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1 Introduction

The Dutch Railways (popularly known as the “NS”) is the primary railway
transporter for people in the Netherlands. The NS transports 1.1 million
passengers per day, spread over 4500 train rides [1]. While most of these
passengers purchase a ticket, some choose to go on the train without one.
This is possible because there is no ticket control when entering or leaving
the train. However, NS controllers occasionally control passengers’ tickets
(in the train itself) and hand out fines if a correct ticket cannot be presented.
Due to the apparent lack of structural ticket control, the NS may be missing
out on revenue generated by fines. It may also be seen as an encouragement
for passengers to not buy a ticket, because it is not certain if they will be
controlled.

While the NS mentions a general strategy to minimize illegal train jour-
neys in their annual report [2], there is little (public) knowledge on how
NS controllers should be placed to maximise fine revenue. By using se-
curity cameras and gates, and employing security officers in and around
the stations, the NS aims to provide a safe travelling environment and re-
duce illegal train journeys. However, little attention is paid to the route
of controllers. This seems like a missed opportunity, because an effective
placement of controllers can easily be quantitatively measured by looking at
the fine revenues.

In this paper we construct an optimal strategy for the routing of a set
of NS controllers to maximise fine revenue. This is done by implementing
two different algorithms. A formal definition of the problem is given below.
Throughout this paper, we discuss strengths and weaknesses of the two
algorithms, and discuss their validity.

2 Model

2.1 Parameters

When choosing the parameters for our model, attention is paid to limiting
the number of variables, while also allowing the model to be flexible. For
instance, adding new stations or railway connections should be easy, as
well as possible changes in the train schedule. Another important issue to
consider is that some trains only travel between large cities, and do not stop
at any smaller stations that lie inbetween. Also, it is important to have a
flexible input of all the obtainable revenue.
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2.1.1 Connections ci

A connection ci directly connects two stations in one direction, and the
connections are arbitrarily indexed c1 to cN . Each connection has a fixed
travel time. This system means that there is no need to index the stations
- the location of a controller can be described by the last connection the
controller took. If we consider the layout to be a graph, we only consider the
edges and not the vertices. To explain the system, we present the following
simple train station network consisting of 5 stations:

Figure 1: Simple example of a possible train network

Each connection ci marks where a train leaves and arrives. That means
there is a difference between taking c9 and taking c4 with c8, because a stop is
made inbetween. Note that two connecting stations each have a connection
in opposite directions. This is to clearly distinguish where a controller is
when going on a connection. If the controller’s last connection was c2, we
know he is now in the leftmost station.

2.1.2 Adjacency Matrix A

We introduce an “adjacency” matrix A, consisting of points aij :

ai,j =

{
t if cj can be taken directly after ci: the travel t time of cj

0 otherwise

Visually, one can see which connections are available to a controller, given
his location. However, an algorithm cannot distinguish this. The adjacency
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matrix A for the above setup could for instance be:

A =

0 1 1 0 2 0 0 0 4 0
1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 1 1 0 2 0 0 0 4 0
0 0 0 0 0 2 3 0 0 0
0 1 1 0 2 0 0 0 4 0
0 0 0 0 0 0 0 3 0 4
0 0 0 0 0 2 3 0 0 0
0 0 0 0 0 0 0 3 0 4
0 1 1 0 2 0 0 0 4 0

If we look at the first row, we know that after taking c1, we can go
on connection c2, c3, c5 and c9. The first two connections’ travel time is 1,
whereas c5 has travel time 5 and c9 has travel time 4. Given a total of
N connections, matrix A will have N × N dimensions. Note that the j-
th column gives the travel time of cj . Also, many rows will be identical;
approaching a station from c1 and c4 gives the same possibility of follow-up
stations. The benefit of this approach is that only one matrix is required to
describe which connections are available, and what their travel time is.

