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Abstract

Nowadays, travel time predictions are very important to plan when, where and how to travel. In
this study we develop a travel-time prediction model using the theory of Markov Decision Processes
(MDP). We describe two reinforcement learning methods which can be used for solving the MDP
model: Dynamic Programming and Temporal-Difference learning. Both methods are applicable in
real-time and still work when input data is unreliable or missing.

In contrast with recent studies the methods developed in this study react automatically on changing
environments, i.e. incidents, work zones, and adverse weather conditions. Hence, the methods are
valid in all possible traffic conditions. Additionally, the methods used in this study do not only
give a route-travel-time estimation but also provide a direction in which to travel.

To validate the methods developed, we used a dataset containing vehicle-specific information about
the A10, the ring road around Amsterdam in the Netherlands. However, the same methods could
be applied to other freeway segments if appropriate speed data is available. The results of our
study were quite in line with our expectations.
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Preface

This thesis is part of acquiring the Masters degree in Business Mathematics and Informatics.
Business Mathematics and Informatics is a multidisciplinary program, aimed at business processes
optimization by applying a combination of methods based upon mathematics, computational intel-
ligence and business management. These three disciplines will also play a central role throughout
this thesis.

The subject of this study is travel-time predictions. Travel-time predictions can be a vital tool for
companies for planning when, where and how to travel. However, not only the business aspect,
but also the mathematical and computer science aspect of Business Mathematics and Informatics
are present in this thesis. The purpose of present study is to develop a real-time travel time
prediction method using Markov Decision Processes (MDPs). We will give a basic introduction
to the mathematical background of these processes and we will describe some methods which
can be used solve the developed MDP model. Eventually, we made a simulation program to
visualize the results of the solution methods to the model described applied on a real dataset.
This dataset contains vehicle specific information from the A10, the ring road around Amsterdam,
and is collected by Rijkswaterstaat, a part of the Dutch Ministry of Transport, Public Works and
Water Management. I would like to thank ir. Henk Taale from Rijkswaterstaat for putting this
dataset at my disposal.

After reading this thesis, one should be able to formulate an answer to the following questions:
”What are Markov Decision Processes?”, ”How can Markov Decision Processes be applied to real-
life situations?” and ”How can we find an optimal solution to a real-life problem using MDPs?”.

Finally, I would like to thank my supervisor Dennis Roubos, MSc for his help and support and for
acquainting me with the subject of Markov Decision Processes.

Cindy de Groot
Weesp, 2009
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Introduction

In the past, traffic signs represented the length of congestion. Based on this information a decision
about the direction to take has to be made. This information, however, is not very useful. The
actual travel time by congestion depends on the type of congestion, cause of congestion and the time
of the day (week, month or year). One can easily imagine the difference between two kilometers
stationary traffic and four kilometers slow moving traffic. It still can be much faster to take
the direction with the congestion over a length of four kilometers. Additionally, the cause of a
congestion and time of the day may influence the travel time. For example, most roadwork will be
done during the night or in the weekends, while congestions because of open bridges or waiting for
a railway crossing mostly happen during the day.

Nowadays, we display travel time prediction (in minutes) on the traffic signs. Travel time predic-
tions are very important to plan when, where and how to travel. To be useful in practice, the
models used for predicting travel times should be fast and applicable in real-time. Furthermore,
the results of the predictions should be accurate and valid in all possible traffic conditions. Finally,
the models have to work when input data is missing.

Because of the wide interest of travel time predictions in our society, this subject has been studied
extensively in recent years. Travel time can be predicted from historical data through analysing
limited traffic information from certain fields. Data acquired through analysis can then be used,
applying varying techniques; e.g, Fuzzy theory, Artificial Intelligence, statistics and mathematics;
to develop travel-time prediction models. Traffic-time prediction models which are most commonly
used are time series approaches (Nihan, 1980 [17]; Lee et al., 1999 [19]), linear regression (Zhang,
2003 [25]), nearest neighbour techniques (Clark, 2003 [5]), neural networks (Lint et al., 2005 [13];
Hinsbergen et al., 2009 [7]) and so-called committee or ensemble approaches, in which multiple
model-predictions are combined (Zheng, 2006 [23]). The last two approaches, neural networks and
committees have shown a high level of accuracy for prediction of traffic conditions (Hinsbergen,
2007 [6]). Little time, however, has been devoted to Markov Decision Processes (MDPs) to develop
a real-time travel time prediction model. Contrary to neural networks and committees, which
are supervised learning methods, the MDP method is an example of an reinforcement learning
method. Reinforcement learning tries to find the best solution to a problem facing a learning agent
interacting with its environment to achieve a goal, while supervised learning learns from examples
provided by a knowledgeable external supervisor.

The purpose of the present study is to develop a real-time travel time prediction method using
Markov Decision Processes. Chapter 1 starts with an theoretical explanation of the mathematical
models and methods underlying travel time predictions. Chapter 2 discusses the impact of travel
information on travel behaviour. Chapter 3 applies the theory behind the MDPs of the first chapter
to develop a model. The model development also includes a description of the collected data and
also an explanation of several methods to find the solution of a MDP. Chapter 4 shows the result
analysis. We finish this thesis with a discussion, including some comments about further research.
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Chapter 1

Mathematical Models and
Methods

Different methods are used to predict real-time travel times.

• Supervised learning : learning from examples provided by a knowledgeable external supervisor.

• Reinforcement learning : finding the best solution to a real problem facing a learning agent
interacting with its environment to achieve a goal.

To help understand the principles of the different methods and how they are used for predict-
ing real-time travel times the next sections will give an brief explanation. Section 1.1 discusses
Neural Networks and committee methods as examples of supervised learning methods for making
predictions. Section 1.2 explains the theory behind Markov Decision Processes: a framework for
decision-making where outcomes are (partly) random and can be controlled by an agent.

1.1 Supervised learning

Supervised learning is a machine learning technique for learning a function from training data. The
training data consist of pairs of input objects and desired outputs. The input typically consists of
vectors. The output of the function can be a continuous value, called regression, or can predict a
class label of the input object, called classification. The task of the supervised learner is to predict
the value of the function for any valid input object after having seen a number of training examples
(i.e., pairs of input and target output). Supervised learning is the kind of learning studied in most
current research in machine learning, statistical pattern recognition and neural networks.

1.1.1 Neural Networks

Currently, the method most commonly used for travel time prediction are neural networks. In
the application several of potential networks will be developed of which the best, based on the
performance of the selected networks on an independent validation set, will be selected to make
predictions. A neural network typically exists of three layers:

• The input layer takes the input signals and delivers these inputs to every neuron in the next
layer.

• The hidden layer represents the non-linear function that specifies the states’ behaviour.

• The output layer takes the hidden layers inputs and these are added to each output neuron.
These outputs are the outputs of the neural network.

1



2 CHAPTER 1. MATHEMATICAL MODELS AND METHODS

Figure 1.1. A neural network with d input elements, one hidden layer with M hidden nodes and c
outputs, where the biases are represented as an extra node.

Figure 1.1 shows a graphical representation of a neural network. The input layer consists of d
input elements, the hidden layer of M hidden nodes and the output layer of c outputs.

An output yk, k = (1, ..., c), can be mathematically described by the following equations:

yk(x) = f2

M+1∑
j=1

wkjzj

 and zj = f1

(
d+1∑
i=1

wjixi

)
, (1.1)

where wkj and wji are called weights which are adjustable and whose values need to be estimated
from data. The bias weights (biases) are represented by an extra node in a layer to the left (the
grey nodes in Figure 1.1) which have a constant output of 1, so xd+1 = 1 and zM+1 = 1. The
functions f1 and f2 are called activation functions and apply transformations to the weighted sum
of the output of the units to the left. The weights ~w form a weight vector with a total of W weights
(parameters). The input vector ~xn ≡ ( ~x1

n, ..., ~xd
n) is drawn from a data set X ≡

(
~x1, ..., ~xN

)
of

N data points. The output values of the network ~y (~xn) ≡ (y1 (~xn) , ..., yc (~xn)) can be compared
to the target values ~tn ≡ (tn1 , ..., t

n
c ), drawn from a target data set D ≡ (tn1 , ..., t

n
c ).

The values of the weight vector ~w of the network need to be learned from data, which is usually
referred to as neural network training. Typically this learning mechanism is based on a maximum
likelihood approach, equivalent to the minimization of an error function such as the sum of squared
errors:

ED =
1
2

N∑
n=1

(
y (~xn; ~w)− ~tn

)2
(1.2)

Preferably, a regularisation term Ew is added to Equation (1.2) to avoid overfitting of the networks
to the training data. A commonly used regulariser is the partitioned weight decay error term which
has empirically been found by Krogh and Herts (1995, [2]) to improve network generalization. To
build this regulariser define V groups of weights wv, for example one for each layer and one for the
biases. Then define the regulariser by:

EW =
V∑
v=1

αvEW,v

EW,v =
1
2

∑
w∈wv

w2.

(1.3)

The regularized performance (error) function then becomes:

E(w) = βED + αEW (1.4)
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The parameters α and β regulate to which extend the output error, (first term in Equation (1.3))
and the size of the weights (second term) contribute to the performance function. The minimum
of this performance function can be found by back-propagation [16] or one of its many variations.

1.1.2 State-space neural network

Many recent studies have used a special neural network, called a state-space neural network (SSNN).
In computer science, a state space is a description of a configuration of discrete states used as a
simple model of machines. Formally, it can be defined as a tuple (N,A, I,O) where:

• N is a set of states;

• A is a set of arcs connecting the states;

• I is a nonempty subset of N that contains input states;

• O is a nonempty subset of N that contains the output states.

This special recurrent neural network is composed of a number of different layers, as can be seen
from Figure 1.2. Therefore, this special type of neural network adds two extra layers to the network
described above, one hidden layer and a state layer. Each neuron in the state layer represents one
state. The output value is the value of the state.

Compared to simple neural networks SSNN have two main advantages. First, being a neural model,
it has the flexibility to represent any non-linear function. Second, being a state-space model, the
number of outside connections is minimal. The inputs will be the causes that drive the system
operation and the outputs will be the effects observed on the system. Parallel inputs and outputs,
and therefore causes and effects, are established between the neural model and the physical system.
As has been proved by Hornik et al. (1989, [14]), every non-linear function can be represented by
a neural network containing a single hidden layer composed of neurons whose transfer function is
bounded. Thus, two neural networks can be concatenated; one of them representing the function
that gives the state behaviour and the other representing the function that relates outputs to states.
The mathematical form of such a model is (Zamarreno et al., 1998 [11]):

x̂(t+ 1) = Whf1
(
W rx̂(t) +W i~u(t) +Bh

)
ŷ(t) = W 0f2

(
Wh2 x̂(t) +Bh2

) (1.5)

where: W i,Wh1 ,W r,Wh2 ,W 0 are matrices with dimensions h1 × n, s × h1, h1 × s, h2 × s and
m×h2, respectively; Bh1 and Bh2 are two vectors with h1 and h2 elements respectively; and f1 and
f2 are two functions that are applied element-wise to a vector or a matrix. Like with general neural
networks, a back-propagation method is used to find the optimal set of weights for a state-space
neural network.

Figure 1.2. State-space neural network.



4 CHAPTER 1. MATHEMATICAL MODELS AND METHODS

1.1.3 Bayesian trained neural network

However, instead of using maximum likelihood techniques, many researchers (Lint et al., 2005 [13],
Hinsbergen et al., 2009 [7]; Zheng et al.; 2006 [23]) train neural networks from a Bayesian inference
perspective (Hinsbergen et al., 2009 [7]). This has some major advantages in the application of
the neural networks. First, error bars can be assigned to the predictions of a network. Second,
an automatic procedure for weighing the two error parts ED and EW of the error function can be
derived; the values of these weights can be inferred simultaneously from the training data without
the need of a separate validation data set. Since all data is used for training, this method will
result in better models. Third, the evidence measure merging from the Bayesian analysis can be
used as an early stopping criterion in the training procedure. Finally, different networks can be
selected and combined in a committee approach using this evidence measure.

