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ABSTRACT
The Intensive Care Unit (ICU) is known as the department
with the highest mortality numbers in any hospital. Pa-
tients at the ICU require extensive assessment by hospital
staff. This is partially achieved through the use of state-of-
theart monitoring devices that provide measurements and
trends about each patient. This means that large amounts
of useful data is available for research. With the increasing
number of patients, maintaining a high standard of care at
the ICU becomes time consuming and brings high opera-
tional costs with it. In this paper we develop data-driven
models that can be used by hospital staff to assess the phys-
ical state of patients at the ICU. To be more precise, these
models provide hospital staff with predictions about the risk
of mortality of patients at the ICU. Two models were de-
veloped and compared based on accuracy and scalability.
The first approach follows a pipeline that prepares the data
for predictive modelling with logistic regression. The sec-
ond approach allows the use of the instance-based learn-
ing model K-nearest neighbor (KNN) with Dynamic Time
Warping (DTW). We show that logistic regression (AUC
of 0.84) significantly outperforms KNN (AUC of 0.68) by
conventional criteria. This paper provides insights on the
performance of both algorithms and could be used as inspi-
ration for further research.

1. INTRODUCTION
Successfully applying machine learning techniques to health
data can make a big difference in the medical domain [6].
Machine learning allows the use of techniques that can help
caregivers make more informed assessments about the state
of their patients. The fields of application vary from di-
agnosing heart disease, cancer prognosis and detection to
mortality assessment at the ICU [6]. On the one hand, the
massive amount of health data within Electronic Medical
Records (EMRs) offers tremendous value through its high
variety if used wisely. On the other hand, the variety of
the data also means that the task of extracting meaningful
features can be very complicated. For instance, an EMR
of a patient can contain structured data such as waveform
data as well as unstructured data such as notes written by
caregivers. Furthermore, the data of patients in EMRs can
be multidimensional and incomplete which makes the task

of modelling even more complicated.

To address the complexity and disparity of data in EMRs,
two feature extraction and data aggregation pipelines have
been designed. The first pipeline describes the extraction of
features in a way that allows the use of predictive model-
ing techniques such as logistic regression. Hereby, features
are extracted and data is aggregated over a time dimension.
Furthermore, other machine learning techniques such as fea-
ture engineering and data imputation are applied. The sec-
ond pipeline prepares the data for instance-based learning.
Here, we focus on the k-nearest neighbor algorithm. This
algorithm requires the computation of patient similarities.
This is achieved by using two different ways of computation:
the Euclidean distance and the Dynamic Time Warping al-
gorithm [4]. Herewith, we aim at handling the disparity of
the data caused by for example waveforms that are out of
phase or exist over non-equal time periods.

Both approaches considered in this paper have proven to
perform well on medical data [3],[6]. However, literature
shows that the number of studies that compare the two ap-
proaches is negligible [3],[10]. This has to do with the fact
that most research conduct on this topic mainly focused on
predictive modelling. This paper seeks to compare predic-
tive modeling with instance-based learning in two ways. The
models are compared in terms of their accuracy at predict-
ing mortality of patients at the ICU and their scalability to
the number of patients taken into consideration. For the
first approach inspiration was drawn from [3]. This decision
enables us to compare the results obtained with our logistic
regression model with the ones obtained by [3]. For the sec-
ond approach a customized implementation of the k-nearest
neighbor algorithm with Dynamic Time Warping has been
developed.

The structure of this paper is as follows. First, we give a
brief literature review in Section 2. Section 3 gives a descrip-
tion of the data that has been used in this paper. Thereafter,
we describe the methods used to develop our models in Sec-
tion 4. Section 5 shows our experimental setup. Finally, we
discuss the results and draw conclusions in Section 6.

2. RELATED WORK
Much work has been done on the field of machine learning
for medicine. Several applications of machine learning in the



medical field are organ localization, tissue classification, dis-
ease prognosis and detection, and computer-aided mortality
assessment. The applicability of these techniques in real life
situations has been thoroughly discussed. A machine learn-
ing model is labeled as useful in medical applications if it
meets the following criteria: good performance, ability to
deal with incomplete and noisy data, transparency, capac-
ity to explain its decisions, and the ability to perform in an
acceptable amount of time [6].