2.1.3 Revenue Matrix R

The revenue matrix R consists of points rit which tell how much revenue
can be generated by taking connection ci at time t. Throughout this paper,
time is left as a discrete unitless quantity. The dimension of R is N × T
where N is the total number of connections and T is the entire period of
time the trains run. A typical i-th row could look like:

100 0 80 0 100 0 60 0 0

This means over a period of 9 time units, a train runs 5 times on the i-th
connection. The 0’s means there is no train departing at time t = 2, 4, 6, 8
and 9. An assumption of R is that every train ride has revenue. The
motivation behind this is that we can then capture departure times of trains
and their revenue in one matrix.

Another important distinction is that any revenue from a connection is
only counted once. If two controllers take the same connection, they cannot
both take the revenue - only one of them will receive it. This makes sense
because the NS is only interested in the total revenue, not in the amount of
revenue generated by each controller.
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2.1.4 Controller Strategy Ck(t)

The decision variable Ck(t) is the connection the k-th controller takes at time
t, for k = 1, . . . ,K and t = 1, . . . , T . The output is either the index number
of the connection or 0. In case of the latter, this indicates the controller is
either waiting at the station or en route in a train. Using the initial example
from Figure 1, if the first controller waits one time unit, takes connection c6
(which has travel time 3) and c2 immediately afterwards, we have:

C1(1) = 0

C1(2) = 6

C1(3) = 0

C1(4) = 0

C1(5) = 2

. . .

Of course, this is only possible if there is a train running on c6 and c2 at
time 2 and 5, respectively. This is checked in R. If R62 and R25 are positive
then this is a possible strategy.

2.1.5 Controller Schedule S

The controller schedule is a 4 × K matrix, containing information on the
starting and finishing time and location of each controller, where K is the
number of controllers. The first and second row indicate the first and final
time a controller can take a connection. The third row contains an (optional)
connection that arrives at the start location. The fourth row contains an
(optional) connection that departs from the end location. If there is no
scheduled location, this is indicated with a 0. This manner of specifying the
start and end location may seem odd, but it makes the programming much
more efficient. Consider the following two controllers, and their schedule for
the layout from Figure 1:

S =

Controller 1 Controller 2
1 2
8 7
9 0
8 1

The first controller works from time 1 to 8. The controller also wishes to
start and finish at the rightmost station. The second controller works a
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shorter shift (from time 2 to 7). This controller has no scheduled starting
location, but does need to end at the leftmost station. The elements of S
are denoted with Si,k, as is used in the formal optimization problem below.

2.2 Formal Optimization Problem

The formal optimization problem is given below. We are given the matrices
A (N ×N dimension) and R (N × T dimension). For the given number of
controllers K, we are given a schedule matrix S (4×K dimension).

With our decision variable Ck(t) for k = 1, . . . ,K we formulate the
optimization problem as follows:

Maximise the revenue:

K∑
k=1

T∑
t=1

RCk(t),t under the conditions:

ACk(t),Ck(t′) > 0 ∀k, t (1)

RCk(t),t > 0, if Ck(t) 6= 0 ∀k, t (2)

A·,Ck(t∗∗) ≤ T + 1− t∗∗ ∀k (3)

Ck(t) = 0, t < S1,k, ∀k (4)

Ck(t) = 0, t > S2,k, ∀k (5)

AS3,k,Ck(t∗) > 0, if S3,k 6= 0, ∀k (6)

ACk(t∗∗),S4,k
> 0, if S4,k 6= 0, ∀k (7)

where C(t), C(t′) are two consecutive non-zero values, t∗, t∗∗ are the time
of the first/last non-zero entry of Ck(t) respectively, and A·,j is the non-
zero value in the j-th column (each column has either value 0 or one other
number).