From a Bayesian inference perspective, the parameters in a neural network should not be conceived
as single values, but as a distribution of values representing various degrees of belief. The goal is
then to find the posterior probability distribution for the weights after observing the dataset D,
denoted by p(w|D), which can be found using Bayes’ theorem:

p(w|D) =
p(D|w)p(w)

p(D)
(1.6)

where p(D) is the normalization factor, p(D|w) represents a noise model on the target data and
corresponds to the likelihood function, and p(w) is the prior probability of the weights (Bishop,
1995 [3]). Although many forms of the prior and the likelihood function are possible, often Gaussian
forms are chosen to simplify further analyses:

p(w) =
1

ZW (α)
exp

(
−
∑
v

αvEW,v

)

p(D|w) =
1

ZD(β)
exp

(
−β

2

N∑
n−1

(y (xn;w)− tn)2
) (1.7)

where ZW =
∫
exp (−

∑
v αvEw,v) dw and ZD =

∫
exp (−βED) dD are normalizing constants and

α = (α1, ..., αv) and β are called hyper parameters as they control the distributions of other
parameters, the weights w of the network. The prior has zero mean and variances 1/αv for every
group of weights, the likelihood function has zero mean and variance 1/β. It can be seen that the
exponents in Equation (1.7) take the form of the error functions EW and ED already introduced
in Equation (1.2). Substituting Equation (1.7) in (1.6) results in an expression for the posterior:

p(w|D) =
1

ZS(α, β)
exp (−E(w)) (1.8)

E(w) = βED +
∑
v

αvEW,v (1.9)

where ZS(α, β) =
∫

(−E(w)) dw is a normalizing constant. The maximum of the posterior p(w|D),
which is equivalent to minimizing Equation (1.9) can be found by back-propagation techniques
again.

Although the methods described above might intuitively make sense, there are a number of serious
drawbacks to the Neural Network approach. In the first place, by selecting the best network out of
the candidate networks, a lot of effort involved in training networks is wasted. More seriously, the
fact that one neural network model outperforms all other models on one particular validation data
set does not guarantee that this neural network model indeed contains the ”optimal” weights and
structure, nor that this model has the best generalization capabilities. This completely depends
on the statistical properties of the training and validation set (e.g., the amount of noise in the
data), the complexity of the problem at hand and most importantly on the degree on which the
training and validation set are representative for the true underlying process which is modeled.
The network performing best on the validation set may therefore not be the one with the best
performance on new data. These drawbacks can be overcome by combining all (or a representative
selection of) trained neural network models in a committee.
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1.1.4 A committee of neural networks

In a committee, the predictions of multiple models are combined. Bishop and Thodberg ([3], [22])
have proved that committees can lead to improved generalization. How to build a committee?
First, construct many different networks with different numbers of hidden units and with different
initial weight values. Second, train the network recursively with one of the back-propagation
methods. For each of these models draw initial weight values for the hyper parameters, α and β,
from their priors. These can be approximated by the same Bayesian inference framework that is
used to approximate the posterior distributions of the weights. The posterior distribution of α and
β given the data D is given by:

p(α, β|D) =
p(D|α, β)p(α, β)

p(D)
(1.10)

From previous research (among others, Bishop [3]) we obtained that this function is maximized
when α and β have the following values:

αv =
γv

2EW,v

β =
N − γ
2ED

,

(1.11)

where γ =
∑
v γv is the so-called number of well-determined parameters, which are given by:

γv =
∑

j

{
ηj

ηj + αv
(V T IvV )jj

}
, (1.12)

where ηj is the jth eigenvalue of the A, V is the matrix of eigenvectors of A and Iv is a matrix with
all elements zero except for the elements Iii = 1 where i corresponds to a weight from a group v.
A is the Hessian given by

A = ∇∇E(w)− β∇∇ED +
∑
v

αvIv. (1.13)

In this summation negative eigenvalues are omitted (Thodberg, 1993 [22]). In practice, the optimal
values for α and β as well as the optimal weight vector ~w need to be found simultaneously. A simple
approach to do this is to use a standard iterative training algorithm, use the scaled conjugate
gradient algorithm described by Møller [15], for example. Re-estimate values for α and β using
Equations (1.11) and (1.12). When do we have to stop the iteration? As stopping criterion we can
use evidence. When we consider a certain neural network i with a set of assumptions Hi, such as
the number of layers and the number of hidden units, then the evidence of a network can be found
using (Hinsbergen, 2009 [7])

p(D|Hi) =
∫ ∫

p(D|α, β,Hi)p(α, β|Hi)dαdβ. (1.14)

The iteration can be stopped once the increase in evidence falls below a certain threshold value
ς. Third, after all networks are trained, choose a selection of the better networks on the basis of
their final evidences and construct a generalized committee given by a weighted combination of
predictions of its L members using (Perrone, 1994 [18])

yGEN (x) =
L∑
i=1

qiyi(x), (1.15)

where different types of weights qi are possible. Finally, combine the error bars of the selected net-
works and draw 95% confidence intervals by adding and substracting twice the standard deviation
from the committee predictions. Error bars are used on graphs to indicate the error in a reported
measurement.

The methods described above have proved to perform accurate results for travel time prediction
in practice. However, in this investigation we will introduce another kind of models to solve the
real-time prediction problem.
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1.2 Reinforcement learning

Reinforcement learning is a method used to find the best solution to a real problem facing a
learning agent interacting with its environment to achieve a goal. The most important feature dis-
tinguishing reinforcement learning from other types of learning is that it uses training information
that evaluates the actions taken rather than instructs by giving correct actions. As a result the
challenge of making a trade-off between exploration and exploitation arises. To obtain a lot of
reward, a reinforcement learning agent must prefer actions that it has tried in the past and found
to be effective in producing reward. But to discover such actions, it has to try actions that is has
not selected before. The agent has to exploit what it already knows in order to obtain reward,
but it also has to explore to make better action selections in the future. Another key factor of
reinforcement learning is that is explicitly considers the whole problem, which is in contrast with
many approaches that consider subproblems without addressing how they might fit into a larger
picture.

Beyond the agent and the environment, one can identify four main subelements of a reinforcement
learning system:

• The policy is the core of a reinforcement learning agent in the sense that it alone is sufficient
to determine behavior.

• A reward function defines the goal in a reinforcement learning problem. Roughly speaking,
it maps each perceived state (or state-action pair) of the environment to a single number, a
reward, indicating the intrinsic desirability of that state.

• A value function specifies what is good in the long run. Roughly speaking, the value of
a state is the total amount of reward an agent can expect to accumulate over the future,
starting from that state.

• A model mimics the behaviour of the environment. For example, given a state and action,
the model might predict the resulting next state and next reward.

In general, policies and reward functions may be stochastic. A reinforcement learning agent’s sole
objective is to maximize the total reward it receives in the long run. Maximizing the total long
run reward, means in our problem space: minimizing the total predicted travel time. This is a
dynamic decision problem, the future actions and rewards depend on decisions made in the past.
Randomness is often involved in the evolution of the problem, hence the name stochastic dynamic
programming or Markov decision theory. The latter because it emphasizes the connection with
Markov and semi-Markov chains and processes.

1.2.1 Markov Decision Process

A reinforcement learning task that satisfies the Markov property is called a Markov Decision
Process, or MDP. A stochastic process has the Markov property if the conditional probability
distribution of future states of the process, given the present state and a constant number of past
states, depends only upon the present state and not on the given states in the past, i.e., it is
conditionally independent of these older states. In other words, the evolution of a Markov process
from some point in time tn does not depend on the history but only on the current state Xn. It
can be seen as a memoryless property. In mathematical formulas this looks like:

Pr
{
Xtn = xn|Xt1 = x1, . . . , Xtn−1 = xn−1

}
= Pr(Xtn = xn|Xtn−1 = xn−1), (1.16)

for all t1 < . . . < tn.

In the case of real-time travel-time predictions the state and action spaces, denoted by X and
A(x), respectively, are finite. Therefore we use finite Markov Decision Processes. A particular
finite MDP is defined by its state and action sets and by the dynamics of the environment. The
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policy, π, is a mapping from each state and action to the probability π (x, a) of taking action a
when in state x. Given any state and action, x and a, the probabilities of each possible next state,
y, is

Paxy = p(x, a, y) = Pr {Xt+1 = y|Xt = x, at = a} (1.17)

These quantities are called transition probabilities. Similarly, given any current state and action,
x and a, together with any next state, y, the expected value of the reward is

Raxy = r(x, a, y) = E {rt+1|Xt = x, at = a,Xt+1 = y} (1.18)

Before we move on we will make the following three assumptions. Relaxing any of these is possible,
but usually leads to additional constraints or complications. Moreover, in practical situations all
these constraints are satisfied, but we have to check them (see Chapter 3) before we can apply this
method on the real-time travel time problem. Before formulating the assumptions, it is convenient
to define the notion of a path in a Markov chain.

Definition
A sequence of states z0, z1, . . . , zk−1, zk ∈ X with the property that p(z0, z1), . . . , p(zk−1, zk) > 0 is
called a path of length k.

Assumption 1
|X | <∞ and |A| <∞, where X is the state space and A is the action space.

Assumption 2
For every policy π, there is at least one state x ∈ X (that may depend on π), such that there is a
path from any state to x. If this is the case we call the chain unichain, state x is called recurrent.

Assumption 3
For every policy π, the greatest common divider of all paths from x to x is 1, for some recurrent
state x. If this is the case we call the chain aperiodic.

Define the probability matrix P as follows: Pxy = p(x, y) for some arbitrary action. Then, πt =
πt−1 × P , and it follows immediately that πt = π0 × P t. For this reason we call pt(x, y) = P txy
the t-step transition probabilities. The limiting distribution is given by limt→∞ πt = π∗, with the
distribution π∗ the unique solution of π∗ = π∗P independent of π0.

Writing out the matrix equation π∗ = π∗P gives π∗(x) =
∑
y∈X π∗(y)p(y, x). The right-hand side

is the probability that, starting from stationarity, the chain is in state x the next time unit. Note
that there are |X | equations, but as this system is dependent, there is no unique solution. The
solution is only unique if the equation

∑
x∈X π∗(x) = 1 is added.

1.2.1.1 Value functions

Almost all reinforcement learning algorithms are based on estimating value functions - functions
of states (or of state-action pairs) that estimate how good it is to perform a given action in a given
state. Informally, the value of a state x under a policy π, denoted Vπ(x), is the expected return
when starting in x and following π thereafter. For a MDP two value functions can be defined:

1. the state-value function for policy π, Vπ(x), defined as the expected return when starting in
x and following π thereafter.

Vπ(x) = Eπ

T−1∑
t=0

r(Xt) = Eπ

T−1∑
t=0

∑
y∈X

pt(x, y)r(y), (1.19)

where Eπ {·} denotes the total expected reward given that the agent follows policy π and
x0 = 0.
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Note that∑
x∈X

π∗(x)VT (x) =

∑
x∈X

π∗(x)
T−1∑
t=0

∑
y∈X

pt(x, y)r(y) =

T−1∑
t=0

∑
y∈X

∑
x∈X

π∗(x)pt(x, y)r(y) =

T−1∑
t=0

∑
y∈X

π∗(y)r(y) = gT,

(1.20)

where the average long run reward, g, is given by g =
∑
x∈X π∗(x)r(x).

2. the action-value function for policy π, Qπ(x, a) , defined as the expected return starting from
x, taking the action a, and thereafter following policy π.