The application of machine learning for mortality assess-
ment in the ICU in particular has been widely investigated.
Most of existing models rely on logistic regression for mak-
ing predictions [1],[3]. Logistic regression is known for its
simplicity and transparency [6]. Other algorithms that have
been researched are survival models [3], Bayesian Networks
[3], Neural networks [1] and the k-nearest neighbors [7] al-
gorithm. Bayesian Networks and survival models are nearly
as good as logistic regression, but these models are less sta-
ble at predicting the outcome [3]. The Neural networks and
k-nearest neighbors algorithms have been researched using
different datasets and proved to perform nearly as good as
logistic regression [1],[7].

The k-nearest neighbor algorithm is known for its simplicity
and effectiveness in handling numerical values [6]. Defining
an appropriate distance measure is a key component in the
implementation of this algorithm. The most commonly used
techniques are Dynamic Time Warping and the Euclidean
distance. Research also shows that little work has been done
to compare a predictive modelling approach (e.g. logistic
regression) with an instance based model (e.g. k-nearest
neighbor) [3],[10].

3. DATA DESCRIPTION
In this section a brief description of the dataset is given.
Data selection and pre-processing are discussed in detail.
Hereto, inspiration is drawn from [3]. The MIMIC-II V2.6
database [2],[8] contains a wide range of detailed measure-
ments of a big number of patients. This data is collected
between 2001 and 2008 at a teaching hospital in Boston.
The data comes from workstations at the ICU as well as
hospital archives. The database contains monitoring infor-
mation such as patient demographics, physiological metrics,
waveforms, and trends. Furthermore, chart data such as
fluid balance, medications, and reports are available. De-
mographics and background information are the only type
of data we use from the hospital archives. This choice is
made to limit the scope of the research to patients at the
ICU. The database contains the following types of data:

1. Continuous and ordinal measurements consist
of 6 categories, namely: cardiovascular, chemistries,
hematology, arterial blood gases, ventilation, and mis-
cellaneous. The total number of features across all cat-
egories is 64. This group of measurements consists of
numerical values (continuous and ordinal) that result
from data observed from patients. For a full descrip-
tion see [3]. For each feature, statistically rigorous
methods were used to define valid ranges and remove
outliers [3]. Additionally, hold limits are defined and
used for applying the hold approach. This method de-
scribes the amount of time a measurement is retained

and reused for the imputation of missing values in fu-
ture time points until a new measurement is available.

2. Categorical measurements consist of 35 features
that are binary or ordinal in nature. For a full de-
scription see [3]. Similar to the previous group of mea-
surements, the hold method is applied.

3. Medication measurements contains 51 medications
along with the doses medicines a patient administered.
Some medicines are accompanied with per-kilogram
units dose values while others have absolute dose val-
ues or both. For each medicine it was made sure
that both types are available. Furthermore, for each
medicine a binary feature was added that describes the
presence (1) or absence (0) of the medication. For a
full description see [3].

4. Input/output measurements contain features that
describe input measurements related to blood and out-
put measurements related to urine production. For a
full description see[3].

5. Demographics are constant in nature and do not
vary in time. The features that were included from
this category are: age, ethnicity, and sex. For a full
description see[3].

To further increase the quality of the data patient filtering
is applied. Patients who do not meet the following criteria
were removed from the dataset [3]:

• At least one Blood Urea Nitrogen observation

• At least one Glasgow Coma Scale observation

• At least one Hematocrit observation

• At least one Heart rate observation

• At least one Intravenous medication recorded

• Receive adult care (are not neonates)

Further preprocessing steps include the hold approach and
choosing the granularity of the data [3]. Applying the hold
approach means imputing missing values in future time points
if these entries are within the provided hold ranges. The
granularity of the data was set to one entry for every 15
minutes.

The original dataset contained information from 26647 pa-
tients. This amassed to a raw dataset of 120 features and
29550651 entries. After excluding patients with incomplete
data (e.g. patients who left or died within a couple of hours
from admission to the ICU) the dataset was reduced to
13923 patients.