Condition (1) means that once a controller has taken a connection, the
next connection must be physically attached to where the controller ended.
Condition (2) means that when a controller goes on a connection, there
must be an actual train riding on that connection. Condition (3) means
that a controller must stay within the bounds of the time period 1 . . . T .
For instance, it is not possible to take a connection with travel time 4 if the
controller’s schedule ends in 3 time units. Conditiona (4) and (5) mean that
a controller can only take trains if these are within his time schedule. The
final conditions (6) and (7) mean that a controller must depart and finished
at his scheduled departure and end location.
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2.3 Solving the Optimization Problem

2.3.1 Introducing Dynamic Programming

One of the most straight forward ways to solve such problems is to simply
test all possible strategies, and find which one has the largest revenue. This is
often described as a brute force approach. While we do have a finite number
of solutions, testing all these strategies would be too time consuming. With
the given objective, the worst possible scenario would require testing NKT

possibilities. Clearly, a more practical approach needs to be found.
Dynamic programming is a general approach for solving a complex prob-

lem by solving a series of subproblems until it finds the solution of the orig-
inal problem [3]. The main reason for doing this is to reduce computation
time. While its application may depend on the specific problem, two main
characteristics of such a problem is that it has overlapping subproblems and
an optimal substructure [4]. A problem has overlapping subproblems if the
solution to one of the subproblems can be used to solve a larger subprob-
lem. An optimal substructure exists if the globally optimal solution can be
constructed from locally optimal solutions to subproblems. Now we apply
this to our situation.

2.3.2 Applying Dynamic Programming to the Objective

Consider the very final moment in time that the K controllers can make
a decision, ie at time T . With this single time unit remaining, we can
find the optimal strategy for the controllers at any given location. This is
fairly simple because we only consider one time unit, and the set of possible
locations of controllers is manageable. Now consider the possibilities at time
T − 1. The travel time will be either 1 or 2 time units. In the first case,
we can add the revenue made from t = T − 1 to the optimal revenue (which
was already calculated) at time t = T and and the given location. In the
second case, we immediately take the revenue made from the single taken
connection.

In general, once we have calculated the optimal path for time t, . . . , T ,
it is relatively easy to calculate the optimal path for t − 1, . . . , T . This
is called backward recursion. At each timepoint, it is essential to list all
possible states (where is/are the controllers(s) or are they en route in a
train connection) and all possible moves (which connections are available).
The exact formulation is given in the following section.
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2.3.3 Mathematic Formulation and Pseudocode

We define a state xt at time t as the connection the K controllers have last
taken. This means that a controller is either waiting at the end location of
the connection, or is still en route. The state space Xt is the set of all states
xt at time t.

We also define an action a as a set of connections the controllers could
take. Let the action space A(xt) be the set of all possible actions for the
controllers, given state xt. Also let xt+1(a) be the new state at time t + 1
when taking action a in state xt.

Let R(xt, a) be the revenue generated from taking action a in state xt.
Finally, let the value function V (xt) be the total generated revenue from xt
to xT .

The problem can now be written as a recursive equation:

V (xt) = max
a∈A(xt)

(
R(xt, a) + V

(
xt+1(a)

))
subject to: t = 1, . . . , T

V (xT+1) = 0

We iterate backwards in time by solving V (xT ), V (xT−1), V (xT−2) . . . V (x1)
Below is a short piece of pseudocode for this problem:

Data: R,A and S
Result: Optimal strategy for all controllers
for t=T to 1 stepsize= -1 do

for xt ∈ Xt do
for a ∈ A(xt) do

Determine revenue from a;
Determine the state xt+1 action a will lead to;
Look up the optimal revenue for state xt+1;

end
Store the a with the largest revenue for state xt

end

end
Print controller strategy, based on the stored actions a;

Algorithm 1: Dynamic Programming for Controller Strategy

In the following sections we discuss two approaches to dynamically pro-
gramming this problem. The first, which we call the global algorithm, pro-
vides a guaranteed optimal solution, but is consequently much more time
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consuming. The second is a somewhat simplified version that performs quite
fast but is not guaranteed optimal, which we call the heuristic algorithm.