Qπ(x, a) = Eπ

T−1∑
t=0

r(Xt, a) = Eπ

T−1∑
t=0

∑
y∈X

pt(x, a, y)r(y, a), (1.21)

The value functions can be estimated from experience with help of Monte Carlo methods [24],
which involve averaging over random samples of actual returns. For example, if an agent follows
policy π and maintains an average, for each state encountered, of the actual returns that have
followed that state, then the average will converge to the state’s value, Vπ(x), as the number of
times that state is encountered approaches infinity. If separate averages are kept for each action
taken in a state, then these averages will similarly converge to the action values, Qπ(x, a). If
there are very many states, then it may not be practical to keep separate averages for each state
individually. Instead, the agent would have to maintain Vπ and Qπ as parameterized functions
and adjust the parameters to better match the observed returns.

A fundamental property of value functions used throughout reinforcement learning and dynamic
programming (a method to solve reinforcement learning problems) is that they satisfy particular
recursive relationships. Let V(x) = limT→∞[VT (x)− gT ]. Then, V(x) is the total expected differ-
ence in reward between starting in x and starting in stationarity. For any policy π and any state x,
the two following consistency conditions hold between the value of x and the value of its possible
successor states y:

VT+1(x) = VT (x) +
∑
y∈X

πT (y)r(y), (1.22)

for π0 with π0(x) arbitrarily chosen. As πT → π∗

VT+1(x) = VT (x) + g + o(1), (1.23)

where o(1) means that this term disappears if t→∞. On the other hand, for VT+1 the following
recursive formula exists:

VT+1(x) = r(x) +
∑
y∈X

p(x, y)VT (y). (1.24)

Thus,

VT (x) + g + o(1) = r(x) +
∑
y∈X

p(x, y)VT (y). (1.25)
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Subtract gT from both sides, and take T →∞:

V(x) + g = r(x) +
∑
y∈X

p(x, y)V(y). (1.26)

This equation is called the Poisson or Bellman equation. This equation averages over all the
possibilities, weighing each by its probability of occurring. It states that the value of the start
state must equal the value of the expected next state, plus the reward expected along the way. The
value function Vπ∗ is the unique solution to its Poisson equation. Note that Equation (1.26) does
not have a unique solution. There are two possible solutions to this problem: either take V(0) = 0
for some reference state 0, or add the additional condition

∑
x∈X π∗(x)V(x) = 0. Only under

the latter condition, V has the interpretation as the total expected difference in reward between
starting in a state and starting in stationarity.

1.2.1.2 Optimal value functions

Solving a reinforcement task means, roughly, finding a policy that achieves a lot of reward over
the long run. For finite MDPs, we define an optimal policy in the following way. Value functions
define a partial ordering over policies. A policy π is defined to be better than or equal to a policy
π′ if its expected return is greater than or equal to that of π′ for all states. In other words, π ≥ π′
if and only if Vπ(x) ≥ Vπ′(s) for all x ∈ X . There is always at least one policy that is better than
or equal to all other policies. This is an optimal policy. Although there may be more than one, we
denote all the optimal policies by π∗. They share the same state-value function, called the optimal
state-value function, denoted by V∗, and defined as

Vπ
∗
(x) = max

π
Vπ(x), (1.27)

for all x ∈ X . Optimal policies also share the same optimal action-value function, denoted by Q∗,
and defined as

Qπ
∗
(x, a) = max

π
Qπ(x, a), (1.28)

for all x ∈ X and all a ∈ A(x). For the state-action pair (x,a) this function gives the expected
return for taking action a in state x and thereafter following an optimal policy. Thus, we can write
Q∗ in terms of V∗ as follows:

Qπ
∗
(x, a) = max

a∈A

r(x, a) +
∑
y∈X

p(x, a, y)Vπ
∗
(y)

 . (1.29)

Because V∗ is the value function for a policy, it must satisfy the self-consistency condition given by
the Bellman equation for state values, Equation (1.26). Because it is the optimal value function,
however, V∗’s consistency condition can be written in a special form without reference to any
specific policy. This is the Bellman equation for V∗, or the Bellman optimality equation. Intuitively,
the Bellman optimality equation expresses the fact that the value of a state under an optimal policy
must equal the expected return for the best action from that state:

r(x, π∗(x)) +
∑
y∈X

p(x, π∗(x), y)Vπ
∗
(y) = max

a∈A

r(x, a) +
∑
y∈X

p(x, a, y)Vπ(y)

 . (1.30)

At the same time, by the Poisson equation:

Vπ
∗
(x) + gπ

∗
= r(x, π∗(x)) +

∑
y∈X

p(x, π∗(x), y)Vπ
∗
(y). (1.31)
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Combining these two gives the Bellman optimality equation for V∗:

Vπ
∗
(x) + gπ

∗
= max

a∈A

r(x, a) +
∑
y∈X

p(x, a, y)Vπ
∗
(y)

 . (1.32)

The Bellman optimality equation for Q∗ is

Qπ
∗
(x, a) + gπ

∗
= max
a′∈A

r(x, a′) +
∑
y∈X

p(x, a′, y)Qπ(y, a′)

 . (1.33)

For finite MDPs, the Bellman optimality equation (1.32) has a unique solution independent of the
policy. The Bellman optimality equation is actually a system of equations, one for each state, so if
there are N states, then there are N equation in N unknowns. If the dynamics of the environment
are known (r(x, a) and p(x, a, y) for all x, y and a), then in principle one can solve this system of
equations for V∗ using any one of a variety of methods for solving systems of nonlinear equations.
This can, for example, be done by using Dynamic Programming. One can solve a related set of
equations for Q∗.
Once one has solved V∗, it is relatively easy to determine an optimal policy. For each state x, there
will be one or more actions at which the maximum is attained in the Bellman optimality equation.
Any policy that assigns nonzero probability only to these actions is an optimal policy. You can
think of this as a one-step search. If you have the optimal value function, V∗, then the actions
that appear best after a one-step search will be optimal actions. Another way of saying this is
any policy that is greedy with respect to the optimal value function V∗ is an optimal policy. By
means of V∗, the optimal expected long-term return is turned into a quantity that is locally and
immediately available for each state. Hence, a one-step-ahead search yields the long-term optimal
actions.

Having Q∗ makes choosing optimal actions still easier. With Q∗, the agent does not even have to
do a one-step-ahead search: for any state x, it can simply find any action that maximizes Q∗(x, a).
The action-value function effectively caches the results of all one-step-ahead searches. It provides
the optimal expected long-term return as a value that is locally and immediately available for each
state-action pair. Hence, at the cost of representing a function of state-action pairs, instead of
just of states, the optimal action-value function, when Q∗ is known, allows optimal actions to be
selected without having to know anything about possible successor states and their values, that is,
without having to know anything about the environment’s dynamics.

Explicitly solving the Bellman optimality equation provides one route to finding an optimal policy,
and thus to solve the reinforcement learning problem. However, this solution is not always directly
useful. It is akin to an exhaustive search, looking ahead at all possibilities, computing their
probabilities of occurrence and their desirabilities in terms of expected rewards. This solution
relies on at least three assumptions that have to be checked before we can use this method:

1. we accurately know the dynamics of the environment;

2. we have enough computational resources to complete the computation of the solution;

3. meet the Markov Property.

If the solution cannot be implemented exactly, there are many different decision-making methods
which can be viewed as ways of approximately solving the Bellman optimality equation. More in-
formation about this methods and Reinforcement learning in general can be found in Reinforcement
Learning: An Introduction written by R.S. Sutton and A.G. Barto [20].



Chapter 2

The Impact of Travel Information
on Travel Behaviour

This chapter discusses several factors which affect travel and traffic behaviour on a freeway. The
first section of this chapter, section 2.1, starts with an explanation of the structure of travel
processes, the following section, section 2.2 describes the effects of weather on the travel conditions.

2.1 Structure of travel processes

In general when people think about structure of travel processes, probably the first thoughts will be
about things to improve structure, to decrease traffic congestions. Traffic congestion occurs when
a volume of traffic generates demand for space greater than the available road capacity. There
are a number of specific circumstances which cause or aggravate congestion; most of them reduce
the capacity of a road at a given point or over a certain stretch of freeway. Congestion can also
be caused by weather, by the amount of slip roads or by people looking at a congestion on the
other side of the road. In short, congestions are the result of interaction between traffic supply
and demand. The demand consists of people traveling from A to B, the supply of the capacity of a
road. We will define the capacity as the maximum amount of traffic on a certain part of the road
per time unit. The relationship between traffic supply and demand is very complicated, there are
roughly three explanations:

1. The demand of traffic is largely dependent of the traffic capacity, or the quality of supply.
When the amount of traffic jams decreases, traffic demand increases.

2. The capacity of a traffic network decreases when traffic delays occur. The ”drive-off capacity”
of a lane, which indicates the maximum amount of traffic possible to drive off from standstill
per time unit, decreases compared to the situation before the delay occurred. Moreover, the
capacity of a road is not a constant parameter, but a changing outcome as a result of human
behaviour under a number of factors.

3. Several complex network-effects appear, which cause delays on roads with a low traffic de-
mand. For example, people change their route or choose another moment in time to travel.

For the description of traffic conditions in traffic networks we need models which can explain these
complexities. Roughly, these models exist of three components:

• A traffic-demand model : What is the expected amount of traffic between point of origin and
destination?

• A route-choice model : In which way are the available resources used by the traffic?

11
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• A flow model : What are the consequences of the route-choosing on the network? Where and
when do traffic jams arise?

All these models are influenced by the structure of travel processes, but as well by the effects of
weather, as described in the next section.

2.2 Effects of weather on the travel conditions

In this section we focus on the effect of weather on the expected travel conditions. Because a model
to describe traffic will be developed, the focus will be on the following question: How may weather
influences be converted into concrete parameters? With these parameters we can discount for the
effects of weather. But this is not as easy as we would like it to be, because every component
named above has a potential influence:

1. First, the weather influences traffic demand. When weather is very bad, demand will increase
on some roads but will decrease on others. Hanbali and Kuemmel investigated volume reduc-
tions due to winter storms, during their investigation they varied the intensity of snow fall,
time of the day, day of the week, and roadway type [8]. Overall, they found that reductions
ranged from 7% to 56% depending on the category of winter event. Hanbali and Kuem-
mel conclude that volume reductions increase with the total volume of snow, and volume
decreases are smaller during the peak travel periods and on weekdays than during off-peak
hours and on weekends [8]. Maze and collegues give an interesting overview of research on
the effects of weather on as well traffic demand as drive-off capacity [21]. They conclude,
depending on different types of traffic (e.g., work-trip, recreational trip) and the type of
weather (including visibility, wind and precipitation), that demand decreases almost 5% by
serious rain and they even found reductions ranging from 7% to 80% by moderate or se-
rious snowfalls. They also found that during snowstorms, commercial vehicles made up a
higher percentage of the traffic stream than their typical proportion during clear weather.
This indicated that although motorists where diverting trips, commercial vehicle operators
where much less likely to divert trips due to inclement conditions. In general, travel demand
reductions are partially dependent on the type of trip: recreational travelers are more likely
to postpone long-distance trips and commericial trips are least likely to be deferred. But the
more adverse the weather, the smaller the demand of traffic.

2. Next to the impact of weather conditions on traffic demand Maze et al. [21] also investigated
the impact on traffic safety. They found that during snow days, crashes increased and were
highly correlated with visibility and wind speed. During low visibility conditions and high
wind speeds, crash rate increased to 25 times the normal crash rate. What occurs during
winter storms is, that there are fewer vehicles on the road and those vehicles that remain are
much more likely to be in crash. As a result, the crash rate skyrockets. It is apparent that
snowy weather greatly increases crash frequency and crash rate, while crash severity tends
to be sightly lower.