4. METHODOLOGY
This section describes the methods used throughout the pa-
per. Section 4.1 gives an overview of the machine learning
approaches. Sections 4.2 and 4.3 describe the feature ex-
traction for respectively the logistic regression and the k-
nearest neighbors approaches. Sections 4.4 and 4.5 describe
the setup to respectively the logistic regression and k-nearest
neighbor models.



4.1 Machine learning approach
To enrich the set of features that are used by the logistic
regression model and the k-nearest neighbor algorithm, fea-
ture extraction and selection were applied. These techniques
usually help obtain higher quality results in models that use
medical data [5]. Basically, one can abstract features from
temporal data in various ways. Here we use two different
approaches. These two approaches are described in detail in
Sections 4.2 and 4.3.

4.2 Feature extraction for logistic regression
The first approach abstracts features on the time level. Hereto,
inspiration was draw from [3]. Depending on the type of
data, feature extraction is performed in various ways:

• Continuous and ordinal variables
For this type of variables the minimum, maximum,
mean value and standard deviation are calculated over
a certain time period. Furthermore, a linear regression
model is fit on observed values and time. The best-
fit line obtained is used to derive the slope for time
windows of 4 hours, 28 hours, or both depending on
the type of variable [3].

• Categorical variables
For variables that are categorical in nature the mean
value over the full time period is calculated. This is
performed after transforming the variables to binary
or ordinal types. This kind of extraction aims at cap-
turing the history of the variables. Further details can
be found in [3].

• Medications
For medication variables the mean dose of each medicine
administered during the full time period is calculated.

• Input/Output variables
For Input/Output variables the same approach is fol-
lowed. The mean value over the full time period is
calculated for each variable.

• Demographics
Variables that describe demographics are constant and
therefore do not need to be aggregated over time.

• Derived variables
Additional variables were calculated to capture infor-
mation from the data. Meta-information that describes
the presence or absence of variables, ratio’s, and tem-
poral behavior were calculated as described in [3].

The Stationary Daily Acuity Score (SDAS) approach from
[3] was implemented. 11 PM is chosen as the time at which
a new day starts to be able to systematically assess results.
The data is aggregated using different periods of time. We
start with the aggregation of the data generated during the
first 24 hours at the ICU starting from 11 PM. This is ex-
tended with data from the next 24 hours and so on. This
type of aggregation allows us to compare models trained on
data from one or multiple 24 hour periods.

To perform variable selection Pearson correlation is used.
Variables with the highest correlation with the target vari-
able are selected when they are not highly correlated (≥ 0.2)
with a variable that already has been included.

4.3 Feature extraction for k-nearest neighbors
The second approach relies on feature extraction on the mea-
surement level. To achieve this, statistical measurements are
calculated. For the k-nearest neighbors algorithm a different
feature extraction and selection approach is used. For each
day that a patient stays at the ICU entries are added for
each measured time point with granularity of 15 minutes.
For each entry a predefined set of variables are filled in from
the dataset. Furthermore, missing data is imputed using
the hold technique as explained in Section 3 and features
are normalized to a range of 0 to 1.

The dataset contains two sorts of features: time series data
and measurement features. The features that belong to the
first category are: the heart rate, respiration, the noctur-
nal, systolic, and diastolic blood pressure, and the oxygen
saturation. All remaining features are not time varying and
thus belong to the second category. For this category the
average over the entries of patients is taken and the Eu-
clidean distance is used to calculate the similarity distance.
For the time-varying features two different approaches were
implemented. Both approaches are based on the Dynamic
Time Warping algorithm for determining patient similari-
ties. The first variant uses the Keogh lower bound [4] to
determine the similarity between waveform data from two
different patients. This technique makes it feasible to calcu-
late the distance between these features for large datasets.
Since this approach approximates a lower bound a second
variant with the name FastDTW was implemented. Fast-
DTW gives an approximation that is near-optimal in linear
time [9]. A detailed description of the methods is given in
Section 4.5.

