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Preface 

This paper has been written as part of my study Business Mathematics and Informatics 
(BMI) at the vrije Universiteit in amsterdam. The BMI-paper is one of the final 
compulsory subjects. The objective is to investigate the available literature in reference 
to a topic related to at least two out of the three fields integrated in the study.   
 
During my internship with Rabobank International I became interested in the risk 
management process within banks. For the purpose of extending my knowledge of the 
available tools and techniques for measuring risks, I decided to dedicate my BMI paper 
to this field. The subject for this paper was set in consultation with dr. ir. G. Jongbloed 
of the Stochastics department of the faculty Exact Sciences.  
 
Though several people have supported me during the realisation of this paper, I would 
especially like to express my gratitude to my supervisor, dr. ir. G. Jongbloed. Despite 
his busy schedule he made time to guide me. I am thankful for his advice, comments, 
and motivational speech when I needed it. 
 
 
Purmerend, January 2005 
 
Nazia Habiboellah. 
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Management Summary 

Risk management within banking is intended to guard against risks of loss due to a fall 
in prices of the financial assets held or issued by the bank. Risk managers are primarily 
concerned with quantifying the effect of events that will have significant impact. Since 
these extreme events are very rare, not a lot of data is available about their occurrence 
and effect. Extreme Value Theory (EVT) is a specialised branch of statistics that 
attempts to make the best possible use of what little information is available about 
extreme events.  
 
Though EVT has been around for some time now, the potential for the financial industry 
has only been recognised recently. In this paper an overview will be given of the 
application of extreme value theory as a method for modelling and measuring the 
extreme risks that are involved in financial mediation. 
 
Two principal approaches can be distinguished within EVT, being the block maxima 
approach and the peak-over-threshold approach. The main difference between both 
approaches is the manner in which the extremes are identified. The fundamental 
theorem underlying the first approach states that the distribution of period maxima 
converges to the generalised extreme value distribution (Tippett - Fisher theorem). The 
second approach is based on the Balkema and de Haan - Pickands theorem, which states 
that the distribution of the peak over thresholds converges to the generalised Pareto 
distribution.  
 
In the banking industry EVT is mainly used for assessing the Value at Risk of the 
investment portfolios, i.e. measuring the market risk exposure. Moreover, EVT can be 
applied in determining the adequate capital buffer to cover possible losses due to credit 
risk and operational risk, as prescribed by the Basle Capital Accord (BIS II).  
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Banks function as intermediaries in financial markets. On the one hand they attract 
capital from markets by issuing stock for example. On the other hand they invest capital 
back into the market by granting loans to individuals or corporations. This financial 
mediation involves various risks. For instance, when a debtor is not able to settle his 
debt at maturity of the loan, the bank will incur a loss. The possibility of this loss is 
referred to as credit risk. Other major risks in banking are market risk, operational risk, 
liquidity risk, and interest rate risk.  
 
Risk managers are primarily concerned with the risk of rare events that could lead to 
catastrophic losses, like a market crash, or the default of a major international bank. 
Though the probabilities of these extreme events are very low, they could have a major 
impact on the economy. So, extreme events cannot be ignored for risk management 
purposes. The typical question that needs answering is: “When things go wrong, how 
wrong could they go?” 
 
Over the last years a lot of research has been done on the utilisation of Extreme Value 
Theory (EVT) in banking. EVT is a specialised branch of statistics that attempts to 
make the best possible use of what little information is available about extreme events. 
Though EVT has been around for some time, the potential for the financial industry has 
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only been recognised recently. In this paper an overview will be given of the application 
of extreme value theory as a method for modelling and measuring the extreme risks that 
are involved in financial mediation. 
 
The structure of this paper is depicted in the overview below. After the introduction, 
risks and bank regulations are covered in chapter one. Then, a brief outline is given of 
the risk measures applied within the banking industry (chapter two). Thereupon, the 
fundamental theorems in EVT (chapter three), and the statistical techniques needed for 
applying EVT (chapter four) are discussed. Finally, the applications of EVT in the 
banking industry are treated in chapter five.  
 
 
 

Figure 0.5: Paper Structure 
 

1. Risks and Bank  
    Regulations 

2. Risk Measures within   
    the Banking Industry 
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Chapter 1.  Risks and Bank Regulations 

1.1 Introduction 

This paper focuses on techniques for measuring extreme risks in the banking industry. 
These risks are important to manage carefully, for they could lead to significant losses. 
However, what are the extreme risks banks are exposed to, and how do risk managers in 
the banking industry manage these risk exposures? These questions will be answered in 
this chapter.  
 
This chapter serves as general introduction to risk management in the banking industry. 
First paragraph 1.2 starts with a generic description of the term risk. Subsequently, the 
main risks in banking are outlined in paragraph 1.3, followed by a discussion on bank 
regulations in paragraph 1.4. In the latter, two types of capital buffers are distinguished, 
being regulatory capital and economic capital. Thereupon, the five phases of the risk 
management process are handled in paragraph 1.5. 
 

1.2 What is  Risk? 

From a banking point of view, risk is the financial uncertainty that the actual return on 
an investment will be different from the expected return [http://www.datek.com/]. While 
in many risky situations the possible outcome can be classified either as a loss or a gain, 
generally only the ‘downside’ possibility of loss is considered to be risky, and not the 
upside ‘potential’ for gain.  
 

In other words, risk designates any uncertainty that might trigger losses [Besis, 2002]. 
However, uncertainty is hardly visible in contrast to revenues or costs. Consequently, 
risks remain intangible until they have materialised into loss. This makes the 
quantification of risks more difficult.  
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1.3 Risks in Banking 

The banking industry has a wide array of business lines, as can be seen in Figure 1.1. 
Each activity involves other types of risk. For instance, by lending money the bank is 
primarily exposed to credit risk, which is the risk that the borrower will default on his 
payment obligations. With trading on the other hand, market risk is the major risk 
involved, i.e. the risk on adverse market changes. An overview of the main bank risks 
and their definitions is given in Table 1.1. 
 
Before proceeding, it has to be noted that not all risks mentioned in Table 1.1 can be 
assessed separately, for most risks interact. Market risk for example, is influenced by 
changes in interest rates and foreign exchange (FX) rates. So, it can be said that interest 
rate risk and FX risk are related to market risk. Another interesting detail is that credit 
risk is considered to be the most important risk in banking, for the losses suffered from 
this type of risk are generally much greater than the losses suffered from any of the 
other risk types. 
 
 

 

 
Figure 1.1: Overview of Banking Activities 

Source: [Besis, 2002] 



 
 
 

 
 

7 

 

Risk Type Description 
 
Credit risk 

 
The risk that a company or individual will be unable to pay 
the contractual interest or principal on its debt obligations.  

 
Foreign Exchange Risk  
 

 
Foreign exchange risk applies to all financial instruments 
that are in a currency other than the domestic currency. 
When investing in foreign countries you must consider the 
fact that currency exchange rates can change the price of 
the asset as well. 

 
Interest Rate Risk 

 
The risk of (market) value changes that can be lost due to 
unexpected rate changes compared to the expected future 
value. 

 
Liquidity Risk 

 
The risk stemming from the lack of marketability of an 
investment that cannot be bought or sold quickly enough to 
prevent or minimise a loss. 

 
Market Risk 

 
The risk of adverse movements in market factors (such as 
asset prices, foreign exchange rates, interest rates) that 
cause volatility in profit and losses. 

 
Operational Risk 

 
The risk of loss resulting from inadequate or failed internal 
processes, people and systems or from external events. 
 

Table 1.1: The Main Bank Risks Defined 
 

1.4 Bank Regulat ions 

The banking industry is a heavily regulated sector with respect to capital requirements. 
The objective of the capital regulation has always been to improve the safety of the 
banking industry, i.e. reducing the number of bank failures. The regulations developed 
by the Bank of International Settlement1 (BIS) lay down principles of capital adequacy 
and risk-based capital. In other words, the regulations state that a banks’ capital should 
be in line with its risk exposure. 
 