3. Human choice-behaviour in terms of time to leave, route and way of travel depend on weather
conditions as well. When travelers do make a trip, the weather will tempt someone in taking
the car in stead of taking the bike for example. Not only that, the weather might influence
the time to leave (you expect to travel longer) or the route one chooses (think of taking a less
windy road). Unfortunately there is little literature available about explicit and quantitative
research on the effect of weather on this kind of choice-behaviour.

4. Furthermore, weather has a great impact on driving itself (speed, tracking distance, acceler-
ation) and therefore on road capacity. Weather changes behaviour and therefore the drive-off
capacity. The effects of weather conditions on speed-flow-occupancy relationships and ca-
pacities for example, have been examined in several studies (e.g., Ibrahim and Hall, 1994 [9];
Brilon and Ponzlet, 1996 [4]). These studies mainly described local effects. However, changes
in driving can have far-reaching consequences for the entire network. For example, as a result
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of heavy rainfall, the capacity on a part of the road can decrease with 15%. Which means
that congestions occur more often and on unusual locations. These congestions need more
time to solve and can result in problems on other areas. Therefore a reduction in capacity on
a local part of the road caused by a heavy rainfall can have a great impact on the expected
travel time on other parts of the network.

Not only bad weather influences travel conditions, sunny weather does as well. Take the traffic
jams which occur on the roads to the beach on beautiful summer day for example.

In short, traffic flow is a function of traffic speed and traffic density, the amount of vehicles per km
per lane. Freeway capacity is defined in Highway Capacity Manual 2000 as the ”maximum flow rate
that can be expected to be achieved repetitively at a single freeway location and at all locations with
similar roadway, traffic and control conditions without breakdown” [1]. The capacity of a freeway
segment (its maximum flow) is dependent on the speed of the traffic stream and the density. Under
inclement conditions, drivers moderate their speed and increase the headway between vehicles;
hence, weather impacts the capacity of a freeway segment. Because the weather conditions are
hard to predict, best travel-time predictions are based on real-time weather conditions.



14 CHAPTER 2. THE IMPACT OF TRAVEL INFORMATION ON TRAVEL BEHAVIOUR



Chapter 3

Model development and data
collection

In this chapter we will apply the theory of Markov Decision Processes on the travel time prediction
model in order to develop an appropriate method to predict real-time travel times. Section 3.1
presents a detailed description of the data collection. Sections 3.2 and 3.3 describe the application
of the developed Markov decision processes using field data for two different solution methods:
Dynamic Programming and Temporal Difference learning.

3.1 Data Collection

Model development requires the collecting of appropriate data. For this research we used a dataset
about the A10, the motorway around the city center of Amsterdam in the Netherlands. The total
length of the A10 is 32.4 kilometers. Unfortunately, the dataset, collected by ”Rijkswaterstaat”,
part of the Dutch Ministry of Transport, contains only vehicle specific information over a trajectory
of 5605 meters. Because we would compare links with congestion to links without congestion, we
made the assumption that the A10 has a length of only 5605 meters. A graphical representation
of the motorway A10 divided into links can be found in Figure 3.1. The travel time data were
collected on a period from 17 June 2005 until 12 July 2005.

The dataset contains 96 files of which each filename contains the hectometers pole number, the
direction (to the right (clockwise) or left) and a part number. For example, we take the file:
”21260L 1.log”. The five numbers in the front contain the hectometers pole number, hence the
roadside-detector station is located at hectometers pole number 21260. The vehicle specific infor-
mation in this file is about vehicles that are driving to the left (anti-clockwise) and this is the first
part of the data for this detector station. In total we use data from 24 different roadside-detector
stations (12 to the right and 12 to the left). The data for each detector station is split over 4
.log-files, which makes 96 files in total.
The text below shows an example of the vehicle specific information logged in the roadside-detector
station:

6/17/2005\14:09:43 Det: 3 Alarm t12:0 t13:0 t24:0 t04:0 speed: 0 km/h

6/17/2005\14:09:43 Det: 4 Normal t12:102 t13:-1 t24:136 t04:179 speed: 88 km/h

6/17/2005\14:09:44 Det: 4 Normal t12:89 t13:-1 t24:181 t04:259 speed: 101 km/h

6/17/2005\14:09:53 Det: 2 Normal t12:90 t13:-1 t24:207 t04:27 speed: 100 km/h

6/17/2005\14:09:54 Det: 4 Normal t12:99 t13:-1 t24:211 t04:36 speed: 90 km/h

6/17/2005\14:09:57 Det: 2 Normal t12:75 t13:-1 t24:148 t04:363 speed: 120 km/h

6/17/2005\14:09:58 Det: 4 Normal t12:101 t13:-1 t24:219 t04:408 speed: 89 km/h

6/17/2005\14:10:00 Det: 4 Normal t12:100 t13:-1 t24:213 t04:28 speed: 90 km/h

6/17/2005\14:10:01 Det: 4 Normal t12:96 t13:-1 t24:204 t04:125 speed: 93 km/h

6/17/2005\14:10:02 Det: 2 Normal t12:90 t13:-1 t24:192 t04:274 speed: 100 km/h

6/17/2005\14:10:03 Det: 1 Normal t12:78 t13:-1 t24:169 t04:276 speed: 115 km/h

6/17/2005\14:10:04 Det: 0 Occupancy t12:-1 t13:-1 t24:211 t04:-1 speed: 0 km/h

15
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Each line starts with a notification of the date(m/dd/yyyy): month/day/year; and time (hh:mm:ss):
hour:minute:second. After ”Det:” we find the lane number, where we start numbering at the cen-
tral reservation. Hence, when we have a 3-lane motorway, lane 0 is the left one, lane 1 is the middle
one and lane 2 the right one. Then we see a text which is called ’Message type’, this text gives
us different warnings, like ”Alarm, Normal and Occupancy”. Because we would like to exclude
unreliable data, we only used data with the type ”Normal”. The message type is followed by
several times (in milliseconds) between loops in the road surface and the calculated vehicle speed
in kilometers per hour (km/h), respectively.

Figure 3.2 shows the timing of ”Normal” vehicles. With help of this figure we can explain the
several t-values. The travel time, t12, is the time a vehicle needs to drive from loop 1 to loop 2,
calculated by t2 − t1. The occupancy of a loop, t13 or t24, can be calculated by t3 − t1 or t4 − t2.
Because we would not use the occupancy of a loop we do not need to specify one. The calculated
speed is based on the travel time, t12, over a distance of 2.5 meter as can be seen in the figure.Take
for example record 2: The time between arriving at the first and second loop is given by t12, which
equals 102 milliseconds, the distance covered is 2.5 meters, hence the calculated speed results in
24.51 m/s (88.2 km/hour).

3.2 Application of a MDP using Dynamic Programming

Section 1.2 developed a stochastic process called a Markov decision process. A stochastic process
is a random function which varies in time and/or space. Its future values can be predicted with
a certain amount of probability. This means that the process does not behave in a completely
unpredictable manner but is governed by a random mechanism. Because a Markov decision process
satisfies the Markov property, the value of the process at time t does only depend on the value
at time t-1. For a transportation system, if the demand does not fluctuate much for a given time
period, the system states would not depend on time but could be considered a random mechanism.
In these cases, a stochastic process analysis can be applied. A stochastic process X = {Xt, t ∈ T}
is a collection of random variables. That is, for each t in the index set T , Xt is a random variable.
Usually, t is interpret as time and Xt is the state of the process at time t. If the index set T is
countable, the process is called a discrete-time stochastic process, while if T is a non-countable
variable, it is called a continuous-time stochastic process. In other words, under the discrete time,
T ∈ {0, 1, 2, . . .} the change of state occurs at the end of a time unit, while under continuous time,
T ≥ 0, the change of state occurs at any point in time. This study considers how the system states
change at every time unit, so a discrete-time stochastic process is employed.

To apply a stochastic process for estimating travel time, relatively uniform demand time periods are
used in the analysis. These uniform demand distributions depend on the type of day (e.g., weekday,
weekend, holiday) and the time on the day (e.g., peak-hours, regular hours). The following tasks
were undertaken:

1. Define system states and actions considering the type of congestion for each link, think of
junctions, bridges, level crossings, et cetera.

2. Estimate travel time for each link for each type of congestion using field data.

3. Determining time periods to consider time of day and daily variation of travel time.

4. Estimate the transition matrices considering how the system changes from one interval to
another for each time period, considering transitions between non-congested and each type
of congested flow. Use Equation (1.17).

5. Calculate the expected value of the reward (1.18).

6. Use these rewards to obtain how good it is to perform a given action in a given state, that is
find the unique solution of the optimal value functions (1.32) and (1.33).

7. Determine the optimal policy π∗.
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Figure 3.1. Graphical overview of the motorway A10 divided into links.

Figure 3.2. Graphical overview of loop configuration and timing.
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As discussed in section 1.2, we can easily obtain optimal policies ones we have found the optimal
value functions, V ∗ or Q∗, which satisfy the bellman optimality equations:

V π
∗
(x) + gπ

∗
= max

a∈A

r(x, a) +
∑
y∈X

p(x, a, y)V π(y)

 . (3.1)

or

Qπ
∗
(x, a) + gπ

∗
= max
a′∈A

r(x, a′) +
∑
y∈X

p(x, a′, y)Qπ(y, a′)

 . (3.2)

for all x ∈ X and a ∈ A. As we shall see, Dynamic Programming (DP) algorithms are obtained by
turning Bellman equations such as these into assignments, that is, into update rules for improving
approximations of the desired value functions.

The following sections elaborate the steps mentioned above. The solution to a Markov Decision
Process can be expressed as a policy π, a function from states to actions. Note that once a Markov
decision process is combined with a policy in this way, this fixes the action for each state and the
resulting combination behaves like a Markov chain. Therefore, step 1 to 5 are similar to the steps
taken in previous research about travel time estimation using discrete time Markov chains (J. Yeon
et al., 2008 [10]).

3.2.1 Definition of states and variables

In the introduction of this section we already defined a stochastic process, X = {Xt, t ∈ T}. In
a stochastic process, a system has to be defined as a state which is analyzed using a measurable
characteristic. For the purposes of this research, the system is defined as a freeway route, and the
system state variable is Xt at time t (t = 0, 1, 2, . . .), which describes how the states of a given
freeway route change every time unit. Xt can be described as a set of xi(t), where xi(t) is a link
state variable of link i at time t. A link is defined as the segment between detectors on the freeway,
and a route is composed of several links. We have chosen the congestion type intervals based on
the maximum speed on each link i the state variable xi(t) can take the following values:

xi(t) =


0 if si(t) is higher than the maximum speed
1 if si(t) is between 75% and 100% of the maximum speed
2 if si(t) is between 50% and 75% of the maximum speed
3 if si(t) is between 25% and 50% of the maximum speed
4 if si(t) is lower than 25% of the maximum speed

 , (3.3)

where si(t) is the average speed of the vehicles in link i at time t.

The system state variable and link state variable can be expressed as follows:

X(t) =


x1(t)
x2(t)

...
xk(t)

 , (3.4)

where k is the total number of links. Thus for a freeway route with 5 links, a system state variable
(i.e., Xt at time t) can be [0,3,0,0,4], where links 2 and 5 are congested with congestion type 3 and
4, respectively.
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3.2.2 Link travel time estimation

The route travel time equals the sum of travel times on each link. To compute this, the link travel
time has to be estimated for types of traffic congestion conditions. Table 3.1 shows the travel time
notation for each link. The travel time under all conditions is considered as constant, contrary
to previous research (Van Lint and Van Zuylen, 2005 [12]) where the travel time under congested
conditions is estimated as a function of the flow rates and consequently of demands. Difference
can be declared by the state definition. We choose to define several types of congestion, based on
average speed in a time period, where in previous research each link could only be congested or
non-congested. Additionally, while in previous research time periods had to be determined, we do
not have to account for time of day and daily variations because our link travel time estimation
does not depend on demand. This is a huge advantage because demand does not only vary over
day, week and month, but is as well influenced unpredictable factors like the effects of weather as
described in Chapter 2.