2.4 Global Algorithm

The global algorithm finds an optimal path for a set of controllers by si-
multaneously taking all controllers into account. First, a lookup table is
generated, in which for every remaining time and every given state, the op-
timal connection is given. This may also be 0 (ie it is optimal to wait in
this particular instance). The advised connection can be found in the row
‘Take:’. With this advised connection, a sum of the revenues up to that
point in time is given. This includes the revenue gained from the connection
itself, and the revenue gained for following the rest of the optimal path. The
total revenue can be found in the row ‘Final Rev’. The row ‘Final Dest’ is
explained below. The following picture is a screenshot of the first few lines
of such a table.

Figure 2: Output table of revenue and controller actions for every state

A Boolean value is used to check if the controller reaches their end loca-
tions (if specified). The connection and remaining time states are explained
below. Once this table is constructed, the algorithm ‘reads’ it to find the
optimal strategy for all controllers and prints out the total revenue as show
in Figure 3.
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Figure 3: Output table of revenue and optimal controller strategy

2.4.1 State Space - Connection and Remaining Time

In order to describe the state xt, it is not sufficient to only name which
connection the controllers are coming from. If only a part of the controllers
can take a connection, one needs to know who those are. We also need to
know the remaining travel time of all controllers that are en route. If the
remaining travel time is 0, then that means the respective controller can
proceed to a new connection. For example, say two controllers are coming
from c1 and c5. The remaining travel time of c1 is 1 so the remaining time
will always be 0. On the other hand, c5 has travel time 2. It could then have
a remaining travel time 1 or 0. In total there are 2 states for the connection
state {1, 5}, as can also be seen in Figure 3. above. Note that, because
the controllers have their own specific schedule, the state {5, 1} is not the
same, and must therefor also be separately included. Given N connections,
K controllers and the maximum traveltime Tmax of all connections, the
number of states is bounded by:

(N)K ≤ number of states ≤ (N · Tmax)K

The left bound is in the case that the travel time of all connections is 1,
whereas the right bound is the case where all connections have traveltime
Tmax.

2.4.2 Action Space

The Action Space is the set of all possible connections the controllers can
take. For instance, three controllers could take {c1, c3, c4}, {c7, 0, c5} or
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{c7, c5, 0}. Again, the controllers are not interchangable so the order of
connections is important. Systematically creating this space is quite simple
because all controllers can take any of N connections, or wait. The number
of sets of connections is (N + 1)K . In order to find if an action a is possible
for the set of controllers, several aspects must be checked. All controllers
must be able to take the given connection, otherwise the set of connections
is impossible, and we check the next action in the action space. As soon
as one controller cannot take the given connection, the action a is deemed
impossible.

2.4.3 Referring to the Next State

In terms of programming, determining the state xt+1 is tricky because some
controllers will take connections with varying traveltimes. Others may be
en route, so they cannot take a new connection. To solve this, we take given
the connection state and remaining time state at time t, and apply the set of
moves to the connection and time state at time t+ 1. An example is shown
below:

State (time t) Connection: State (time t+ 1)
Connection state {1, 5, 3} + {5, 0, 4} → Connection state {5, 5, 4}
Rem. time state {0, 1, 0} Rem. time state {1, 0, 0}

One particular problem is the fact that we do not know a priori where
in the list of states, the state at time t+1 can be found. The ordering of the
states is done systematically, but it is not trivial where to explicitly find a
certain state. To solve this, all the states are indexed. Second, the algorithm
simply searches through all states and stops once it finds the correct state.
It then uses the index to determine which revenue value from the lookup
table to take.

2.5 Heuristic Algorithm

The global algorithm is able to give an optimal solution to the problem,
but is very time consuming. As a consequence, the heuristic algorithm was
developped, which produces a solution in the fraction of the time. However,
this solution is not guaranteed optimal.