In banking a distinction can be made between two types of capital, being regulatory 
capital and economic capital. Regulatory capital is determined by general rules 
prescribed to all banks by the Basle committee. In the new capital accord (BIS II) 

                                                      
1 The Bank of International Settlements, located in Basle, Switzerland, was founded in 1930 and is an 
important forum for banking supervisors and central banks of the major industrialised nations to discuss and 
co-ordinate risk policies. 
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minimal capital requirements are stipulated for market risk, operational risk and credit 
risk (Pillar I). Economic capital is determined by the banks’ internal rules for solvency 
and considers the ‘actual’ risk exposure of the bank. The internal rules are generally 
stricter and include more risk types.  
 
The regulatory framework has a significant impact on the risk management process in 
the banking industry. The regulations stimulate the development and enhancement of 
the internal risk models and processes of banks. Moreover, banks are encouraged to 
develop better methodologies for measuring their own risk exposures in the economic 
capital framework. Thus, the quantitative assessment of risks is an important part of the 
risk management process. 
 

1.5 The Risk Management Process  

The risk management process provides a framework for identifying risks and deciding 
what to do about them. The process consists of five phases [Bodie, 2000]: 

PHASE I: Risk Identification 

In the first phase the most important risk exposures are determined for the unit under 
analysis. This can for instance be a company, or a stock or loan portfolio. 

PHASE II: Risk Assessment  

In the second phase, the costs associated with the risks that have been identified in the 
first phase are quantified. The remainder of this paper will mainly focus on this phase. 

PHASE III: Selection of Risk Management Techniques  

After the identification and quantification of the risk exposure, steps can be taken to 
reduce the risk. There are four basic techniques for reducing risk, being: 
- Risk Avoidance 

Risk avoidance means that a conscious choice is made not to be exposed to a 
particular risk.  

- Loss Prevention 
With loss prevention specific actions are taken to reduce the likelihood or the 
severity of losses.  

- Risk Retention 
Risk retention means that the risks are absorbed by covering the losses with own 
resources. 
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- Risk Transfer 
This means that risks are transferred to a third party.  

PHASE VI: Implementation  

In this phase the selected techniques are implemented, with the restriction that the 
implementation costs have to be minimised. 

PHASE V: Review  

As time passes and circumstances change it will be necessary to periodically review and 
revise the decisions made. This is considered to be the final phase of the risk 
management process. 
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Chapter 2.  Risk Measures within the Banking Industry 

2.1 Introduction 

Generally speaking, risk designates any uncertainty that might trigger losses. So, risks 
remain intangible and invisible until they materialise into loss. Therefore, risks are not 
always easy to identify and measure. Over the years, various risk measures have been 
developed that aim at capturing the variation of a given target variable due to 
uncertainty. Measures regarding market risk, for instance, record changes in the market 
value of assets, while credit risk measures consider the changes in losses caused by 
defaults.  
 
This chapter focuses on the quantitative risk measures that are applied in banking. First, 
a general classification of the types of risk measures is handled in paragraph 2.2. Three 
categories are distinguished, being sensitivity indicators, volatility measures and 
downside measures of risk. Thereupon, paragraph 2.3 elaborates on a special group of 
downside risk measures, which are frequently used in banking, namely quantile based 
risk measures. The three risk measures that will be treated are Value-at-Risk, Expected 
Shortfall and Return Level.  
 

2.2 Types of  Risk Measures 

According to Besis (2002), quantitative indicators of risk can be categorised into three 
groups, being sensitivity indicators, volatility measures and downside measures of risk. 
In this paragraph the characteristics of the measures in each of these groups will be 
discussed. 
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Sensitivity Indicators 

A sensitivity indicator captures the deviation of a target variable due to the adverse 
change of a single parameter (the explanatory variable) by one unit. This type of 
indicator can link any target variable to the underlying sources of uncertainty that 
influence the target variable. This makes sensitivity indicators very convenient for risk 
measurement.  
 
Sensitivities are widely used for measuring market risk and Asset-Liability Management 
(ALM). Market risk models, for instance use the ‘Greek letters’ to relate the market 
parameters, like the interest rates, to the target variable. ALM models however, use 
gaps. A gap is the sensitivity of interest income of the banking portfolio to shifts of 
interest rates. 
 
Sensitivity indicators have several disadvantages. For one, they refer to a given adverse 
change of the risk drivers, such as a one percent shift of interest rates, without 
considering that some parameters are quite unstable while others are not. Thus, 
sensitivities do not take the deviation of parameters into account. Moreover, sensitivity 
indicators depend on the current conditions, like the value of the market parameters and 
the assets, making them proxies of actual changes.  
 

Volatility Indicators 

A volatility indicator measures the dispersion around the mean of any random parameter 
or target variable, taking both upside and downside deviations into account. Thus, 
unlike sensitivities, volatility indicators do consider the varying instability of uncertain 
parameters.  
 
The volatility of a variable is given by the standard deviation of the values of the target 
variable. Given any set of data the (historical) volatility can be calculated. To this end 
no assumptions have to be made about the distribution of the target variable. Thus, to be 
able to calculation the volatility only a time series is required.  
 
An important issue in defining the time series is the size of the sample. For short 
observation periods, or when just a few observations are available, the sampling error 
will be greater than for long observation periods with a lot of observations. This has to 
be kept in mind, during the computation. 
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Downside Measures of Risk 

The purpose of downside risk measures is to capture losses, in which gains are ignored. 
So, volatility and downside risk are related, but not identical. In contrast to volatility, 
only the adverse changes are considered with downside risk. This leads to the following 
relation: when there is downside risk, there is also volatility. But when there is 
volatility, it does not naturally mean that there is a downside risk as is illustrated in 
Example 2.1.  
 

Example 2.1 

An option buyer is exposed to volatility without being exposed to downside risk, for the 
buyer only has an uncertain gain, and no risk on loss.  
 
Suppose the buyer has a call option with a strike price of 100 dollars. At maturity of the 
option there are two possible scenarios: 
1. The price of the underlying stock is higher than the strike price. In this case the           

buyer will exercise his option, and will gain the difference between the stock price 
and the strike price. This difference however, is currently uncertain and therefore 
leads to volatility.  

2. The stock price is lower than 100 dollars.  Under these circumstances the buyer will 
not exercise his option, and no loss is incurred. Thus, there is no downside risk. 

 
Downside risk consists of two components, being the potential losses and the 
probability of occurrence. Though worst-case scenarios can be used to quantify the 
extreme losses, the chances of observing the scenarios are subjective. The relevancy or 
likelihood of a scenario changes with the individual’s perception of the environmental 
uncertainty. For this reason, downside risk measures demand the prior modelling of the 
probability distributions of potential losses. 
 

2.3 Quanti le  Based Risk Measures 

Questions concerning risk management in banking often involve the estimation of 
extreme quantiles (refer to Example 2.2). With quantile estimation an adequate 
threshold can be determined that a target variable will exceed with a given (low) 
probability. Value-at-Risk (VaR) is the most frequently used quantile based risk 
measure in banking, and will be discussed in this paragraph. Furthermore, two other less 
popular measures will be handled, being the expected shortfall (ES) and the return level 
[Gilli, 2003].  
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Example 2.2 

All banks are obliged to maintain a capital buffer to be able to cover possible future 
losses. The ability of a bank to cover the future losses is expressed in terms of a credit 
rating.  
 
The Rabobank has a triple A rating, this is the highest existing credit rating. To be able to 
maintain the triple A status, the Rabobank has to reserve a capital buffer that reduces the 
probability of default to once in 10.000 years. This corresponds to determining the loss 
threshold that will be exceeded with a probability of 0.01 percent, i.e. the 99.99 percent 
quantile.     

 

Value at Risk 

Value at Risk (VaR) is defined as the maximum expected loss (measured in monetary 
units) of an asset value (or a portfolio) over a given time period and at a given level of 
confidence (or with a given level of probability), under normal market conditions 
[Coronado, 2000]. In other words, VaR indicates how much can be lost as a maximum, 
with a probability of 100p percent, during a period of time q. Example 2.2 for instance, 
refers to the VaR with p equal to 0.99 and q equal to one year. 
 
Now, consider a random variable X that models losses or negative returns on a certain 
financial instrument over a certain time horizon. Given that X has a continuous 
distribution function F, the Value at Risk can be defined as the p-th quantile of the 
distribution F, with 0.95 ≤ p ≤ 1. This can be written as 

 
VaRp = F-1 (p), 

 
where F-1 is the inverse of the distribution function F, which is also known as the 
quantile function. The quantile function is formally defined as  

 
Q(p) = F-1(p) := inf{x : F(x) ≥ p}. 