4.4 Logistic regression model
The first patient model we developed is based on the lo-
gistic regression algorithm. This model is known for its
transparency, understandability within the field of medicine,
robustness and tractability [3],[6]. Logistic regression be-
longs to the class of models called generalized linear models
(GLMs). Given n observed data x1, x2,..., xn and n indepen-
dent target variables Y1, Y2,..., Yn our goal is to model the
relationship between the target variables and p non-random
covariates. With logistic regression one can model the log
odds of the binary target variable (e.g. mortality). These
odds are modeled using a linear combination of covariates
X. The logistic regression model for the independent target
variables Y1, Y2,...,Yn is defined as follows:

niYi ∼ Bin(ni, µi), (1)

ηi = XT
i β, (2)

ηi = g (µi) = log

[
µi

(1− µi)

]
, (3)

µi = P (Yi = 1|Xi), (4)

for i = 1,...,n.



The first formula describes the random component of the
model. This component specifies the distribution of the tar-
get variables Yi. The second formula defines the systematic
component of the model which describes a vector of predic-
tors ηi for each observation xi and the way the covariates
are contained into the model. Finally, the link-function is
defined in the third formula. This function specifies the link
between the first and the second components of the model.

After rewriting the probability P (Y = 1|X) becomes:

log

(
P (Y = 1 | X)

1− P (Y = 1 | X)

)
= Xβ (5)

P (Y = 1 | X) =
1

1 + e−Xβ
(6)

With this probability we can obtain the risk of mortality for
each patient.

4.5 K-nearest neighbors model
The second model we developed is based on a custom im-
plementation of the k-nearest neighbours algorithm. This
algorithm uses patient similarity to perform instance based
learning. The customisation is needed to calculate similarity
scores for features that have a time component (e.g. time
varying features). These features can be highly time vary-
ing, shifted or different in size. For the calculation of the
similarities the Dynamic Time Warping algorithm is used
as mentioned in Section 4.2. For the remaining features the
Euclidean distance is used as a similarity measure.

Define a set DTW of time series feature, a set EUC of the re-
maining features and a set FEAT that contains all features.
Let ti,j be a vector of values of patient i for feature j during
a predefined time period of n time points. The similarity
between two patients A and B is described by equation 7.

distance(A,B) =√
DTW (A,B)2 + Euc(A,B)2 + Penalty(A,B)

features matched(A,B)
(7)

DTW (A,B) =∑
i∈DTW

{
keogh LB(tA,i, tB,i) if (|tA,i| > 0) ∧ (|tB,i| > 0)

0 otherwise
(8)

Euc(A,B) =∑
j∈EUC

{
(〈tA,j〉 − 〈tB,j〉) if (|tA,j | > 0) ∧ (|tB,j | > 0)

0 otherwise
(9)

Penalty(A,B) =

C · (1 + |DTW |+ |EUC | − features matched(A,B)) (10)

features matched(A,B) =∑
k∈FEAT

{
1 if (|tA,k| > 0) ∧ (|tB,k| > 0)

0 otherwise
(11)

Due to the sparsity of the data it is common that measure-
ments are missing. Therefore, features are only compared
when a least one value is present for both patients. Fur-
thermore, the total distances between patients are averaged
by dividing over the total number of matching features. Fi-
nally, a weighting scheme is applied by adding a penalty
factor where C determines the weighting. Given the num-
ber of nearest neighbors (k) we look up the k patients with
the lowest similarity scores and calculate the risk of mortal-
ity using the number of patients from class 1 (patients that
unfortunately died at ICU) and k.

5. EXPERIMENTS
In this section we describe the machine learning approaches
for setting up the models, validation methods and parameter
settings.

5.1 Experimental Setup
To assess the results obtained with the experiments in a sys-
tematic way, choices about the validation methods and the
accuracy metrics need to be made. With stratified cross-
validation one can assess how well the obtained models will
generalize on data from new patients. 5-fold cross-validation
is used and the two classes in each folds are kept in pro-
portion to each other (i.e. stratified cross-validation). To
investigate the influence of the size of the dataset on the
accuracy as well as the scalability the number of patients is
varied between 150 and 2500. Furthermore, we experiment
with different ways of calculating the similarity between pa-
tients for KNN. The accuracy metric used is the AUC. For
the run times we use seconds to quantify the scalability of
the algorithms.