3.2.3 Transition Matrix

This section discusses the development of the transition matrix, which considers whether each link
is congested or not. The transition is a change of state and the one-step transition matrix (e.g.,
n = 1, where n is the number of steps) shows the changing rate from state i to state j as shown
below:

P 1 =


p11 p12 p13 . . . p1m

p21 p22 p23 . . . p2m

...
...

...
...

...
pm1 pm2 pm3 . . . pmm

 , (3.5)

where a state is defined in Section 3.2.1, and pij represents the transition rate from state i to state
j, which can be expressed in conditional probability as follows:

pij = P {Xt+1 = j|Xt = i} for i, j = 1, 2, . . . ,m, and t = 1, 2, 3, . . . , (3.6)

where m is the total number of possible states.

Or in other words, given any state and action, s and a, the probabilities of each possible next state,
s’, is (1.17):

Paxy = Pr {Xt+1 = y|Xt = x, at = a} = p(x, a, y) (3.7)

For example, p12 in the transition matrix is computed as the total number of transitions from state
1 to state 2 divided by the total number of transitions from state 1 to all other states including
state 1. The system state variable at time t, Xt, includes the link state variable xi(t), thus, each
state (i.e., i, . . . , j, . . . ,m) of the transition matrix can be denoted as 1, 2, . . . ,m. Thus, the number
of total possible states (m) is equal to 5k, where k the number of links of the system and there are
5 congestion types, l. As the number of steps (t) (3.6) increases, the system becomes more stable:

Table 3.1. k: total number of links; i: link number; NTil: the travel time of link i (for i = 1, 2, · · · , k)
when the type of congestion on that link is l (l = 0, . . . , 4).
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πt+1 = πtP,

πt+1 = π0P
t,

(3.8)

if t→∞, then πt+1 = πt.

The probabilities when to which the system converges are called steady-state probabilities. These
probabilities equal the probabilities that a system will eventually arrive at state j whatever the
initial state is. Usually the initial state becomes less and less relevant, but this is not always the
case.

The solution to a Markov Decision Process can be expressed as a policy π, a function from states
to actions. Note that once a Markov decision process is combined with a policy in this way, this
fixes the action for each state and the resulting combination behaves like a Markov chain. The
Markov chain is unichain, which means that all states communicate with each other, and ergodic,
a process will finally return to the starting state within a certain time period, where there exists
a unique steady-state probability for all j. The steady-state probability for state j, Πj , is defined
as follows:

Πj = lim
n→∞

P
{
X(t=n) = j|X(t=0) = i

}
= lim
n→∞

P
{
X(t=n) = j

}
for i = 1, . . . ,m. (3.9)

these steady-state probabilities show the probabilities that the system eventually will be at each
defined state, and they can be used to calculate the expected travel time of a system for the time
period being analyzed.

3.2.4 The Reward

The final definition task is to estimate route travel time using the output from the previous four
tasks. Since the steady-state probabilities for all j can be obtained as described above, the travel
time of each link under each type of congestion can be estimated next. Then, the expected route
travel time can be estimated as follows:

T =
m∑
j=1

k∑
i=1

4∑
l=0

Πj

{
NTil × 1xi(t)=l

}
, (3.10)

where Πj is the steady-state probability for state j, xi(t) is the state variable of link i at time t,
NTil is the travel time with congestion type l of link i, m is the total number of possible states
and k is the total amount of links.

Multiply each steady-state probability for a given state by the travel times when the system is in
that state. For instance, if the system is in a state where all the links contain no congestion, then
the probability is multiplied by the state of a link times the sum of the travel times with congestion
type 0 for each link. Likewise, if the system is in a state that contains one link with congestion of
type j, the probability multiplied by the state of a link times the sum of the non-congested travel
times for all the non-congested links (congestion type 0) is added to the travel time of congestion
type j. Repeat for each steady-state probability. The result is the expected travel time for the
study route and for the given time period.

To find a solution of the MDP developed, we would like to maximize the reward. In our case this
is equal to minimize the total route travel time. Therefore the following reward function will be
used:

r(x, a, y) = E {rt+1|Xt = x, at = a,Xt+1 = y} = −T (3.11)

Since the problem is clearly defined for our situation now, we can start doing the real work.
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3.2.5 The Optimal Value Functions

3.2.5.1 Policy Evaluation

First we consider how to compute the state-value function Vπ for an arbitrary policy π. This is
called policy evaluation in DP literature. We also refer to it as the prediction problem. Recall from
Chapter 1 that, for all x ∈ X ,

Vπ(x) + g = r(x, a) +
∑
y∈X

p(x, a, y)Vπ(y). (3.12)

where the expectations are subscripted by π to indicate that they are conditional on π being
followed. The existence and uniqueness of Vπ are guaranteed as long as either V(0) = 0 for some
reference state 0 or the condition

∑
x∈X π∗(x)V(x) = 0 is added.

If the environment’s dynamics are completely known, then (3.12) is a system of |X | simultaneous
linear equation in |X | unknowns (the Vπ(x), x ∈ X ). In principle this solution is a straightforward,
if tedious, computation. For our purposes, iterative solution methods are most suitable. Consider
a sequence of approximate value functions V0,V1,V2, . . ., each mapping X to R. The initial ap-
proximation, V0, is chosen arbitrarily (except that the terminal state, if any, must be given value
0), and each successive approximation is obtained by using the Bellman equation for Vπ (1.26) as
an update rule:

VT+1(x) = r(x) +
∑
y∈X

p(x, y)VT (y). (3.13)

for all x ∈ X . If T → ∞, then is VT = Vπ a fixed point for this update rule because the Bellman
equation for Vπ assures us of equality in this case. Indeed, the sequence {VT } can be shown in
general to converge to Vπ as T → ∞ under the same conditions that guarantee the existence of
Vπ. This algorithm is called iterative policy evaluation. To produce each successive approximation,
VT+1 from VT , iterative policy evaluation applies the same operation to each state x: it replaces
the old value of x with a new value obtained from the old values of the successor rates of x, and
the expected immediate rewards, along all the one-step transitions possible under the policy being
evaluated. We call this kind of operation a full backup. Each iteration of iterative policy evaluation
backs up the value of every state once to produce the new approximate value function VT+1.

To write a sequential computer program to implement iterative policy evaluation, as given by
Equation (3.13), you would have to use two arrays, one for the old values, VT (x), and one for
the new values, VT+1(x). This way, the new values can be computed one by one from the old
values without the old values being changed. Of course it is easier to use one array and update
the values ”in place”, that is, with each new backed-up value immediately overwriting the old one.
Then, depending on the order in which the states are backed-up, sometimes new values are used
instead of old ones on the right-hand side of Equation (3.13). This slightly different algorithm also
converges to Vπ; in fact, it usually converges faster than the two-array version, as you might expect,
since it uses new data as soon as they are available. We think of the backups as being done in a
sweep through the state space. For the in-place algorithm, the order in which states are backed-up
during the sweep has a significant influence on the rate of convergence. We usually have the in-
place version in mind when we think of DP algorithms. Another implementation point concerns
the termination of the algorithm. Formally, iterative policy evaluation converges only in the limit,
but in practice it must be halted short of this. A typical stopping condition for iterative policy
evaluation is to test the quantity maxx∈X |VT+1(x)| − minx∈X |VT (x)| after each sweep and stop
when it is sufficiently small. Figure 3.3 gives a complete algorithm for iterative policy evaluation
with this stopping condition.
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3.2.5.2 Policy Improvement

Our reason for computing the value function for a policy is to help find better policies. Suppose
we have determined the value function Vπ for an arbitrary deterministic policy π. For some state
x we would like to know whether or not we should change the policy to deterministically choose
an action a 6= π(x). We know how good it is to follow the current policy from x - that is Vπ - but
would it be better or worse to change to the new policy? One way to answer this question is to
consider selecting action a in state x and thereafter following the existing policy, π. The value of
this way of behaving is

Qπ(x, a) = r(x, a) +
∑
y∈X

p(x, a, y)Vπ(y). (3.14)

The key criterion is whether this is greater than or less than Vπ. If it is greater - that is, if it is
better to select a once in x and thereafter follow π than it would be to follow π all the time - then
one would expect it to be better still to select a every time x is encountered, and that the new
policy would in fact be a better one overall. That this is true is a special case of a general result
called the policy improvement theorem.

Theorem 1. Let π and π′ be any pair of deterministic policies such that for all x ∈ X ,

Qπ (x, π′(x)) ≥ Vπ(x). (3.15)

Then the policy π′ must be as good as, or better than, π. That is, it must obtain greater or equal
expected return from all states x ∈ X :

Vπ
′
(x) ≥ Vπ(x). (3.16)

Moreover, if there is strict inequality of Equation (3.15) at any state, then there must be strict
inequality of Equation (3.16) at one or more states. This result applies in particular to the two
policies that we considered in the previous paragraph, an original deterministic policy, π′, that is
identical to π except that π′(x) = a 6= π(x). Obviously, Qπ (x, π′(x)) > Vπ(x) holds at all states
other than x. Thus, if Qπ(x, a) > Vπ(x), then the changed policy is indeed better than π.

The idea behind the proof of the policy improvement theorem is easy to understand. Starting from
Equation (3.15), we keep expanding the Qπ side using Equation (3.14) and reapplying Equation
(3.15) until we get Vπ′ :

Vπ(x) ≤ Qπ(x, π′(x))

= rt(x, a) +
∑
y∈X

p(x, a, y)Vπ(y)

≤ rt(x, a) +
∑
y∈X

p(x, a, y)Qπ(y, π′(y))

= rt(x, a) +
∑
y∈X

p(x, a, y)[rt+1(x, a) +
∑
y′∈X

p(x, a, y′)Vπ(y′)]

= rt(x, a) +
∑
y∈X

p(x, a, y)rt+1(x, a) +
∑
y′∈X

p(x, a, y′)2Vπ(y′)

≤ rt(x, a) +
∑
y∈X

p(x, a, y)rt+1(x, a) +
∑
y∈X

p(x, a, y)2rt+2(x, a) +
∑
y′′∈X

p(x, a, y′′)3Vπ(y′′)

...

≤ rt(x, a) +
∑
y∈X

p(x, a, y)rt+1(x, a) +
∑
y∈X

p(x, a, y)2rt+2(x, a) +
∑
y∈X

p(x, a, y)3rt+3 +
∑
y∈X

p(x, a, y)4rt+4 + . . .

= Vπ
′
(x)
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So far we have seen now, given a policy and its value function, we can easily evaluate a change in
the policy at a single state to a particular action. It is a natural extension to consider changes at
all states and to all possible actions, selecting at each state the action that appears best according
to Qπ(x, a). In other words, to consider the new greedy policy, π′, given by

π′(x, a) = arg max
a∈A
Qπ(x, a)

= arg max
a∈A

r(x, a) +
∑
y∈X

p(x, a, y)Vπ
∗
(y)

 .
(3.17)

where arg maxa denotes the value of a at which the expression that follows is maximized (with ties
broken arbitrarily). The greedy policy takes the action that looks best in the short term - after one
step of lookahead - according to Vπ. By construction the greedy policy meets the conditions of the
policy improvement theorem, so we know that it is as good as, or better than, the original policy.
The process of making a new policy that improves on an original policy, by making it greedy or
nearly greedy with respect to the value function of the original policy, is called policy improvement.