 
Despite of the general acceptance of VaR as a quantitative risk measure in banking, 
there has been some criticism on the reliability of the measure. According to Artzner et 
al. VaR is not a coherent risk measure1. In Artzner (1998) they have shown that the sub-

                                                      
1  For a discussion of the properties of coherent risk measures refer to Acerbi (2001) or Artzner(1997, 1998). 
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additivity2 property does not always hold. This means that there are situations where the 
sum of the VaR of two separate portfolios can be less than the VaR of the two portfolios 
combined. In reality this cannot occur, for the total loss in a mixed bond portfolio can 
never be more than the sum of the losses on each bond in the portfolio3. Another point 
of criticism is that VaR does not give any information about the expected size of the 
loss, when the VaR is exceeded. Therefore, some practitioners prefer the use of the 
expected shortfall as an additional measure. 

Expected Shortfall 

Expected Shortfall (ES) is defined as the expected size of a loss that exceeds VaR, and 
is also referred to as the tail conditional expectation. Mathematically this risk measure 
can be defined as 

ESp = E(X | X > VaRp). 
 
Even though the expected shortfall is currently not used that often, practitioners have 
realised its usefulness for financial risk management [McNeil, 1999].  

Return Level 

The return level ( k
nR ) is a similar risk measure as Value at Risk, however, it is less 

frequently used in the banking industry. k
nR  designates the level that is expected to be 

exceeded, on average, only once in a sequence of k periods of length n. In Example 2.2 
the size of the capital buffer could also be determined with the return level. In this case 
k is equal to 10.000, and n is one year. 
 
Now, if H is the distribution of the maxima observed over successive non-overlapping 

periods of equal length, then k
nR  is the quantile 

 

)(1 pHRk
n

−=  

 
of the distribution function H. Since the event of interest only occurs once out of k 
periods, p is equal to 1/k. 

                                                      
2 A function ρ is said to be sub-additive when ρ(X+Y) ≤ ρ(X) + ρ(Y), where X, Y and X + Y are elements of a set 
of real-valued random variables V. This property expresses the fact that a portfolio made of sub–portfolios will 
risk an amount that is at most the sum of the separate amounts at risk in its sub–portfolios. 
3 However, due to diversification the loss in a mixed portfolio can be less than the sum of the losses of the 
bonds in the mixed portfolio. 
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Chapter 3.  Extreme Value Theory 

3.1 Introduction 

Risk managers are mainly concerned with rare events that lead to significant losses. 
However, the occurrence of this type of events is very difficult to predict a long time 
ahead because there are not a lot of records of these events. EVT is a specialised branch 
of statistics that attempts to make the best possible use of the scarce information about 
extreme events, and provides a foundation for modelling them. 
 
This chapter gives an introduction to the fundamental theorem in extreme value theory. 
Paragraph 3.2 discusses the general purpose of EVT, and distinguishes two principal 
approaches for modelling extreme events. Subsequently, the theorem underlying the 
first approach in extreme event modelling is discussed in paragraph 3.3, followed by a 
discussion of the second theorem in EVT in paragraph 3.4. And at last the challenges of 
applying EVT are handled in paragraph 3.5.  
 

3.2 Extreme Value Theory 

The fundamental theorem in extreme value theory is a cousin of the better-known 
central limit theorem. It defines what the distribution function of extreme events should 
look like in the limit, as the sample size increases. Consequently, EVT can be a helpful 
tool for finding the best possible estimate of the tail area of a distribution. Even when 
little historical data is available, EVT provides useful guidelines on selecting the type of 
distribution, to ensure that extreme risks are handled conservatively. 
 
In extreme value theory, a distinction can be made between two approaches, namely the 
block maxima approach and the peak-over-threshold approach. The main difference 
between both approaches is the manner in which data is generated, i.e. how the extremes 
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are identified. In Example 3.1 the data generation for both methods is illustrated by 
means of an example.  
 
The block maxima approach is the oldest approach in EVT and considers the maxima 
(or minima) a variable takes in successive periods, like months or years. These selected 
observations are labelled extreme events, and are also referred to as block (or period) 
maxima. This method is the traditional method used to analyse time series with 
seasonality [Gilli, 2003]. In section 3.3 the fundamental theorem and the approach in 
modelling block maxima are outlined.  
\ 
The second approach in EVT only considers observations that exceed a given threshold. 
This type of models is known as Peak-Over-Threshold (POT) models. These models use 
the data more efficiently than block maxima models, and are becoming the preferred 
method in recent applications. The underlying theorem of POT models and the approach 
in modelling are discussed in section 3.4. 
 
 

Example 3.1 

Consider a random variable representing daily losses and returns from an investment. 
The data is represented in the diagram below.  
 

Utilizing the block maxima approach with six periods, each consisting of three months, 
the observations X3, X6, X7, X10, X13 and X15 are labelled as block maxima (see the left 
diagram below). 
 

When the threshold method is applied with threshold u, the observations X3, X4, X5, X6, 
X7, X9, X15 and X16 are considered extreme events (refer to the right diagram below). 
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3.3 The Block Maxima Approach 

Block maxima models consider the maxima of successive periods. This paragraph 
discusses the underlying theorem and gives a general distribution for block maxima. 
Furthermore, the concept of the maximum domain of attraction is illustrated by means 
of an example. 

Limit Laws for Block Maxima 

Suppose that X = (X1, …, Xn) is a sequence of independent identically distributed 
observations with distribution function F, which does not necessarily have to be known. 
Then the sample maximum, Mn, with n the size of the sub sample (or block) is defined 
as Mn = max {X1, …, Xn}. The limit law for block maxima is given by the following 
theorem: 
 
Fisher - Tippett Theorem 
Let (Xn) be a sequence of independent identically distributed random variables. If there 
exist norming constants cn > 0, dn ∈ R and some non-degenerate distribution function H 
such that 

,H
c

dM d

n

nn →
−

 

 
then H belongs to one of the three standard extreme value distributions: 
 

Fréchet: ,0
0,
0,0

)( >




>
≤

=Φ −− ααα xe
x

x x  

Weibull: ,0
0,1
0,)(

)(

>






>
≤=Ψ

−−

α
α

α
x
xex

x
 

Gumbel: Rxex
xe ∈=Λ

−− ,)(  

 
The parameter α is the tail index, and reflects the degree of thickness of the tail of the 
distribution. In other words, the tail index measures the speed with which the tail 
approaches to zero, i.e. the heavier the tail, the slower the speed and thus the smaller the 
tail index.  
 
The shape of the probability density functions for the standard Fréchet, Weibull and 
Gumbel distributions is given in Figure 3.1 below. For illustrative purposes the 
parameter α is set to 1.5 for both, the Fréchet and Weibull distribution.  
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            Fréchet function                           Weibull function                           Gumbel function 

Figure 3.1: Extreme Value Distributions 

The Generalised Extreme Value Distribution 

As discussed in the previous section, there are only three standard extreme value 
distributions for modelling block maxima. However, the type of limiting distribution of 
the sample maxima is often not known in advance. Therefore, Jenkinson and von Mises 
suggested the following one-parameter representation of the three standard distributions 
 







=
≠= −

−

−

+−

,0 if,
,0 if,)(
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ξ
ξ

ξξ

ξ xe

x

e
exH  

 
where 1 + ξx > 0. This generalisation is known as the generalised extreme value (GEV) 
distribution, where the parameter ξ  = α--1.  This shape parameter determines the type of 
extreme value distribution, namely when: 
 

- ξ = α--1 > 0, the distribution takes the form of the Fréchet distribution Φα,  
- ξ = 0,  the distribution corresponds to the Gumbel distribution Λ,  
- ξ = -α--1 < 0, the distribution is known as the Weibull distribution Ψα. 

 
This representation is nowadays widely accepted as the standard representation.  