5.2 Parameter Settings
For the Logistic Regression model a grid search over the set
of parameters is run. L1 and L2 regularization are tested
and the number of features to be used by the model is var-
ied. The cost parameter C was varied between 0 and 1000
with step size 50 and the the following tolerance values were
tested: 1e-6 and 1e-4. For the KNN model we create differ-
ent subsets of features based on the percentage of missing
values (85%) and the type of data. Furthermore, we opti-
mize for the number of nearest neighbors.

6. RESULTS
In this section we will present the results we obtained with
our models. Sections 6.1 and 6.2 describe the results ob-
tained with respectively logistic regression and KNN. In Sec-
tion 6.3 we compare the two approaches.

6.1 Logistic regression
For the model trained with logistic regression we applied
the Stationary Daily Acuity Score (SDAS) approach as de-
scribed in Section 3. Here, we use data of the first 24 hours
at the ICU starting from 11 PM. Furthermore, with feature
engineering we derived additional features from the original



Feature Coefficient
neosynephrinek 37.83487
min tidvolset 32.72291
natrecor 9.366317
slope windows 8 sbp 8.004235
max spo2 4.49859
min cl 3.511009
insulin 1.542605
slope windows 16 spo2 1.530865
max wbc 1.137946
iabp bin -1.52952
std tidvolobs -1.60236
pale skin bin -2.0729
white -2.19223
slope windows 16 nbpmean -3.40944
slope windows 24 nbpsys -23.9617

Table 1: Top 15 features with highest coefficients

dataset. The final dataset used to train this model con-
tained 748 features. Next, feature selection was applied.
Here we take the full dataset after preprocessing and select
the subset of features with the highest correlation with the
target variable. We also take correlations between features
into account. Hereby, we leave out features that are highly
correlated with features that already have been selected for
their high correlation with the target variable. The size of
the subset of features was varied between 30 and 70. Fur-
thermore, different correlation thresholds were tested.

To further increase the accuracy of the model, L2-regularization
was used with a cost of 150 and a tolerance of 1e-6. These
parameters were optimized using the grid search method.
A subset of 50 features and a correlation threshold of 0.2
yielded the highest AUC. Stratified cross-validation with 5-
fold was used to validate the models. The results shown
in figure 1 were obtained with a model trained with data
from 2000 patient (3.5 million rows) and 50 features. An
AUC of 0.84 was obtained with this set of patients. Table
1 shows the top 15 features with the highest coefficients for
this model.

The size of the dataset was varied to test the influence of the
number of patients on the accuracy of the model. The same
50 features that were selected before are used to train these
models. Figure 2 shows that the accuracy of the model in-
creases as we increase the number of variables. After reach-
ing 2000 patients the accuracy stagnates and even decreases
from 0.84 to 0.83 when we increase the number of patients.

Regarding the run times of the models trained with logistic
regression we can state that they all finish training in under
then 40 seconds. 50% of the time is spent on reading the
files, while the other 20 seconds is spent on feature selection
and training.

6.2 K-nearest neighbor
For the model trained with the k-nearest neighbor algorithm
we applied a different approach for feature extraction. For
this model the data is not aggregated but just stored in a
time uniform manner. Section 4 goes more in depth about
the precise steps of feature extraction. Furthermore, with
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Figure 1: Sensitivity of LR to the number of features.

150 500 1000 1500 2000 2500

0.
7

0.
8

0.
9

Number of patients

A
U

C

Figure 2: Sensitivity of the LR model to the number of
patients used for training.

feature engineering we derived additional features from the
original dataset. The final dataset after preprocessing con-
tained 350 features.

The feature selection approach used here is also different in
comparison with the first model. Based on this dataset we
can distinguish between two types of features. These are
time-varying and not time-varying features. The following
time series features were selected manually: the heart rate,
respiration, the nocturnal, systolic, and diastolic blood pres-
sures, and oxygen saturation. For these features the lower
bound of Keogh was used to calculate the similarities as ex-



plained in Section 4.