The heuristic algorithm finds the optimal course for a single given con-
troller, and iterates this process for any additional controllers. To clarify
some of the concepts, we use the same example that was shown in Figure 1.
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We let R be:

R =



100 0 80 0 100 0 60 0
0 60 0 60 0 100 20 0
40 0 0 40 0 0 60 50
20 0 20 0 0 25 0 30
200 0 160 0 120 0 200 25
0 100 0 80 0 25 0 60
100 0 180 0 160 0 140 0
120 0 100 0 80 0 0 90


Essentially, the heuristic algorithm works the same way as the global algo-
rithm. A lookup table is generated, and the optimal connection is found for
every state. The revenue up to that point and the Boolean value to check if
the final destination is reached are also included. The following picture is a
screenshot of the first few lines of such a table.

Figure 4: Output table for the heuristic algorithm

Once the table is constructed, it is not straightforward to read what the
optimal strategy is. The algorithm looks through the table to find the op-
timal course, and prints out which connections should be taken, given the
amount of remaining time. Also, the revenue of this strategy is printed be-
low. See below for a screenshot. For any additional controllers, the revenue
the preceding controller obtained is removed from R. The algorithm then
calculates the optimal course for the next controller, based on the adjusted
R. This means that a new table is constructed, and then the strategy is
printed next to any already printed controller strategies. Some points of
interest from a programming perspective are given in the following subsec-
tions.
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Figure 5: Table of the optimal controller strategy for heuristic algorithm

2.5.1 State Space

The algorithm always considers one controller at a time. To describe the
state (consisting of one controller), we use the connection that leads to the
controller’s location. So if the controller is in the bottom station, we say
he came from c3. This means the state space can be described by the set
{c1, c2 . . . cN}. However, some connections describe the same location. In
this case, the list of truly different connections is {c1, c2, c3, c5, c7}. However,
identifying which connections are redundant would also cost time. Also, this
complicates referring to the correct state xt+1. Note that we do not need
to consider any possible remaining travelling time in the state space. For
instance, the travel time of c5 is 2. If a controller takes c5 at remaining time
t, we only need to look at the optimal revenue at time t+ 2, given that the
controller came from c5. This is only possible in this particular instance
because we only deal with one controller at a time - in the global algorithm,
this simplification is no longer possible.

2.5.2 Programming Issues

In this subsection we highlight some of the challenges that were faced when
programming the heuristic algorithm. Given a controller coming from a
connection ci (the state), there are several steps to see if taking a certain
connection cj is possible.

• The connections must be physically attached to each other. This can
be checked using the adjacency matrix A: if Aij is 0, then the connec-
tion is not possible.

• A train must actually ride cj at time t. This is checked using the
revenue matrix R. If Rtj is 0, then the move is not possible. However,
when multiple controllers are used, they must have the possibility to
go on a connection even if a previous controller has already ‘claimed’.
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In practice, this means that an adjusted R should be used for every
next controller for which the optimal schedule is calculated.

• A controller’s connection must be within his/her time schedule. Sup-
pose a controller wishes to finish at time tend. The travel time of the
last connection a controller takes at time t must then be less than
tend − t. The travel time of a connection can be found in the cor-
responding column of A. Of course, it is not possible to go on a
connection at a time before the begin time of the controller.

• A controller must start and finish according to his/her schedule. To
accomodate the start location, we first run the algorithm, without any
restrictions regarding the start location. We then simply take choose
the optimal path for which the starting location corresponds with the
correct location state (and start time).

• An end location is a little trickier. Because we are performing recur-
sion backwards in time, we cannot simply run the algorithm and then
select the correct state. For instance, the algorithm always choses the
connection with the largest revenue, and may overlook the connection
with a lower revenue that does reach the end location. To solve this, we
must introduce an addition Boolean variable (Final Dest) that checks
if the end destination has been reached. If it is false (ie value 0), the
choice of connections is restricted to connections that lead to the end
location. The Boolean is then changed to true if such a connection
exists. If the Boolean is already true, we do not have any additional
restrictions.