The Maximum Domain of Attraction 

The extreme value distributions introduced in the previous sections represent the limit 
laws for maxima of independent identical distributed random variables. However, under 
what conditions do the normalised maxima Mn weakly converge to H? In other words, 
how do the constants cn > 0 and  dn ∈ R have to be chosen such that  
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In Example 3.2 an approach for finding the appropriate constants is illustrated for the 
case where the distribution function is known. It has to be noted that this approach can 
only be used when the expectation of the distribution exists. When the conditions are 
satisfied, it can be assumed that the normalised maxima Mn converge weakly to H. 
 
The concept of maximum domain of attraction (MDA) is often used to characterise the 
convergence to an extreme value distribution. When the normalised maxima Mn 
converge weakly to Hξ, the distribution function F is said to belong to the maximum 
domain of attraction of the extreme value distribution Hξ. This is written as F ∈ 
MDA(Hξ).  
 
 

Example 3.2 

Consider a sample {X1, X2, …, Xn} of i.i.d. random variables from the standard 
exponential distribution F(x) = 1 – e-x. Does the distribution function F belong to the MDA 
of the extreme value distribution H? 
 
First the norming constants, cn and dn, have to be found. Then the limiting distribution of 
(Mn – dn)/cn can be determined. To find the constant dn that centres the distribution 
around zero, dn has to be close to E[Mn]. An estimation of E[Mn] can be obtained by the 
following approximation: F(E[Mn]) ≈  E[F(Mn)].  
 
 
F(X1), F(X2), …, F(Xn) is a random sample from the uniform distribution over [0, 1]. Since  
F(Mn) is the largest of the sample size, the probability density function of F(Mn) is given by 
f(Mn) = nxn-1. This gives E[F(Mn)] = n/n+1. Furthermore, F(E[Mn]) = 1 – e-E[Mn]. 
 
From this it can be deduced that E[Mn] ≈ log (n+1) ≈ log n a reasonable choice for dn is 
log n/n+1. The limiting distribution can now be determined as follows: 
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The last equation is justified since a
n

n
e

n
a =



 +

∞→
1lim .  Now, if the parameters are chosen 

as: dn = log n and cn = 1, then the limiting distribution is 
yee

−− , which is the Gumbel 
distribution. Therefore, it can be said that the exponential distribution belongs to the MDA 
of the Gumbel distribution.

 
 

3.4 The POT Approach 

The second type of models in EVT only considers observations that exceed a given 
threshold. These models have largely been developed in the insurance business, where 
only losses above a certain threshold are accessible to the insurance company. In this 
paragraph the main theorem underlying this approach is discussed and a general 
distribution for the exceedances is given.  

The Distribution of Exceedances 

Suppose that X = (X1, …, Xn) is a sequence of independent identically distributed 
observations with distribution function F, which does not necessarily have to be known. 
Then the threshold u has been exceeded when Xi > u. This excess over u, also referred to 
as peak over threshold, is defined by y = Xi – u. The distribution of the excess losses 
over the threshold u is given by 
 

)|()( uXyuXPyFu >≤−= , 

 
for 0 ≤ y < xF – u where xF ≤ ∞ is the right endpoint of the distribution function F.  
 
The distribution Fu is called the conditional excess distribution function and represents 
the probability that the value of X exceeds the threshold by at most an amount of y given 
that X exceeds the threshold u. This conditional probability can be written as 
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Since the realisations of the random variable X mainly lie between 0 and u, the 
estimation of F in this interval is generally not that difficult. The estimation of Fu 
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however is more difficult as in general very little observations are available in this area. 
The peak over threshold approach offers a solution for this problem. 

Limit Laws for Peak Over Thresholds 

The Fisher-Tippett theorem, discussed in the previous paragraph, is the basis for the 
theorem for peak over thresholds. The theorem by Balkema and de Haan (1974) and 
Pickands (1975) shows that for a sufficiently high threshold u the distribution function 
of the excesses can be approximated by the generalised Pareto distribution Gξ,β(u). 
 
Balkema and de Haan – Pickands Theorem  
For every ξ ∈ R, F ∈ MDA(Hξ) if and only if  
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for some positive function β.. 
 
Besides the magnitude of the losses, the POT approach also models the occurrence of 
the losses. Resulting from the properties of the GPD as discussed by Embrechts et al. 
(1997), it can be said that the number of excesses of the threshold follows a Poisson 
process. However, this property will not be discussed any further in this paper. 

The Generalised Pareto Distribution 

The generalised Pareto distribution (GPD) is the limiting distribution for the peak over 
threshold approach and is defined as 
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where ξ = 1/α is the shape parameter, α is the tail index, β  is the scale parameter, and ν 
is the location parameter. When ν = 0 and β = 1, the representation is known as the 
standard GPD. 



 
 
24 

 
The generalised Pareto distribution embeds three other distributions. The type of 
distribution is determined by the shape parameter (just like with the GEV distribution). 
When: 
 

- ξ = α--1 > 0, the distribution takes the form of the ordinary Pareto distribution, 
- ξ = 0,  the distribution corresponds to the exponential distribution,  
- ξ = -α--1 < 0, the distribution is known as a Pareto II type distribution. 

 
In Figure 3.2 the shape of the probability density functions of above-mentioned 
distributions are illustrated. The standard distributions are depicted, which means that 
the location parameter ν is set to 0, and the scale parameter β  is equal to 1. The 
corresponding distribution functions are represented in Figure 3.3. 
 

 

 
           Pareto II type                         Exponential                        Ordinary Pareto     

 
Figure 3.2: Densities for the Generalised Pareto Distributions 

 
 

 
           Pareto II type                         Exponential                        Ordinary Pareto        

 
Figure 3.3: Generalised Pareto Distributions 
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3.5 Chal lenges of  Applying EVT  

In risk management, EVT is considered to be a useful tool for measuring extreme risks. 
However, the application of EVT involves a number of challenges. Since the availability 
of extreme data is limited, determining whether the series is “fat-tailed”, choosing the 
threshold or beginning of the tail, and choosing the methods of estimating the 
parameters is more difficult. Therefore, it is very important to analyse the data 
carefully, before proceeding.  
 
In order to apply EVT sufficient data should be available for estimating the parameters 
of the limiting distributions. When the POT approach is adopted, the following 
assessment has to be made in determining an adequate threshold u: u has to be large 
enough to satisfy the conditions that allow the convergence to the limiting distribution, 
while plenty of observations remain for estimating the parameters. This can also be said 
for the block maxima method with regard to the size of the blocks. 
 
Furthermore, in traditional EVT it is assumed that the extreme observations are 
independent and identically distributed. This assumption does not always hold, for in 
reality extreme events often tend to occur in clusters. This is caused by the dependence 
in the data. With the block maxima approach increasing the size of the blocks can 
reduce this dependence. However, as a result some extreme observations can be lost for 
they occurred in the same block. This assessment makes the choice of the block size 
more difficult.  
 
There are some additions to the theory of estimating the parameters for dependent 
observations, however, these are not considered to be in the scope of this paper. For 
more information on modelling dependent observations refer to Embrechts et al. (1997). 
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Chapter 4.  Statistical Techniques for EVT 

4.1 Introduction 

The implementation of extreme value theory faces many challenges. For one, data of 
extreme events is very scarce, which makes the process of estimating the appropriate 
distribution function more difficult. The assessment whether or not the series is fat-
tailed, and the determination of the threshold or beginning of the tail are examples of 
important issues that need to be tackled. Moreover, choosing the methods of estimating 
the parameters is not that easy either.  
 
In this chapter the necessary statistical techniques for applying EVT are discussed. In 
paragraph 4.2 two useful graphical techniques are discussed for exploring the behaviour 
of the tail of the empirical distribution, namely the QQ-plot and the mean excess plot. 
Paragraph 4.3 explains how the graph of mean excess and the hill graph can be used to 
determine the threshold of the GPD. Thereupon various techniques are given in 
paragraph 4.4 to estimate the parameters for both the GEV distribution and the GPD. 
And finally, paragraph 4.5 illustrated how the confidence intervals can be assessed. 
 