Further, another version of the dynamic time warping algo-
rithm was implemented. This algorithm is called FastDTW
and is implemented in such a way that it performs faster
than the original DTW algorithm and usually yields more
accurate similarity scores than the lower bound of Keogh [4].
FastDTW was tested and did not improve the accuracy sig-
nificantly. Additionally, it made the algorithm much slower
compared to the lower bound of Keogh. Therefore, the lower
bound of Keogh seemed the better choice.

For the remaining features we use the Euclidean distance as
a similarity measure. Different ways of calculating similari-
ties were experimented with. The Cosine distance, the Ma-
halanobis distance and a different version of the Euclidean
distance where the number of observations in a certain time
period is taken into account, were implemented and tested.
None of these alternative distance calculations yielded an
improved accuracy compared to the standard Euclidean dis-
tance. Therefore, we opted for the latter a distance measure
for its simplicity.

Finally, the parameter k (e.g. the number of nearest neigh-
bors used to calculate the risk of mortality) was optimized
using randomly drawn datasets of sizes up to 1000 patients.
Figure 3 shows the accuracies yielded with the KNN mod-
els after varying this parameter. Stratified cross-validation
with 5-folds was used to validate the models. From this fig-
ure we can see that k = 1 yields the highest accuracy while
for higher values of k (up to 15) the accuracy seems to de-
crease.
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Figure 3: Sensitivity of the KNN model to the number of
neighbors.

Based on these results we can now test how the accuracy
of the model changes after increasing or decreasing the size
of the dataset. Different models were trained with varying

k With DTW Without DTW
1 0.68 0.66
2 0.65 0.63

Table 2: Accuracy with and without Dynamic Time Warp-
ing obtained with 150 patients

sizes of datasets (from 150 to 2500 patients). The number of
neighbors is set to 1 and the number of features used to train
the models is kept at 132. Figure 4 shows the result obtained
with varying datasets. From this figure we can clearly see
that the accuracy of the model decreases as we increase the
number of patients. Reasons for this unexpected behavior
could be the fact that many features will not have a match
due to missing data, and that the distance function is not
robust in approximating the true distance given the number
of features we use and the missing data.
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Figure 4: Sensitivity of the KNN model to the number of
patients.

A final experiment was carried out to test whether the DTW
approximation algorithm (e.g. lower bound of Keogh) has
any added value. Hereto, similarities for time varying fea-
tures were calculated using the Euclidean distance. Table 2
shows the accuracies obtained with the original model and
the new model that used the Euclidean distance on all 132
features. From this table we can see that using an approx-
imation of the DTW algorithm gives a significant improve-
ment compared to using only the Euclidean distance. Using
the data obtained with the 5-fold cross validation a t-test
was applied and showed that the difference is significant
(p<0.05). Regarding the run times of the models trained
with the KNN algorithm, we can state that these seem to
increase exponentially with the size of the dataset. Figure
6 shows the run times of both models.



6.3 Logistic regression versus KNN
Figures 6 & 7 show the best ROC curves obtained with
the logistic regression and k-nearest neighbors algorithms.
To compare the two algorithms a paired t-test was applied.
The data used for this test was taken from the different runs
with different numbers of patients. The alternative hypoth-
esis is that the different in means of the accuracy (AUC)
is greater than zero. The test yielded a p-value of 0.00275.
Based on conventional criteria one can conclude that the
logistic regression model performs significantly better than
the k-nearest neighbor algorithm.
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Figure 5: Run times of KNN and LR

Figure 6: ROC curve for logistic regression

Figure 7: ROC curve for KNN

7. DISCUSSION
In this research paper two different modeling approaches
were implemented and compared. The first approach fol-
lows a pipeline that prepares the data for predictive mod-
elling with logistic regression. The second pipeline allows
the use of the instance-based learning model KNN. For the
first approach data of patients was aggregated over a time di-
mension. In the second approach data was stored in a time
uniform manner. For each model well though out experi-
ments were performed to increase the quality of the results.
In this paper we aimed at comparing the two approaches
based on their accuracy and scalability.