Suppose the new greedy policy, π′, is as good as, but not better than, the old policy π. Then
Vπ = Vπ′ , and from Equation (3.17) it follows that for all x ∈ X :

Vπ
′
(x) = max

a∈A

r(x, a) +
∑
y∈X

p(x, a, y)Vπ
∗
(y)

 . (3.18)

But this is the same as the Bellman optimality equation (3.1), and therefore, Vπ′ must be V∗, and
both π and π′ must be optimal policies. Policy improvement thus must give us a strictly better
policy except when the original policy is already optimal.

So far in this section we have considered the special case of deterministic policies. In the general
case, a stochastic policy π specifies probabilities, π∗(x, a), for taking each action, a, in each state, x.
We will not go through the details, but in fact all the ideas of this section extend easily to stochastic
policies. In particular, the policy improvement theorem carries through for the stochastic case as
stated, under the natural definition:

Qπ (x, π′(x)) =
∑
a

π∗(x, a)Qπ(x, a). (3.19)

In addition, if there are ties in policy improvement steps such as in Equation (3.17) - that is, if
there are several actions at which the maximum is achieved - then in the stochastic case we do not
need to select a single action from among them. Instead, each maximizing action can be given a
portion of the probability of being selected in the new greedy policy. Any apportioning scheme is
allowed as long as all sub maximal actions are given zero probability.

3.2.5.3 Policy Iteration

Once a policy, π, has been improved using Vπ to yield a better policy, π′, we can then compute
Vπ′ and improve it again to yield an even better policy, π′′. We can thus obtain a sequence of
monotonically improving policies and value functions:

π0
E→ Vπ0 I→ π1

E→ Vπ1 I→ π2
E→ . . .

I→ π∗
E→ V∗, (3.20)
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where E→ denotes a policy evaluation and I→ denotes a policy improvement. Each policy is guar-
anteed to be a strict improvement over the previous one (unless it is already optimal). Because a
finite MDP has only a finite number of policies, this process must converge to an optimal policy
and optimal value function in a finite number of iterations.

This way of finding an optimal policy is called policy iteration. A complete algorithm is given in
Figure 3.4. Note that each policy evaluation, itself an iterative computation, is started with the
value function of the previous policy. This typically results in a great increase in the speed of
convergence of policy evaluation (presumably because the value function changes little from one
policy to the next).

3.2.5.4 Value Iteration

One drawback to policy iteration is that each of its iterations involves policy evaluation, which
may itself be a protracted iterative computation requiring multiple sweeps through the state set. If
policy evaluation is done iteratively, then convergence exactly to Vπ occurs only in the limit. Must
we wait for exact convergence, or can we stop short of that? In fact, the policy evaluation step of
policy improvement can be truncated in several ways without losing the convergence guarantees
of policy iteration. One important special case is when policy evaluation is stopped after just one
sweep (one backup of each state). This algorithm is called value iteration. It can be written as a
particularly simple backup operation that combines the policy improvement and truncated policy
evaluation steps:

VT+1(x) = max
a∈A

r(x, a) +
∑
y∈X

p(x, a, y)VT (y)

 , (3.21)

for all x ∈ X . For arbitrary V0, the sequence {VT } can be shown to converge to V∗ under the same
conditions that guarantee the existence of V∗.
Another way of understanding value iteration is by reference to the Bellman optimality equation
(3.1). Note that value iteration is obtained simply by turning the Bellman optimality equation
into an update rule. Also note how the value iteration backup is identical to the policy evaluation
backup, Equation (3.13), except that it requires the maximum to be taken over all actions.

Finally, let us consider how value iteration terminates. Like policy evaluation, value iteration
formally requires an infinite number of iterations to converge exactly to V∗. In practice, we stop
once the value function changes by only a small amount in a sweep. Figure 3.5 gives a complete
iteration algorithm with this kind of termination condition.

Value iteration effectively combines, in each of its sweeps, one sweep of policy evaluation and
one sweep of policy improvement. Faster convergence is often achieved by interposing multiple
policy evaluation sweeps between each policy improvement sweep. In general, the entire class of
truncated policy iteration algorithms can be thought of as sequences of sweeps, some of which use
policy evaluation backups and some of which use value iteration backups. Since the max-operation
in Equation (3.21) is the only difference between these backups, this just means that the max-
operation is added to some sweeps of policy evaluation. All of these algorithms converge to an
optimal policy for finite MDPs.

Dynamic Programming (DP) is not the only method for estimating value functions and discovering
optimal policies. To obtain the same results you can use Temporal Difference (TD) learning and
Monte Carlo methods as well. Unlike DP, these methods do not assume complete knowledge
of the environment. TD learning will be explained in the next section. Monte Carlo methods
require only experience - sample sequences of states, actions, and rewards from on-line or simulated
interaction with an environment. Although a model is required, the model need only generate
sample transitions, not the complete probability distributions of all possible transitions that are
required by DP methods. In surprisingly many cases it is easy to generate experience sampled
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Let |X | = N , Z(x) ⊂ {y|p(x, y) > 0} and ε some small number (e.g., ε = 10−6).

Vector V[1, . . . , N ], V ′[1, . . . , N ]
Float min, max

Input π, the policy to be evaluated.
Initialize V(x) = 0, for all x ∈ X
Repeat
V ′ ← V
For each x ∈ X
V(x)← r(x)
For each y ∈ Z
V(x)← V(x) + p(x, y)V ′(y)

max ← 10−10

min ← 1010

For each x ∈ X
if (V(x)− V ′(x) < min) min← V(x)− V ′(x)
if (V(x)− V ′(x) > max) max← V(x)− V ′(x)

until (max−min < ε)
Output V ≈ Vπ

Figure 3.3. Complete algorithm for iterative policy evaluation.

1. Initialization
V(x) ∈ R and π(x) ∈ A(x) arbitrarily for all x ∈ X

2. Policy Evaluation
Repeat
V ′ ← V
For each x ∈ X
V(x)← r(x)
For each y ∈ Z
V(x)← V(x) + p(x, y)V ′(y)

max ← 10−10

min ← 1010

For each x ∈ X
if (V(x)− V ′(x) < min) min← V(x)− V ′(x)
if (V(x)− V ′(x) > max) max← V(x)− V ′(x)

until (max−min < ε)

3. Policy Improvement
policy-stable ← true
For each x ∈ X :

b← π(x)
π(x)← arg maxa∈A

{
r(x, a) +

∑
y∈X p(x, a, y)Vπ∗(y)

}
If b 6= π(x), then policy-stable ← false

If policy-stable, then stop; else go to 2

Figure 3.4. Complete algorithm for policy iteration
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Initialize V arbitrarily, e.g., V(x) = 0, for all x ∈ X

Repeat
V ′ ← V
For each x ∈ X
V(x)← maxa∈A {r(x, a) + p(x, a, y)V ′(y)}

max ← 10−10

min ← 1010

For each x ∈ X
if (V (x)− V ′(x) < min) min← V(x)− V ′(x)
if (V (x)− V ′(x) > max) max← V(x)− V ′(x)

until (max−min < ε)

Output a deterministic policy, π such that
π(x) = arg maxa∈A

{
r(x, a) +

∑
y∈X p(x, a, y)VT (y)

}
.

Figure 3.5. Complete algorithm for value iteration

according to the desired probability distributions, but infeasible to obtain the distributions in
explicit form. In short, Monte Carlo methods are ways of solving the reinforcement learning
problem based on averaging sample returns. Despite the difference between Monte Carlo and DP
methods, the most important ideas carry over from the DP to the Monte Carlo case. Not only do
they compute the same value functions, but they interact to attain optimality in essentially the
same way.

3.3 Application of a MDP using Temporal-Difference Learn-
ing

Another method which can be used for estimating value functions and discovering optimal policies
is Temporal-Difference (TD) learning. TD learning is a combination of Monte Carlo and DP ideas.
Like Monte Carlo methods, TD methods can learn directly from raw experience without a model
of the environment’s dynamics: given some experience following a policy π both methods update
their estimate V or Vπ. Like DP, TD methods update estimates based in part on other learned
estimates, without waiting for a final outcome (they bootstrap). The backup of simple TD methods
is based on just the one next reward, using the value of the state one step later as an approximation
for the remaining rewards. At time t+ 1 they immediately form a target and make a useful update
using the observed reward rt+1 and the estimate V(Xt+1). The simplest TD method, known as
TD(0) is:

V(Xt)← V(Xt) + α [rt+1 + V(Xt+1)− V(Xt)] . (3.22)

where V(Xt) is the remaining travel time to link N and Xt ∈ 1, 2, . . . , N . Hence, V(N) = 0.
Because the TD method bases its update in part on an existing estimate, we say that it is a
bootstrapping method, like DP. Figure 3.6 specifies TD(0) completely in procedural form.

TD learning have some advantages over Monte Carlo and DP methods. First, they do not require
a model of the environment, of its reward and next-state probability distributions. The next
most obvious advantage of TD methods over Monte Carlo methods is that they are naturally
implemented in an on-line, fully incremental fashion. With Monte Carlo methods one must wait
until the end of an episode, because only then is the return known, whereas with TD methods
one need wait only one time step. Surprisingly often this turns out to be a critical consideration.
Some application have very long episodes, so that delaying all learning until an episode’s end is too
slow. Other application are continuing tasks and have no episodes at all. Finally, in practice, TD
methods have usually been found to converge faster to Vπ than constant α-Monte Carlo methods.
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Thus, the backup of simple TD methods is based on just the one next reward, using the value of
the state one step later as a approximation for the remaining rewards. One kind of intermediate
method, then, would perform a backup based on a intermediate number of rewards, more than
one, but less than all of them until termination. For example, a two-step backup would be based
on the first two rewards and the estimated value of the state two steps later. Similarly, we could
have three-step backups, four-step backups, and so on. The methods that use n-step backups are
still TD methods because they still change an earlier estimate based on how it differs from a later
estimate. Now the later estimate is not one step later, but n steps later. This kind of methods are
called n-step TD methods.

3.3.1 The Forward View of TD(λ)

Backups can be done not just toward any n-step return, but toward any average of n-step returns.
For example, a backup can be done toward a return that is half of a two-step return and half of a
four-step return: Rt = 1

2R
(2)
t + 1

2R
(4)
t , where R(n)

t = rt+1 + rt+2 + rt+3 + · · · + rt+n + Vt(Xt+n).
Any set of return can be averaged in this way, even an infinite set, as long as the weights on the
component returns are positive and sum up to 1. The overall return possesses an error reduction
property which can be used to construct backups with guaranteed convergence properties. The
TD(λ) algorithm can be understood as one particular way of averaging n-step backups, each
weighted proportional to λn−1, where 0 ≤ λ ≤ 1. A normalization factor of 1− λ ensures that the
weights sum to 1. The resulting backup is toward a return, called the λ-return, defined by

Rλt = (1− λ)
∞∑
n=1

λn−1R
(n)
t . (3.23)

Figure 3.7 illustrates this weighting sequence. The one-step return is given the largest weight,
1− λ; the two-step return is given the next largest weight, (1− λ)λ; the three-step return is given
the weight (1−λ)λ2; and so on. The weight fades by λ with each additional step. After a terminal
state has been reached, all subsequent n-step returns are equal to Rt. If we want, we can separate
these terms from the main sum, yielding

Rλt = (1− λ)
T−t−1∑
n=1

λn−1R
(n)
t + λT−t−1Rt. (3.24)

This equation makes it clearer what happens when λ = 1. In this case the summation term goes to
zero, and the remaining term reduces to the conventional return, Rt. Thus, for λ = 1, backing up
according to the λ-return is the same as the constant-α Monte Carlo method. On the other hand,
for λ = 0, backing up according to the λ-return is the same as the one-step TD method, TD(0).
We define the λ-return algorithm as the algorithm that performs backups using the λ-return. On
each step, t, it computes an increment, ∆Vt(Xt), to the value of the state occurring on that step:

∆Vt(Xt) = α[Rλt − Vt(Xt)]. (3.25)

Initialize V(x) arbitrarily, π to the policy to be evaluated

Repeat (for each episode)
Initialize x
Repeat (for each step of episode):

a← action given by policy π for state x
Take action a; observe reward, r, and next state, y
V(x)← V(x) + α[r + V(y)− V(x)]
x← y

until x is terminal

Figure 3.6. Tabular TD(0) for estimating Vπ.
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Figure 3.7. Weighting given in the λ-return to each of the n-step returns.