4.2 Graphical  Data Exploration Tools  

The first and foremost step in modelling is the (graphical) exploration of the data 
[Bensalah, 2000]. In this phase the modeller has to become familiar with the features of 
the data that are relevant for the question at hand. There are several graphical 
techniques for the exploration of data. The most common techniques include histograms 
and box plots. This paragraph however, concentrates on techniques that provide as much 
information as possible about the tail of the distribution. The graphs that are discussed 
are QQ plots and mean excess plots. 
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Quantile Quantile Plots 

Quantile Quantile Plots, better known as QQ plots, depict the relation between the 
quantiles of an empirical distribution and a standard distribution. The graph displays a 
linear line when the quantiles of a class of distributions are related to the corresponding 
quantiles of the empirical distribution. This tool is easy to use, since the linearity in the 
graph can be easily checked by eye. When necessary the relation can further be 
quantified by means of the correlation coefficient1.  
 
Considering a sequence of iid random variables X1,…,Xn with empirical distribution Fn, 
and Xn,n < … < X1,n the order statistics, it can be said that Fn(Xk ,n) = (n-k+1)/n. Given 
that F denotes the estimated parametric distribution of the data, the graph of quantiles is 
defined by the set of the points: 
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The more linear the QQ plots, the more appropriate the model in terms of goodness of 
fit. In Figure 6.1 two QQ plots are depicted. The left graph illustrates a good fit, in this 
case the empirical distribution belongs to the normal family. In the right graph a fat 
tailed distribution is illustrated. This can be derived from the curves to the top at the 
right end and/or to the bottom at the left end. 
 

 

 
 

Figure 4.1: Quantile Quantile Plots 
 

                                                      
1 The correlation coefficient r represents the relation between two variables, where -1 ≤ r ≤ 1. When r = ±1 the 
points lie perfectly on a straight line. 
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Thus, QQ plots are easy and useful tools for determining the distribution of the data. 
They can also be used to assess how well a model fits the tail of an empirical 
distribution.  

Mean Excess Plots 

The mean excess is the expected size of the excess over a given threshold u, given that u 
is exceeded. The mean excess function e(.) for a random variable X is defined as  

 

FxxuXuXEue ≤≤>−= 0for ),|()( , 

 
where xF is the upper bound of the distribution. The particular case e(u) is called the 
mean excess over the threshold u. In financial risk management e(u) is better known as 
the Expected Shortfall (as discussed in section 2.3). For an elaborate discussion of the 
properties of this function refer to Embrechts et al. (1997). 
 
The behaviour of the tail can now be established based on the form of the distribution of 
mean excesses. Let X1,…,Xn be iid with empirical distribution Fn. Then, 
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where { }uXniiu in >==∆ ,,...,1,)(  and the card function counts to the number of points 

in the set )(un∆ . So, the mean excess function is nothing else than the excesses over the 

threshold u divided by the number of data points that exceed the threshold u. 
 
Now, the mean excess graph is formed by the following set of points: 
 

( ){ }nkXeX nknnk ,...,1,, ,, = . 

 
The mean excess graph will tend towards infinity for fat-tailed distributions, i.e. the 
graph will have a linear shape with a positive slope when the data follows the GPD with 
a positive shape parameter (ξ). On the other hand, when the data is exponentially 
distributed the graph will show a horizontal line, and for short-tailed data, the line will 
have a negative slope. In Figure 4.2 the mean excess graph is illustrated for a fat tailed 
(left illustration) and the exponential (right illustration) distribution. For an overview of 
the most important mean excess functions refer to Embrechts et al. (1997). 
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Figure 4.2: Mean Excess Plots 
 

4.3 Determining the Threshold 

An important step in modelling the POT is the determination of an appropriate threshold 
value u. The assessment has to be made whether u is large enough to satisfy the 
conditions that allow the convergence to the limiting distribution, while leaving plenty 
of observations for estimating the parameters. In this paragraph two graphical tools will 
be discussed to determine an appropriate threshold, being the graph of mean excess and 
the hill graph. 

Graph of Mean Excess 

The graph of mean excess has already been discussed in the previous section. Besides 
determining the type of distribution, this graph is also a helpful tool for choosing an 
appropriate threshold. The Balkema and de Haan – Pickands theorem states that for a 
high threshold, the excess over the threshold for a given series converges to a GPD. 
Since the mean excess graph of the GPD is linear, it is possible to choose the threshold 
by detecting an area with a linear shape on the graph.  

Hill Graph 

Another helpful tool for determining the threshold is the Hill plot. Given that Xn,n < … < 
X1,n  are the ordered statistics of iid random variables, the Hill estimator of the tail index 
α  is defined by:  

1

1
,,

)(
,

)( lnln1ˆˆ
−

=










−== ∑

k

j
nknj

H
nk

H XX
k

αα , 



 
 
 

 
 

31 

 

where k → ∞ is the number of upper order statistics and n is the sample size. A Hill plot 
is constructed such that the estimated α is plotted as a function of k upper order 
statistics (or the threshold). Thus, the Hill graph is defined by the set of points  
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The threshold is selected from this graph for the stable areas of the tail index. However, 
this choice is not always clear. The ambiguity of the value of threshold leads to some 
difficulty. In determining the threshold the variance has to be considered against the 
bias. If a low threshold is chosen, the number of observations (exceedances) increases 
and the estimation becomes more precise. However, by choosing a low threshold also 
some observations from the centre of the distribution are included, what makes the 
estimation become biased.  
 
 
In conclusion, the estimates of α based on a few of the largest observations are highly 
sensitive to the number of observations used (high volatility). But when too many 
elements are used the estimation becomes biased. Therefore, a combination of the 
aforementioned techniques should be considered for determining an appropriate 
threshold. 
 
 

4.4 Parameter Est imation 

The parameters of the GPD or the GEV distribution can be estimated in various ways. In 
this section three techniques will be outlined, being maximum likelihood estimation, the 
method of moments and the method of probability weighted moments. In practice, the 
first mentioned technique is used the most.  

Maximum Likelihood Estimation 

One way of estimating the parameters of the distribution is by following the maximum 
likelihood methodology. Suppose that X = (X1, …, Xn) is a random variable with density 
pθ. Then the likelihood function is given by  
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The log likelihood function is denoted by l(θ; X) := ln L(θ;X). The Maximum 
Likelihood Estimator (MLE) for θ is the value that maximises the log likelihood 
function [Oosterhof, 1999]. 
 
The big advantage of maximum likelihood procedures is that they can be generalised, 
with very little change in the basic methodology, to much more complicated models in 
which trends or other effects may be present [Embrechts, 1997]. 

The Method of Moments 

This technique implies that the theoretical moments based on Hθ (model based) are 
equated with the corresponding empirical moments based on the data. This comes down 
to the following equation: 
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where F denotes the empirical distribution function of the data. However, this method is 
considered to be very unreliable, for the second- and higher-order moments cannot 
always be determined [Embrechts, 1997].  

Method of Probability-Weighted Moments 

This technique is considered to be more promising than the method of moments 
discussed above. It is simple to apply and performs well in simulations. The probability-
weighted moment is defined as 
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where X has distribution function Hθ. Now, in order to estimate θ the empirical estimate 
of ω has to be equated with the theoretical analogue of ω. This can be written as: 
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where F denotes the empirical distribution function. 
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Chapter 5.  EVT and the Banking Industry 

5.1 Introduction 

Extreme value theory provides some ready-made approaches for modelling events that 
are both extreme, and extremely rare. A distinction can be made between two principal 
kinds of models, being block maxima models and peak-over threshold models. The 
former considers maxima of successive periods. And the latter only considers 
observations that exceed a given threshold. 
 
Though EVT has been around for some time now, the potential of EVT for the financial 
industry has only been recognised recently. This chapter focuses on the application of 
EVT in the banking industry. In paragraph 5.2 the importance of EVT in managing 
financial risk is discussed, followed by several examples of the utilisation of EVT in 
banking in paragraph 5.3. Finally, the implementation of EVT is illustrated by means of 
an example in paragraph 5.4. 
 

5.2 Why EVT? 

Risk management in the banking industry is intended to guard banks against risks of 
loss due to a fall in prices of financial assets held or issued by the bank. One of the 
major challenges to risk managers is the implementation of risk management models 
that allow for extreme events, and permit the measurement of their far-reaching or even 
fatal consequences [McNeil, 1999].  
 
Classical data analysis techniques are inadequate for this purpose, because they cut off 
extreme data, i.e. the extreme values are often labelled as outliers and sometimes even 
ignored. EVT however, offers two general distribution functions for modelling these 
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extreme values. The general extreme value distribution models maxima, while the 
general Pareto distribution models the exceedances above a given threshold.  
 