Predictive modelling resulted in a model that could predict
the outcome of an ICU stay based on data of at most 1
day with an AUC of 0.84. This model was trained on 50
features that have been preselected. The top 15 features
with the highest coefficients obtained with this model are
shown in table 1. Neosynephrinek has been selected by the
model as the most important feature. This feature indicates
whether the drug Neosynephirine is injected into the blood
of a patient or not. Research shows that this drug is intended
to maintain the blood pressure of patients during inhala-
tion anesthesia or to treat vascular failure in cases of shock,
hypotension or hypersensitivity. During all these scenarios
patients are in a life threatening state which explains why
this feature is very important for the model. Furthermore,
features that indicate minimum, maximum, mean, standard
deviation, or slope values were the most selected features.
This indicates that the aggregation of data over the time di-
mension had added value. When making a comparison with
[3], one can see that several features have been selected by
both models while the remaining features are different. The
model obtained by [3] achieves an AUC of 0.89 when predic-
tions are limited to day 1. Furthermore, we see that [3] uses
35 features that are selected using a slightly different feature
selection method. Also, the model obtained by [3] contains
features that were not used in this paper. Regarding the
run time of logistic regression, it was shown that this model
runs relatively fast. Training and testing takes under one



minute to finish. This means that this model can be useful
in practical situations.

Instance based learning resulted in a model that was able
to predict the outcome of an ICU stay based on data of at
most one day with an AUC of 0.68. This model was trained
with 132 features that were selected based on the percentage
of missing values. This algorithm searches for the k-nearest
patients from the set of training patients. Based on the pro-
portions of the classes of the these patients, the risk of mor-
tality is calculated. As a consequence this algorithm is not
able to generalize well. Also, it lacks transparency of knowl-
edge which is represented by the sum of information gains in
favor or against a given class [6]. This also makes it difficult
to understand the behavior of the algorithm that seems to
become less accurate as the number of patients in the train-
ing set is increased as can be seen in figure 4. Furthermore,
a value of 1 for the parameter k yielded the highest AUC.
A hypotheses to explain such behavior would be the prob-
lem of sparsity and the effect this has on the calculation of
the similarity scores. Using a similarity score function that
is not robust would result in an increased chance of calcu-
lating scores with high deviance compared to the true ones.
This would mean that the calculation of the risk of mortality
gets less accurate. Furthermore, the fact that highest AUC
is obtained with k=1 indicates that the algorithm relies on
the smallest similarity scores which have a lower chance of
being less accurate.

Besides the accuracy of the model, its scalability was also
measured. In Section 6 we showed that the run time of the k-
nearest neighbor increases exponentially as we increase the
number of patients in the training set. This could be ex-
plained by looking at the way the KNN algorithm compares
patients and performs similarity calculations. Each patient
in the training set should be compared to every other patient
to calculate the similarity scores. An attempt was made to
use clustering to decrease the set of patients that each in-
stance will be compared to. The clusters were created by
looking at the age of the patient and the Glasgow Coma
Scale at the moment of arrival at the ICU. The resulted
clusters were highly imbalanced in their sizes which made
the process of cross-validation unreliable. This would also
make the process of analyzing and trying to understand the
behavior of the algorithm more complicated.

8. CONCLUSION
A physician should be able to understand the predictions
made by the algorithm. This can lead to new insights that
were not recognized by the physician before for the given
problem. Another important point is the ability of the
model to explain its diagnosis or prediction. Physicians will
usually not accept the predictions of a black box model un-
less it outperforms their assessments largely. On these two
points predictive modelling proves to be better than instance
based learning. The algorithm should also be able to make
a prediction in a practical amount of time. On this point lo-
gistic regression clearly outperforms KNN. Finally, one can
conclude that even though KNN is known for its simplicity
and its ability to perform well on medical datasets, it does
not do well on the MIMIC-II dataset when we compare it

to logistic regression. More sophisticated ways of select-
ing features and imputing missing values for KNN would be
worthwhile to explore in feature research. Additionally, ap-
proaches such as clustering could be tested where a bigger
dataset is used. All these suggestions could help improve
the scalability and accuracy of the algorithm and provide
an instance based model that is more accurate and much
faster.
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