Figure 3.8. The forward or theoretical view. We decide how to update each state by looking forward to
future rewards and states.

(The increments for other states are of course ∆Vt(x) = 0, for all x 6= Xt.)

The approach that we have been taking so far is what we call the theoretical, or forward, view of
a learning algorithm. For each state visited, we look forward in time to all the future rewards and
decide how best to combine them. We might imagine ourselves riding the stream of states, looking
forward form each state to determine its update, as suggested by Figure 3.8. After looking forward
from and updating one state, we move on to the next and never have to work with the preceding
state again. Future state, on the other hand, are viewed and processed repeatedly, once from each
vantage point preceding them.

3.3.2 The Backward View of TD(λ)

In the previous subsection we presented the forward or theoretical view of the tabular TD(λ)
algorithm as a way of mixing backups that parametrically shifts from a TD method to a Monte
Carlo method. In this subsection we instead define TD(λ) mechanistically. The mechanistic,
or backward, view of TD(λ) is useful because it is simple conceptually and computationally. In
particular, the forward view itself is not directly implementable because it is acausal, using at
each step knowledge of what will happen many steps later. The backward view provides a causal,
incremental mechanism for approximation the forward view.

In the backward view of TD(λ), there is an additional memory variable associated with each state,
its eligibility trace. The eligibility trace for state x at time t is denoted et(x) ∈ R+. On each step,
the eligibility traces for all states decay by λ, and the eligibility trace for the one state visited on
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the step is incremented by 1:

et(x) =
{
λet−1(x) if x 6= Xt;
λet−1(x) + 1 if x = Xt,

}
(3.26)

for all x ∈ X , where λ is the parameter introduced in the previous subsection. Henceforth we refer
to λ as the trace-decay parameter. This kind of eligibility trace is called an accumulating trace
because it accumulates each time a state is visited, then fades away gradually when the state is
not visited. At any time, eligibility traces record which states have recently been visited, where
”recently” is defined in terms of λ. The traces are said to indicate the degree to which each state is
eligible for undergoing learning changes, should a reinforcing event occur. The reinforcing events
we are concerned with are the moment-by-moment one-step TD errors. For example, the TD error
for state-value prediction is

δt = rt+1 + Vt(Xt+1)− Vt(Xt). (3.27)

In the backward view of TD(λ), the global TD error signal triggers proportional updates to all
recently visited states, as signaled by their nonzero traces:

∆Vt(x) = αδtet(x), for all x ∈ X . (3.28)

As always, these increments could be done on each step to form an on-line algorithm, or saved
until the end of the episode to produce an off-line algorithm. In either case, Equations (3.26 - 3.28)
provide the mechanistic definition of the TD(λ) algorithm. Pseudo code for on-line TD(λ) is given
in Figure 3.9.

The backward view of TD(λ) is oriented backward in time. At each moment we look at the current
TD error and assign it backward to each prior state according to the state’s eligibility trace at that
time. We might imagine ourselves riding along the stream of states, computing TD errors, and
shouting them back to the previously visited states, as suggested by Figure 3.10. Where the TD
error and traces come together, we get the update given by Equation (3.28).

To better understand the backward view, consider what happens at various values of λ. If λ = 0,
then by Equation (3.26) all traces are zero at t except for the trace corresponding to Xt. Thus the
TD(λ) update, Equation (3.28), reduces to the simple TD rule (Equation (3.22)), TD(0). In terms
of Figure 3.10, TD(0) is the case in which only the one state preceding the current one is changed
by the TD error. For larger values of λ, but still λ < 1, more of the preceding states are changed,
but each more temporally distant state is changed less because its eligibility trace is smaller, as
suggested in the figure. We say that the earlier states are given less credit for the TD error.

Initialize V (x) arbitrarily and e(x) = 0, for all x ∈ X

Repeat (for each episode)
Initialize x
Repeat (for each step of episode):

a← action given by policy π for state x
Take action a; observe reward, r, and next state, y
δ ← r + V(y)− V(x)
e(x)← e(x) + 1
For all x:
V(x)← V (x) + αδe(x)
e(x)← λe(x)

x← y
until x is terminal

Figure 3.9. On-line tabular TD(λ).
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Figure 3.10. The backward or mechanistic view. Each update depends on the current TD error combined
with traces of past events.

If λ = 1, then the eligibility trace do not decay at all with time. If λ = 1, the algorithm is also
known as TD(1). Whereas Monte Carlo methods were limited to episodic tasks, TD(1) can be
applied to discounted continuing tasks as well. Moreover, TD(1) can be performed incrementally
on-line. One disadvantage of Monte Carlo methods is that they learn nothing from an episode
until it is over. On-line TD(1), on the other hand, learns in an n-step TD way from the incomplete
ongoing episode, where the n steps are all the way up to the current step. If something unusually
good or bad happens during an episode, control methods based on TD(1) can learn immediately
and alter their behavior on that same episode.



Chapter 4

Results from the motorway A10,
Netherlands

This section describes the case study which implements the above methodology for estimating the
route travel time given the congestion type on each link. This case study is intended to provide a
better understanding how the proposed model can estimate the expected travel time using speed
data.

4.1 Markov Decision Processes

In this analysis, we have two choices: We can drive from link A to B clockwise (to the right) or
anti-clockwise (to the left). Figure 4.1 and 4.2 show how the speed in a link changes over time when
driving anti-clockwise, where Figure 4.3 and 4.4 show how the speed in a link changes over time
when driving clockwise. From these figures several remarkable deductions can be made. First, the
yellow and pink lines represent the weekend-days, on these days congestions happen very rarely. If
congestion on these days happens (as you can see on July 3th in figure 4.5), this is usually caused
by irregular events, like an accident or road works. Another remarkable observation in these figures
are the large fluctuations during the night (midnight until about six o’clock). In this period the flow
rate (the number of vehicles per hour) is relatively small, therefore the average speed calculations
show big differences. Finally, we observe that the traffic jams shift evenly through the links over
time. Congestion occurrences are usually registered at a specific detection location. However, this
study focuses on estimating travel time on a link, and therefore, the congestion types are defined
based on the average speed per minute at a specific detector station within a link. Consequently,
in this particular study, congestion types are determined based on average link speeds.

4.1.1 Definition of States and Variables

Figure 4.6 shows how the system variables are defined at each time interval for a system with two
types of congestion: congestion or no congestion. It is assumed that all time intervals shown in
Figure 4.6 are equal (five minutes), and the red bars represent the duration of congestion at each
link. There is no congestion on at links 2 and 5 during the period described, while there are two
congestions on link 3 and 4, and a long congestion on link 1.

For example, the system state variable at time 17:00, X(t = 17.00), can be described as [0, 1, 1, 0, 1],
and the system state variable at time 17:40, X(t = 17.40), can be described as [0, 0, 0, 0, 1]. In this
situation, the state number could be calculated using

state =
5∑
i=1

xi(t)2i−1, (4.1)

31
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state 0 1 4 5 6 9 20 21 24 25 26 27 29 30 31 45 46 47 49 50
x12(t) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x11(t) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x10(t) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x9(t) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x8(t) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x7(t) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x6(t) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x5(t) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x4(t) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x3(t) 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2
x2(t) 0 0 0 1 1 1 4 4 4 0 0 0 0 1 1 4 4 4 4 0
x1(t) 0 1 4 0 1 4 0 1 4 0 1 2 4 0 1 0 1 2 4 0

Table 4.1. Defined states during the period

where xi(t) ∈ 0, 1. The maximum number of different states equals 25 = 32, x ∈ {0, 1, . . . , 31}.
In this particular study we did not use two types of congestion, but we separated the average speed
in a link into five intervals with each interval belonging to a separate congestion type. For example,
congestion type 4 means that there is a heavy congestion with a average speed on that link lower
than 25% of the maximum speed, congestion type 0 means there is no congestion. Although we use
more different type of congestions in this study, the state definition is analogue to the example above
with two types of congestion and 12 different links. In total we have information for 24 different
links, 12 clockwise and 12 anti-clockwise, but when we want to travel from A to B, we only use
the information for link A to B clockwise and for link A− 1 to B− 1 anti-clockwise. For example,
when we want to travel from the beginning of link 2, A = 2, until the end of link 5, B = 5, we add
the information for links 2, 3, 4 and 5 clockwise and for links 1, 12, 11, . . . , 6 anti-clockwise to our
state space. Thus, the maximum number of different states equals 512, x ∈ {0, 1, . . . , 244140625}.
The parameters used in the example above (traveling from link 2 until link 5), will be used in the
rest of this section. During the period analysed, June 17th until July 12th 2005, only 4653 different
states occured. Table 4.1 shows the first 20 of them (in sorting order). The time intervals used in
this particular research are assumed to be equal to one minute, hence the average speed on a link
may change in a minute, consequently each minute the state can change.

4.1.2 Transition Matrix

Based on the defined states and congestion occurrences in a 1-minute time span, the one-step
transition matrices are calculated as shown in Table 4.2 for a part of the transition matrix. Almost
all states have a high change of going to state zero, the state that occurs most frequently in the
observed data. If we have a look at the complete transition matrix, we also see that the process
often remains in its present state (i.e., pii has higher probabilities than pij).
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Figure 4.1. Graphical overview of average speed changing over the day for different links, driving anti-
clockwise, over the period 24 until 30 June.
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Figure 4.2. Graphical overview of average speed changing over the day for different weeks, driving
anti-clockwise, over link 1.
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Figure 4.3. Graphical overview of average speed changing over the day for different links, driving clock-
wise, over the period 24 until 30 June.
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Figure 4.4. Graphical overview of average speed changing over the day for different weeks, driving
clockwise, over link 5.
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Figure 4.5. Example of a congestion on a weekend day(July 3th, 2005).

Figure 4.6. Defined system state variable with two types of congestion.
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4.2 Dynamic Programming

The estimated travel time of each link can be calculated using

Ti =
|xi|
sij

, (4.2)

where |xi| is length of link i in meters and sij is the average speed in meters per second of link i
given there is a congestion of type j on that link.

The estimated travel time or reward in a state, r(x, from, to, d, a), is defined as a function of the
recent state, x, the link in which we are at the moment, called from, our destination link, called
to, the distance already covered in the present link, d, and the action, driving clockwise or anti-
clockwise. Thus, when we start at the beginning of a link: d = 0. Because our state changes each
minute, our reward is always less or equal to 60 (seconds). Equal to 60 in the case that we did not
yet arrive at our destination after the minute, less if we did arrive at our destination.

r(x, from, to, d, a) =


0 if from = to+ 1
60 if (αTfrom +

∑to
i=from+1 Ti) > 60

αTfrom +
∑to
i=from+1 Ti otherwise

 , (4.3)

where α = |xfrom|−d
|xfrom| is the fraction of the first link to be covered. In the first situation the total

route is already covered when we start a new minute, hence the expected future travel time equals
zero. In the second situation we did not arrive at our destination and used the whole minute to
travel. In the last situation we arrive at our destination within the minute. Obviously, this is the
exact formula for the action: driving clockwise. For driving anti-clockwise we take the sum over
i = from− 1, from− 2, . . . , to and we should take from = to− 1 in the first part of the equation.
Another easier and less confusing option is to renumber the links, inew = 12− iold + 1.