5.3 Applicat ions in Banking 

In banking extreme value theory is used for managing all three risks for which 
regulations are prescribed, being credit risk, market risk and operational risk. For 
market risk purposes EVT is used to determine the value at risk (VaR) for the losses 
incurred on the trading book due to adverse changes in the market. BIS II stipulates that 
banks should be able to cover losses on their trading portfolios over a ten-day horizon, 
99 percent of the time. However, financial institutions generally compute a 5 percent 
VaR over a one-day holding period for their internal risk management purposes [Gilli, 
2003]. 
 
In credit and operational risk management EVT is often utilised for determining the 
adequate level of risk capital, that serves as a buffer against irregular losses from 
respectively defaults, or operational problems. The economic capital buffer is 
maintained to be able to absorb the losses exceeding the expected loss (banks build 
provisions to cover the expected losses). The size of the EC buffer depends on the credit 
rating of the bank (refer to Example 2.2), and can be determined as: EC = VaRp – EL, 
where p is the confidence level. 
 

5.4 A Pract ical  Example 

In this section the Value at Risk, Return Level and Expected Shortfall will be 
determined for the S&P 500 index. This index is especially designed to measure the 
performance of the domestic economy through changes in the aggregate value of 500 
stocks that represent all major industries. The analysis is performed with the help of the 
software package R1 (refer to Appendix A for the used R code). 
 
The dataset used for analysis consists of the closing values of the Standard & Poors 500 
index from January 5 1960 to October 16 1987, resulting in 6985 observations. The 
time-plot of the S&P 500 index is given in Figure 5.1, and Figure 5.2 depicts the daily 
log returns. The log returns are defined as rt = log(pt/pt-1), where pt denotes the value of 
the index at day t for t = 2, ..., 6985.  
 

                                                      
1 R is a language and environment for statistical computing and graphics similar to S-plus. R can be 
downloaded free of costs from http://www.r-project.org/. 
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Figure 5.1: Daily Quotes of the S&P Index 500 

 
 

 
Figure 5.2: Daily log Returns of the S&P Index 500 

 
 
Now the distribution of the loss data can be approached with the normal distribution. In 
Figure 5.3 the histogram of the data is given together with the fitted normal distribution 

with parameters a ˆ = -0.00009 and b ˆ = 0.00350. The diagram on the right side zooms in 
on the right tail of the distribution, and illustrates that the distribution has a heavier tail 
than the normal distribution.  
 

 

 
 

Figure 5.3: Approximation of Distribution with Normal Distribution 
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The same conclusion can be drawn from the QQ plot and the mean excess plot in Figure 
5.4. The line in the QQ plot slightly deviates to the bottom in the left tail and to the top 
in the right tail, which is an indication of heavy tails. The Mean Excess plot also points 
to a heavy tailed distribution, for the line has a positive slope for thresholds greater than 
zero.  
 

 

 
 

Figure 5.4: Exploring the Tails 

Block Maxima Method 

The block maxima method can be used to approximate the limiting distribution of the 
maxima. The first step is to determine the appropriate block size N, so that N is large 
enough to fulfil the conditions that allow the convergence to the GEV distribution, 
while sufficient observations remain to estimate the parameters for the limiting 
distribution.  
 
In Table 5.1 the parameter estimates of the limiting extreme value distribution are given 
for six time periods with different lengths. The standard errors of the estimates are also 
given in the table (noted between brackets). The best approximation can now be 
determined by considering the variance of the estimations (i.e. the standard error) and 
by studying the distribution of the residuals. The QQ plots of the residuals (refer to 
Appendix B) show that the models based on all selection periods, except for the daily 
returns, result in an adequate approximation of the distribution. 
 
When the estimated distributions are plotted with the histogram of the data, the weekly 
returns seem to give the best approximation of the tail area (refer to Figure 5.5). The 
other estimated distributions have thicker tails than the empirical distribution.  
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Selection period Shape Parameter (ξξ) Location Parameter (µµ) Scale Parameter (σσ) 

Daily returns            N = 1 -0.1203 -0.0016 0.0039 
            (st. error) (1.97E-06) (1.97E-06) (1.97E-06) 
Weekly returns        N = 5 0.0518 0.0021 0.0021 
           (st. error) (1.94E-02) (5.67E-05) (2.01E-06) 
Monthly returns       N = 21 0.0965 0.0045 0.0022 
           (st. error) (3.97E-02) (1.16E-04) (2.00E-06) 
Quarterly returns     N = 63 0.2221 0.0061 0.0023 
           (st. error) (8.90E-02) (2.01E-04) (2.01E-06) 
Semester returns    N = 125 0.3422 0.0073 0.0024 
           (st. error) (2.29E-01) (3.68E-04) (2.25E-06) 
Yearly returns          N = 250 0.3451 0.0087 0.0030 
           (st. error) (2.57E-01) (5.16E-04) (2.00E-06) 

Table 5.1: Parameter Estimation for GEV Distribution with Increasing Block Size 
 

 

 
 

Figure 5.5: Limiting Distribution for Empirical Data 
 
The limiting distribution of the weekly maxima approximates the empirical distribution 
best. Therefore, the tail of the empirical distribution can be approached with the Fréchet 
distribution (ξ > 0) with shape parameter 0.0518, scale parameter 0.0021 and location 
parameter 0.0021. Now the Return Level can be determined. In Table 5.2 the k-block 
Return Level with corresponding 95% confidence interval is given for various periods. 
For instance, once every month the incurred losses will exceed the 0.0048. And once 
every quarter the losses will be higher than 0.0078. 
 

k-blocks Return Level 95%confidence interval 
4 0.0048 [0.0047, 0.0048] 
13 0.0078 [0.0075, 0.0082] 
26 0.0095 [0.0091, 0.0102] 
52 0.0113 [0.0107, 0.0121] 

Table 5.2: k-block Return Level with Length 5 
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Peak Over Threshold Approach 
The Expected Shortfall and the Value at Risk can be estimated by means of the peak 
over threshold approach. The most important step is the determination of an adequate 
threshold. For this purpose the Mean Excess plot and the Hill graph can be used. Both 
graphs are depicted in Figure 5.6 below.  
 
From the Mean Excess plot can be derived that the threshold lies between 0.005 and 
0.010, for the graph shows a linear line with a positive slope in this interval. By 
exploring the Hill graph the boundaries of the interval can be further specified. Since 
the Hill graph is stable for alpha when 70 to 98 order statistics are used, the interval of 
the threshold can be narrowed down to 0.0082 and 0.0089. As an additional option the 
threshold of 0.0077 (124 order statistics) is also taken into account in the analysis.  
 
The parameter estimates of the GPD for the three threshold options specified above are 
given in Table 5.3. The standard deviations of the estimates are given between brackets.  
 

 

 
 

Figure 5.6: Determining the Threshold 
 
 

Parameters 
Threshold (u) 

Shape (ξξ) Location (νν) Scale (ββ) 

0.0089 0.1572 0 0.0023 
(st.dev.) (0.1083)  (0.0002) 

0.0082 0.1521 0 0.0022 

(st.dev.) (0.0909)  (0.0001) 

0.0077 0.1416 0 0.0021 

(st.dev.) (0.0793)  (9.27e-05) 

Table 5.3: Parameter Estimation for GPD for Various Thresholds 
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From Figure 5.7 can be derived that the model based on the first 124 order statistics 
approaches the distribution of the data the most accurate. Thus, the tail of the empirical 
distribution can be approximated by the ordinary Pareto distribution (since ξ > 0), with 
location parameter 0, and scale parameter 0.0021. In Table 5.4 the Value at Risk and 
Expected Shortfall are given with their corresponding confidence interval for several 
confidence levels. 
 

