0.02 -0.01 0.23 0.87
S&P500 vs. EUR6M -0.86 -0.23 -0.01 -0.00 0.29 0.85

Table A.1: Statistics of the biweekly computed correlations.

Correlation Min. 1st Qu. Median Mean 3rd Qu. Max.

AEX vs. S&P500 -0.20 0.41 0.56 0.53 0.69 0.91
AEX vs. EURUSD -0.87 -0.38 -0.10 -0.06 0.26 0.92
AEX vs. EUR6M -0.71 -0.13 0.07 0.04 0.21 0.78
EURUSD vs. S&P500 -0.82 -0.24 -0.01 0.02 0.27 0.81
EURUSD vs. EUR6M -0.70 -0.18 -0.00 -0.01 0.15 0.78
S&P500 vs. EUR6M -0.76 -0.17 0.01 -0.00 0.14 0.60

Table A.2: Statistics of the 2 period based biweekly computed correlations.

Correlation Min. 1st Qu. Median Mean 3rd Qu. Max.

AEX vs. S&P500 -0.28 0.40 0.56 0.53 0.67 0.91
AEX vs. EURUSD -0.85 -0.38 -0.11 -0.05 0.28 0.82
AEX vs. EUR6M -0.79 -0.17 0.07 0.04 0.23 0.61
EURUSD vs. S&P500 -0.76 -0.26 -0.01 0.02 0.29 0.82
EURUSD vs. EUR6M -0.70 -0.16 0.01 -0.00 0.16 0.57
S&P500 vs. EUR6M -0.60 -0.18 -0.02 -0.00 0.15 0.63

Table A.3: Statistics of the monthly computed correlations.

Correlation Min. 1st Qu. Median Mean 3rd Qu. Max.

AEX vs. S&P500 -0.02 0.43 0.55 0.53 0.65 0.88
AEX vs. EURUSD -0.75 -0.35 -0.11 -0.05 0.24 0.78
AEX vs. EUR6M -0.62 -0.11 0.05 0.03 0.16 0.46
EURUSD vs. S&P500 -0.64 -0.22 -0.01 0.02 0.25 0.80
EURUSD vs. EUR6M -0.63 -0.12 -0.00 -0.01 0.11 0.42
S&P500 vs. EUR6M -0.49 -0.12 -0.01 -0.01 0.09 0.45

Table A.4: Statistics of the 2 period based monthly computed correlations.
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Correlation Min. 1st Qu. Median Mean 3rd Qu. Max.

AEX vs. S&P500 -0.67 0.37 0.56 0.52 0.70 0.97
AEX vs. EURUSD -0.91 -0.39 -0.11 -0.05 0.28 0.95
AEX vs. EUR6M -0.84 -0.15 0.05 0.04 0.25 0.88
EURUSD vs. S&P500 -0.88 -0.26 0.02 0.03 0.31 0.89
EURUSD vs. EUR6M -0.79 -0.20 -0.01 -0.01 0.18 0.86
S&P500 vs. EUR6M -0.78 -0.20 -0.01 -0.00 0.20 0.83

Table A.5: Statistics of the daily (15 days based) computed correlations.

Correlation Min. 1st Qu. Median Mean 3rd Qu. Max.

AEX vs. S&P500 -0.35 0.39 0.55 0.52 0.68 0.93
AEX vs. EURUSD -0.89 -0.37 -0.11 -0.05 0.27 0.94
AEX vs. EUR6M -0.83 -0.14 0.06 0.04 0.21 0.79
EURUSD vs. S&P500 -0.83 -0.25 0.01 0.03 0.28 0.86
EURUSD vs. EUR6M -0.74 -0.18 -0.01 -0.01 0.16 0.84
S&P500 vs. EUR6M -0.76 -0.16 -0.01 -0.00 0.16 0.71

Table A.6: Statistics of the daily (20 days based) computed correlations.

23



B | Remaining Figures

(a) Based on 1 period (b) Based on 2 period

Figure B.1: Boxplots of the biweekly correlations between the di�erent risk factor combinations.

(a) Based on 1 period (b) Based on 2 period

Figure B.2: Boxplots of the monthly correlations between the di�erent risk factor combinations.
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(a) Based on 15 days back (b) Based on 20 days back

Figure B.3: Boxplots of the daily correlations between the di�erent risk factor combinations.

Figure B.4: The timeline of daily (20 days based) computed correlations between the AEX and
the EURUSD exchange rate.
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Figure B.5: The timeline of daily (20 days based) computed correlations between the AEX and
the 6 month Euribor.

Figure B.6: The timeline of daily (20 days based) computed correlations between the EURUSD
exchange rate and the S&P500.
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Figure B.7: The timeline of daily (20 days based) computed correlations between the S&P500
and the 6 month Euribor.
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Figure B.8: Nine QQ-plots of daily (20 days based) computed correlations between the AEX
and the S&P500 for di�erent density functions.
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Figure B.9: Nine QQ-plots of daily (20 days based) computed correlations between the AEX
and the EURUSD exchange rate for di�erent density functions.

29



Figure B.10: Nine QQ-plots of daily (20 days based) computed correlations between the AEX
and the 6 month Euribor for di�erent density functions.
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Figure B.11: Nine QQ-plots of daily (20 days based) computed correlations between the EU-
RUSD exchange rate and the S&P500 for di�erent density functions.
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Figure B.12: Nine QQ-plots of daily (20 days based) computed correlations between the EU-
RUSD exchange rate and the 6 month Euribor for di�erent density functions.
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Figure B.13: Nine QQ-plots of daily (20 days based) computed correlations between the S&P500
and the 6 month Euribor for di�erent density functions.
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