Next, we determine the new origin, from′, and the distance already covered in this link, d′:

from′ =


to if r(x, from, to, d, a) ≤ 60
from if αTfrom > 60
j if r(x, from, j, d, a) > 60

 , (4.4)

d′ =
{

0 if r(x, from, to, d, a) = r(x, from, from′, d, a)
|xi| − (r(x, from, to, d, a)− 60)sij otherwise,

}
.

(4.5)

where ((r(x, from, to, d, a) − 60)sij represents the meters covered after the minute ends, |xi| rep-
resents the total length of link i and sij is the average speed in meters per second of link i given
there is a congestion of type j on that link.

Using the estimated travel time of each link in a time unit and transition matrices of each origin-
destination pair in the previous step, expected route travel times can be estimated by the following
equation:

T (x, from, to, d, a) = r(x, from, to, d, a) +
∑
Z(x)

p(x, a, y)T (y, from′, to, d′, a), (4.6)

where Z(x) ⊂ {y|p(x, a, y) > 0}, contains all possible states that can be reached from state x. The
first part of the summation represents the expected travel time in the present minute, where the
second part represents the travel time estimation for future minutes.

The complete algorithm for recursive travel time estimation is given in Figure 4.7.
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We calculate the expected travel times for both actions and make our choice for a direction based
on the minimum travel-time estimation:

a = arg min
a∈A

T (x, from, to, d, a). (4.7)

An example of the output of the program written to validate the solutions of the MDP model using
Dynamic Programming can be found in Figure 4.8. One can enter the congestion types on each
link by hand, even as the start and destination link.

Results of the travel-time estimation using Dynamic Programming to solve the Markov Decision
Process can be found in Figures 4.9 and 4.10. We still use the example data for driving from link 2
to the end of link 5. When we input all possible state numbers in the program, in 3275 of the 4653
cases the program outputs drive clockwise, where in only 1126 cases the system advises to drive
anti-clockwise. Unfortunately our state representation does not present any information about the
total congestion of a state, but only about the congestion on the different links. Therefore, we
choose to present our results against the sum of congestion over several links, Si,j , which is defined
by

Si,j(x) =
j∑
k=i

xk, (4.8)

where xk ∈ {0, 1, . . . , 4} represent the congestion type on link k. We have to remark that sev-
eral different states sum up to the same value for Si,j(x) and this value does not represent any
information about which link contains which type of congestion.

Figure 4.9 shows a graphical representation of all possible travel time estimations for the example
traveling from link 2 to link 5. For each travel time estimation the congestion type combinations
is plotted against the sum of the congestion types over all links, S1,12, using two actions: driving
clockwise or anti-clockwise. Figures 4.11 and 4.12 split this figure in two separate actions. First, we
clearly see a linear increase in the estimated travel time when there is more or heavier congestion.
Second, we observe that the shortest estimated travel times belong to the action: drive clockwise,
which seems to be logical because then a shorter distance has to be covered. Third, a more
debatable observation we can make is, the more congestion the more frequently we drive anti-
clockwise. On one hand, this observation matches our expectations: we will only consider driving
a longer distance if there is a lot of delay caused by congestion, when there is no congestion at all
we would always choose the action which covers the shortest distance. But on the other hand, we
would only choose to take the long way round if we are in a shorter time at our destination.

Figure 4.10 shows a graphical representation link 2 until 5 only, S2,5, using the same actions:
driving clockwise or anti-clockwise. Again we split this figure in two separate actions, see Figures
4.13 and 4.14. When drawing conclusions we have to keep in mind that there is a big difference in
the occurrence of both actions, the action ”driving clockwise” is more likely to occur. Although,
there is an obvious action changing boundary, for S2,5 > 9 in most cases it is optimal to drive
anti-clockwise, where for S2,5 ≤ 9 is it optimal to take the action with the shortest distance: drive
clockwise. This completely matches our expectations.

4.3 Temporal-Difference Learning

We started to obtain the estimated travel times of the Temporal-Difference learning by implement-
ing the TD(0) algorithm. Figures 4.15 and 4.16 show the results for anti-clockwise and clockwise
driving, respectively. The times represented in the graphs are the times from the start of link 1 to
the end of link 12. When we want to calculate the travel time from link A until the end of link B
we use the following equation:

T (A,B, a) = T̂ (A, 12, a)− T̂ (B + 1, 12, a) (4.9)



4.3. TEMPORAL-DIFFERENCE LEARNING 41

If we have a closer look to the results, again, we immediately see that the estimated travel times
on weekend days are significantly lower than on the weekdays. We also see that the estimated
travel times on weekdays driving clockwise are higher than the estimated travel times for driving
anti-clockwise. However, the most remarkable fact are the not constant decreasing lines, which
do not match our expectation about the estimated travel times. If we interpret this results, there
would be moments in time that the estimated travel time is shorter when we drive from link i− 1
to link 12 than it would be when driving from i to link 12. This seems to be weird because the
distance covered from link i− 1 until link 12 includes the distance covered when driving from link
i to link 12. These results can be explained by the fact that the links are not updated in regular
order, it can happen that links in the end are updated after the last update of first links.

We could prevent this from happening by using a TD(λ) algorithm. In our case we the estimated
travel time on link n is always dependent on the estimated travel times of the links that will have
to be covered thereafter. Thus if we update link i we should also update link 1, . . . , n, . . ., and
i− 1 as well. Therefore we choose to apply the TD(1) algorithm to the A10 data. The results are
summarized in Figures 4.17 and 4.18. As can been seen from these figures the problem we had
with TD(0)-learning is solved, all graph are decreasing. The estimated travel times when driving
clockwise are longer than when using the TD(0) algorithm.

One thing we did not describe above is our choose for α = 0.001. This is the same as setting
the travel time estimation to 0.1% of the difference with the travel time observation. The choice
for α has great importance on the speed of convergence to the right travel time estimation. If we
choose α = 1, we update the link time travel time estimation with the difference between the old
estimated travel time and the travel time observation. To check the effect of α we calculated the
results of Monday June 20th 4.00 PM by several α, which can be found in Figure 4.19.
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Let |X | = N and Z(x) ⊂ {y|p(x, a, y) > 0}.

Initialize: α = |xfrom|−d
|xfrom| , i = from− 1, r(x, from, to, d, a) = αTfrom and sum = 0.

Repeat
i← i+ 1

if((a == 1 (clockwise) and from == to+ 1) or ( a == 2 (anti-clockwise) and from == to− 1)
Output T (x, from, to, d, a) = r(x, from, to, d, a)
Exit!

r(x, from, to, d, a)← r(x, from, to, d, a) + Ti
while(r(x, from, to, d, a) < 60)

d′ ← |xi| − (r(x, from, to, d, a)− 60)sij
from′ ← i

For each y ∈ Z(x)
sum← sum+ p(x, a, y)T (y, from′, to, d′, a)

Output T (x, from, to, 0, a) = 60 + sum

Note: In the equation for d′, represents r(x, from, to, d, a) the travel time to the end of the last
covered link, which is probably larger than a minute. sij is the average speed in meters per second
on link i given there is a congestion of type j on that link. Hence, (r(x, from, to, d, a) − 60)sij
represents the distance to be covered of link i in the next minute. Because we do not use the
distance to cover, but the distance already covered, we take the length of link i, |xi| and subtract
the distance to be covered.

Figure 4.7. Complete algorithm for recursive travel time estimation.

Figure 4.8. The output of the program written to test the DP-method on the MDP model developed in
this study.
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Figure 4.9. Travel time estimations by several congestion type combinations against the sum of the
congestion types over all links, S1,12, using two actions.

Figure 4.10. Travel time estimations by several congestion type combinations against the sum of the
congestion types over link 2 until 5, S2,5, using two actions.
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Figure 4.11. Travel time estimations by several congestion type combinations against the sum of the
congestion types over all links driving clockwise, S1,12.

Figure 4.12. Travel time estimations by several congestion type combinations against the sum of the
congestion types over all links driving anti-clockwise, S1,12.
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Figure 4.13. Travel time estimations by several congestion type combinations against the sum of the
congestion types over link 2 to 5 driving clockwise, S1,12.

Figure 4.14. Travel time estimations by several congestion type combinations against the sum of the
congestion types over link 2 until 5 driving anti-clockwise, S2,5.
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Figure 4.15. Results for TD(0) when driving anti-clockwise.
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Figure 4.16. Results for TD(0) when driving clockwise.
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Figure 4.17. Results for TD(1) when driving anti-clockwise.
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Figure 4.18. Results for TD(1) when driving clockwise.



50 CHAPTER 4. RESULTS FROM THE MOTORWAY A10, NETHERLANDS

Figure 4.19. Results for different α using TD(1).



Discussion

The purpose of the present study is to develop a real-time travel time prediction method using
Markov Decision Processes, in which the system state changes each minute. The model considers
different congestion types, based on the average speed along a freeway link, and it subsequently
estimates the expected travel time for the entire route as a function of those probabilities of
congestion types. When calculating the average link speeds we ignore unreliable data points, for
example stationary vehicles or impossible high speeds.

To find the optimal action policy for the developed MDP, we used two types of solution methods,
first we applied Dynamic Programming (DP), then we used a Temporal-Difference (TD) algorithm.
There are several differences between these methods. The first method bases the route-travel-time
estimates on the average speed and consequently the congestion types on each link. When there is
a large chance on (heavy) congestion in the coming period the estimated travel time will be longer
than in a situation where there is no chance on congestion. For this method we need information
of the past to obtain the one-step-transitions between states, which make this method work a bit
slower than TD learning. TD learning updates its prediction every time a new observation is made
and hence depends only on the actual travel-time observations. This method has proved to be a
very fast real-time-travel-time prediction method in practice. As opposed to the differences there
are also similarities. Both methods have proved to result in applicable estimates on a dataset from
the A10 in the Netherlands. They can be used to decide which action to take, drive clockwise or
drive anti-clockwise, and make reliable route-travel-time estimations.

In contrast with recent studies the methods developed in this study react automatically on changing
environments, i.e. incidents, work zones, and adverse weather conditions. Hence, the methods are
valid in all possible traffic conditions. Additionally, the methods used in this study do not only
give a route-travel-time estimation but also provide a travel direction. The same methods could be
applied to other freeway segments if appropriate speed data are available even if the are not ring
roads. In that case one could collect data from other, non-freeway, roads. Then, the action space
changes from driving clockwise or anti-clockwise to drive the freeway or taking the direct route.

The most important limitation of this study is the lack of data. The data used, contained only
information about part of the A10 and unfortunately it is not possible to make a connection between
the vehicles on different links. Although we may have developed a theoretical model on travel-time
estimation it is not possible to measure actual travel-time with the dataset as used, hence we
cannot validate our results except for our expectations. Therefore, further research should be done
including a more extensive dataset. Second, future research about travel time prediction will be
needed to specify the optimal boundaries for dividing the state space into congestion types. Third,
in this study we used a constant α-factor when implementing a TD-algorithm, but we could have
used a function, based on for example the time of day or average speed. To improve the methods
described in this study, one should have a closer look on the content of this function. Finally,
one can try to apply the model developed on more than two actions or on more than one action
moment.

Nowadays, travel time predictions are very important to plan when, where and how to travel. In
this research we developed a model which is useful in practice, the methods used for predicting
travel times are fast and applicable in real-time. Furthermore, the results of the predictions meet
our expectations and the methods work in all possible traffic conditions. Finally, the model still
works when input data is non-reliable or missing.
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