 
Figure 5.7: Limiting Distribution for Empirical Data 

 

 
p VaRp 95% Confidence Interval ESp 95% Confidence Interval 
0.925 0.0144 [0.0132, 0.0164] 0.0180 [0.0157, 0.0238] 
0.95 0.0157 [0.0142, 0.0185] 0.0195 [0.0168, 0.0270] 
0.975 0.0181 [0.0159, 0.0228] 0.0223 [0.0185, 0.0340] 
0.99 0.0216 [0.0183, 0.0306] 0.0264 [0.0208, 0.0450] 
0.999 0.0329 [0.0240, 0.0450] 0.0395 [0.0264, 0.0450] 
0.9999 0.0484 [0.0295, 0.0450] 0.0576 [0.0319, 0.0450] 

Table 5.4: Var and ES for Different Confidence Levels
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Glossary 

Bank of International Settlement The Bank of International Settlements, located in 
Basle, Switzerland, was founded in 1930 and is an 
important forum for banking supervisors and central 
banks of the major industrialised nations to discuss 
and co-ordinate risk policies. 
 

Banking Book The banking book groups all commercial banking 
activities. It includes all lending and borrowing, 
usually both for traditional commercial activities, 
and overlaps with investment banking operations. 
Accounting rules for the banking book use accrual 
accounting of revenues and costs, and rely on book 
values for assets and liabilities. 
 

Basle Committee See Bank of International Settlements 
 

BIS II Also known as Basle II, is the new Basle Capital 
Accord. The new regulations will come into force in 
2007. However, they are to be implemented by 
banks before the beginning of 2006.  
 

Block Maxima Method This approach in EVT considers the period maxima 
in modelling extreme events. 
 

Commercial Banking Commercial banking entails all traditional banking 
activities, being lending and collecting deposits from 
individuals and small businesses, and so-called 
relationship banking.  
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Credit Risk The risk that a company or individual will be unable 
to pay the contractual interest or principal on its debt 
obligations.  
 

Default A debtor is said to be in default when he fails to 
meet a contractual obligation, such as the repayment 
of either principal or interest. 
 

Diversification Diversification is a risk-reduction technique. By 
investing in a range of different investments the 
overall portfolio risk can be reduced. That is because 
different types of investments tend to behave 
differently under the same market conditions. By 
holding a range of investments the chance that when 
some investments in the mix are declining, others 
may be rising can be increased. 
 

Downside Risk Downside risk refers to the possibility of losses in 
which the possibility on gains is ignored. Downside 
risk consists of two components, being the potential 
losses and the probability of occurrence. 
 

Economic Capital Economic Capital is the capital buffer that is 
reserved based on the internal capital requirements 
specified by the bank itself. The Economic Capital 
considers the ‘actual’ risk of the bank.  
 

Expected Shortfall The expected size of a loss that exceeds VaR (also 
referred to as the tail conditional expectation). 
 

Foreign Exchange Risk  
 

Foreign exchange risk applies to all financial 
instruments that are in a currency other than the 
domestic currency. When investing in foreign 
countries you must consider the fact that currency 
exchange rates can change the price of the asset as 
well. 
 

Interest Rate Risk The risk of (market) value changes that can be lost 
due to unexpected rate changes compared to the 
expected future value. 
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Investment Banking Investment banking is the area of banking covering 
issues, trading, repos and corporate and take-over 
financing. 
 

Liquidity Risk The risk stemming from the lack of marketability of 
an investment that cannot be bought or sold quickly 
enough to prevent or minimise a loss. 
 

Market Risk The risk of adverse movements in market factors 
(such as asset prices, foreign exchange rates, interest 
rates) that cause volatility in P&L. 
 

Operational Risk The risk of loss resulting from inadequate or failed 
internal processes, people and systems or from 
external events. 
 

Peak Over Threshold Method This approach in EVT only considers the 
observations that exceed a predetermined threshold 
in modelling extreme events. 
 

Private Banking Private banking designates a service unit that 
provides securities safekeeping, investment advice 
and lending to their wealthiest customers. 
 

Regulatory Capital The capital buffer determined by the requirements 
prescribed by the Bank of International Settlement. 
 

Relationship Banking In relationship banking the client-bank relation is 
stable, and based on mutual confidence. By 
maintaining this relationship various services can be 
generated. Each transaction is evaluated 
individually.  
 

Return Level The level that is expected to be exceeded, on 
average, only once in a sequence of k periods of 
length n. 
 

Sensitivity A sensitivity or sensitivity indicator captures the 
deviation of a target variable due to the adverse 
change of a single parameter (the explanatory 
variable) by one unit. 
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variable) by one unit. 
 

Tail Conditional Expectation See Expected Shortfall 
 

Trading Short-term purchasing and selling of securities with 
the goal of exploiting short-term market 
fluctuations. 
 

Trading Book The trading book groups all market transactions 
tradable in the market. Accounting rules for the 
trading book rely on market values (mark-to-market) 
of transactions and P&L, which are variations of the 
mark to market value between two dates. 
 

Value At Risk The maximum expected loss (measured in monetary 
units) of an asset value (or a portfolio) over a given 
time period and at a given level of confidence (or 
with a given level of probability), under normal 
market conditions. 
 

Volatility Volatility is the dispersion around the mean of any 
random parameter or target variable. It can be 
quantified by means of the standard deviation of the 
values of the target variable. 
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Appendix A.  R Code for Practical Example 

 
// Reading data from files 
x <- read.table("C:/Mijn documenten/NAZIA/Werkstuk/Practical Example/SP500.txt") 
xlog <- read.table("C:/Mijn documenten/NAZIA/Werkstuk/Practical Example/SP500log.txt") 
 
l =dim(xlog)[1] 
xloginv = xlog 
for (i in 1:l) 
xloginv[i,1]=xlog[i,1]*-1 
 
// Plotting time series (figure 5.1 en 5.2) 
par(mfrow=c(2,1), mgp = c(2,0.5,0), cex.lab = 0.8, cex.axis = 0.6, cex.main = 0.1, cex.sub = 0.8, 
font.lab=3) 
plot(x[,2],type="l", xlab = "Daily quotes of the S&P500 Index ",ylab=””, col = rgb(0.4,0.4,0.6)) 
plot(xlog[,1],type="l", xlab = "Daily log return of the S&P500 Index ", ylab=””,col = 
rgb(0.4,0.4,0.6)) 
 
length = dim(xloginv) 
stdev = sqrt(var(xloginv[,1])) 
mu = mean(xloginv[,1]) 
u = seq(-0.03,0.04, by=0.00001) 
threshold = mu+2*stdev 
library(evir) 
 
// Plotting Empirical vs. normal distribution (figure 5.3 en 5.4) 
par(mfrow=c(2,2), mgp = c(2,0.5,0), cex.lab = 0.8, cex.axis = 0.6, cex.main = 1, cex.sub = 0.8, 
font.lab=3) 
hist(xloginv[,1], xlab = "Histogram of daily losses",ylab="",main="", col = "grey", freq = 
FALSE,ylim = c(0, 110)) 
lines(u,dnorm(u,mu,stdev), col = rgb(0.4,0.4,0.6)) 
hist(xloginv[,1], xlab = "Histogram of daily losses",ylab="",main="", col = "grey", freq = TRUE, , 
ylim=c(0,5),xlim=c(threshold,0.040)) 
lines(u,dnorm(u,mu,stdev), col = rgb(0.4,0.4,0.6)) 
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qqnorm(xloginv[,1], col = rgb(0.4,0.4,0.6)) 
meplot(xloginv[,1], col = rgb(0.4,0.4,0.6)) 
 
 
// Block Maxima Method 
// Estimating Parameters of GEV 
x1 = gev(xloginv[,1]) 
x5 = gev(xloginv[,1],block = 5) 
x21 = gev(xloginv[,1],block = 21) 
x63 = gev(xloginv[,1],block = 63) 
x125 = gev(xloginv[,1],block = 125) 
x250 = gev(xloginv[,1],block = 250) 
plot(x1, col = "grey") 
plot(x5, col = "grey") 
plot(x21, col = "grey") 
plot(x63, col = "grey") 
plot(x125, col = "grey") 
plot(x250, col = "grey") 
 
// Table 5.1 
xi1 = x1$par.ests[1] 
xi5 = x5$par.ests[1] 
xi21 = x21$par.ests[1] 
xi63 = x63$par.ests[1] 
xi125 = x125$par.ests[1] 
xi250 = x250$par.ests[1] 
sigma1 = x1$par.ests[2] 
sigma5 = x5$par.ests[2] 
sigma21 = x21$par.ests[2] 
sigma63 = x63$par.ests[2] 
sigma125 = x125$par.ests[2] 
sigma250 = x250$par.ests[2] 
mu1 = x1$par.ests[3] 
mu5 = x5$par.ests[3] 
mu21 = x21$par.ests[3] 
mu63 = x63$par.ests[3] 
mu125 = x125$par.ests[3] 
mu250 = x250$par.ests[3] 
sexi1 = x1$par.ses[1] 
sexi5 = x5$par.ses[1] 
sexi21 = x21$par.ses[1] 
sexi63 = x63$par.ses[1] 
sexi125 = x125$par.ses[1] 
sexi250 = x250$par.ses[1] 
sesigma1 = x1$par.ses[2] 
sesigma5 = x5$par.ses[2] 
sesigma21 = x21$par.ses[2] 
sesigma63 = x63$par.ses[2] 
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sesigma125 = x125$par.ses[2] 
sesigma250 = x250$par.ses[2] 
semu1 = x1$par.ses[3] 
semu5 = x5$par.ses[3] 
semu21 = x21$par.ses[3] 
semu63 = x63$par.ses[3] 
semu125 = x125$par.ses[3] 
semu250 = x250$par.ses[3] 
 
// Assessing ‘Goodness of Fit’  
// Figure 5.5 
par(mfrow=c(1,2), mgp = c(2,0.5,0), cex.lab = 0.8, cex.axis = 0.6, cex.main = 0.1, cex.sub = 0.8, 
font.lab=3) 
hist(xloginv[,1], xlab = "Histogram of daily losses",ylab="",main="", col = "grey", freq = FALSE, 
ylim=c(0,120)) 
lines(u,dgev(u,xi1,sigma1,mu1),col= rgb(0.7,0.7,0.8)) 
lines(u,dgev(u,xi5,sigma5,mu5),col= rgb(0.4,0.4,0.6)) 
lines(u,dgev(u,xi21,sigma21,mu21),col= rgb(0.29,0.29,0.44)) 
lines(u,dgev(u,xi63,sigma63,mu63),col= rgb(0.2,0.2,0.6)) 
lines(u,dgev(u,xi125,sigma125,mu125),col= rgb(0.15,0.15,0.23)) 
lines(u,dgev(u,xi250,sigma250,mu250),col= rgb(0.0,0.0,0.4)) 
hist(xloginv[,1], xlab = "Histogram of daily losses",ylab="",main="", col = "grey", freq = FALSE, 
ylim=c(0,2),xlim=c(threshold,0.040)) 
lines(u,dgev(u,xi1,sigma1,mu1),col= rgb(0.7,0.7,0.8)) 
lines(u,dgev(u,xi5,sigma5,mu5),col= rgb(0.4,0.4,0.6)) 
lines(u,dgev(u,xi21,sigma21,mu21),col= rgb(0.29,0.29,0.44)) 
lines(u,dgev(u,xi63,sigma63,mu63),col= rgb(0.2,0.2,0.6)) 
lines(u,dgev(u,xi125,sigma125,mu125),col= rgb(0.15,0.15,0.23)) 
lines(u,dgev(u,xi250,sigma250,mu250),col= rgb(0.0,0.0,0.4)) 
 
// Determining the Return Level 
library(fExtremes) 
fit = gevFit(xloginv[,1], block = 5, type = "mle", gumbel = FALSE) 
 
// Table 5.2 
gevrlevelPlot(fit, k.block = 4, main = "S&P 500: Return Levels") 
gevrlevelPlot(fit, k.block = 13, main = "S&P 500: Return Levels") 
gevrlevelPlot(fit, k.block = 26, main = "S&P 500: Return Levels") 
gevrlevelPlot(fit, k.block = 52, main = "S&P 500: Return Levels") 
 
 
// POT Method 
library(evir) 
 
// Figure 5.6 
par(mfrow=c(1,2), mgp = c(2,0.5,0), cex.lab = 0.8, cex.axis = 0.6, cex.main = 0.1, cex.sub = 0.8, 
font.lab=3) 
meplot(xloginv[,1], col="grey", xlim=c(0.005,0.012),ylim=c(0,0.005)) 
hill(xloginv[,1],start=15,end=125) 
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// Determining the threshold 
t1 = findthresh(xloginv[,1],70) 
t2 = findthresh(xloginv[,1],98) 
t3 = findthresh(xloginv[,1],124) 
 
// Parameter Estimation for GPD 
library(fExtremes) 
 
// Table 5.3 
fit1 = gpdFit(xloginv[,1], nextremes = 70, type = "mle") 
potxi1 = fit1$par.ests[1] 
potbeta1 = fit1$par.ests[2] 
potsexi1 = fit1$par.ses[1] 
potsebeta1 = fit1$par.ses[2] 
fit2 = gpdFit(xloginv[,1], nextremes = 98, type = "mle") 
potxi2 = fit2$par.ests[1] 
potbeta2 = fit2$par.ests[2] 
potsexi2 = fit2$par.ses[1] 
potsebeta2 = fit2$par.ses[2] 
fit3 = gpdFit(xloginv[,1], nextremes = 124, type = "mle") 
potxi3 = fit3$par.ests[1] 
potbeta3 = fit3$par.ests[2] 
potsexi3 = fit3$par.ses[1] 
potsebeta3 = fit3$par.ses[2] 
 
// Assessing ‘Goodness of Fit’  
// Figure 5.7 
par(mfrow=c(1,2), mgp = c(2,0.5,0), cex.lab = 0.8, cex.axis = 0.6, cex.main = 0.1, cex.sub = 0.8, 
font.lab=3) 
hist(xloginv[,1], xlab = "Histogram of daily losses",ylab="",main="", col = "grey", freq = FALSE, 
ylim=c(0,2),xlim=c(threshold,0.040)) 
lines(u,dgpd(u,xi=potxi1,beta=potbeta1),col= rgb(0.7,0.7,0.8)) 
lines(u, dgpd(u,xi=potxi2,beta=potbeta2), col= rgb(0.29,0.29,0.44)) 
lines(u,dgpd(u,xi = potxi3, beta=potbeta3),col= rgb(0.0,0.0,0.4)) 
hist(xloginv[,1], xlab = "Histogram of daily losses",ylab="",main="", col = "grey", freq = FALSE, 
ylim=c(0,0.05),xlim=c(threshold,0.040)) 
lines(u,dgpd(u,xi=potxi1,beta=potbeta1),col= rgb(0.7,0.7,0.8)) 
lines(u, dgpd(u,xi=potxi2,beta=potbeta2), col= rgb(0.29,0.29,0.44)) 
lines(u,dgpd(u,xi = potxi3, beta=potbeta3),col= rgb(0.0,0.0,0.4)) 
 
// Determining VaR and ES 
library(evir) 
distr = gpd(xloginv[,1], threshold = t3, method = "ml") 
plotdistr = plot(distr) 
 
// Table 5.4 
gpd.q(plotdistr, 0.925, ci.type = "likelihood", ci.p = 0.95, like.num = 50) 
gpd.q(plotdistr, 0.95, ci.type = "likelihood", ci.p = 0.95, like.num = 50) 
gpd.q(plotdistr, 0.975, ci.type = "likelihood", ci.p = 0.95, like.num = 50) 
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gpd.q(plotdistr, 0.99, ci.type = "likelihood", ci.p = 0.95, like.num = 50) 
gpd.q(plotdistr, 0.999, ci.type = "likelihood", ci.p = 0.95, like.num = 50) 
gpd.q(plotdistr, 0.9999, ci.type = "likelihood", ci.p = 0.95, like.num = 50) 
 
gpd.sfall(plotdistr, 0.925, ci.p = 0.95, like.num = 50) 
gpd.sfall(plotdistr, 0.95, ci.p = 0.95, like.num = 50) 
gpd.sfall(plotdistr, 0.975, ci.p = 0.95, like.num = 50) 
gpd.sfall(plotdistr, 0.99, ci.p = 0.95, like.num = 50) 
gpd.sfall(plotdistr, 0.999, ci.p = 0.95, like.num = 50) 
gpd.sfall(plotdistr, 0.9999, ci.p = 0.95, like.num = 50) 
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Appendix B.  QQ plots for Residuals 

Daily Returns Weekly Returns 

  

Monthly Returns Quarterly Returns 
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Returns per Semester Yearly Returns 

  

 