• If a controller is en route, or delibarately waits at a station, then this
should always be a possible action.

3 Comparing the Heuristic and Global Algorithm

As one may expect, the heuristic algorithm does not always perform as
well as the global algorithm. That is to say that the heuristic sometimes
produces a controller strategy whose total revenue is less than that of the
stragey from the global algorithm. However, there are a few reasons to
choose for the heuristic:

• Generally, the computation time of the heuristic is much smaller than
that of the global algorithm. This has become apparent from the ex-
amples below and the experience of running many other setups. If the
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user wants an optimal strategy for multiple controllers, the algorithm
performs much slower. If a user only has one controller, the global al-
gorithm’s computation time is marginally larger than the heuristic’s.
The computation time is a serious issue to consider. As we see in the
following examples, a large setup with several controllers can result in
hours of computation time, whereas the heuristic only takes seconds
to reach a solution.

• The difference between the revenue from the heuristic and from the
global algorithm seems to be bounded. In other words, the heuristic
does not perform arbitrarily bad compared to the global algorithm.

• In the heuristic, the optimal route of each controllers is consectutively
calculated. The order that the controllers are handled has an effect
on the total revenue. This is because the controllers are ‘greedy’:
each controller takes the revenue maximising route for him/herself,
although this may not be the revenue maximising route for the team
of controllers. However, it seems that there is always an order of
controllers that will equal the revenue of the global algorithm. This is
explained in detail in section 3.3. Another formulation is that there
does not seem to be an instance where the global algorithm finds a
higher revenue than of all possible order of controllers in the heuristic.

Each of these aspects are handled in more detail below.

3.1 Examples where Heuristic Performs Worse

In the following examples, we demonstrate several instances where the heuris-
tic performs worse than the global algorithm. For the sake of readability,
the stations in each example have been labelled.

3.1.1 Example 1 - Different Time Schedule

In this case we have a simple triangle layout of stations: A,B and C. Each
connection has travel time 1.

Let R be:

R =



20 0 0
0 0 0
0 20 0
0 0 0
0 0 20
5 0 0


17



Figure 6: Station layout for Example 1

From station A there is a train that collects 20 revenue on each of the three
connections (going counterclockwise). There is also a single train from A to
C worth 5 revenue. It is impossible to collect all the revenue with a single
controller. Consider two controllers in the following order:

Controller 1 Controller 2

Start time 1 1
Finish time 1 3

Start location A A
End location No pref. No pref.

Both controllers are the same, except for their finishing time. The first
controller can only take one connection at the start, and is then immediately
finished. The heuristic will let Controller 1 collect 20 revenue from c1. It is
the most profitable connection available. The second controller will also take
c1 and complete the triangle by taking c3 and c5. This leads to a revenue
of 40 for Controller 2. In total, the heuristic would find a strategy for the
controllers with a total revenue of 60.

It is not hard to tell that the system optimum would be assigning Con-
troller 1 to take c6 and Controller 2 to take a trip around the entire triangle,
for a total revenue of 65. This is an example of how different time schedules
lead to a less than optimal controller strategy. The following example shows
how location can lead to a suboptimal solution.

3.1.2 Example 2 - Different Location Schedule

Consider the following layout with stations A to D. All travel times are 1.
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Figure 7: Station layout for Example 2

The Revenue Matrix is given by:

R =


33 0 0
0 33 0
0 0 33
50 0 0
0 50 0


If starting from station A, a controller could take the triangular route (from
A to B to C) or go back and forth with (from A to D to A). The first
option has a smaller revenue (99) than the second option (100). Now let the
controller schedule be the following:

Controller 1 Controller 2

Start time 1 1
Finish time 3 3

Start location A D
End location No pref. No pref.

The heuristic will let Controller 1 go from A to D to A and Controller 2 not
be able to generate any revenue. This is because the revenue from c5 has
already been assigned to Controller 1. In total the heuristic gives a total
revenue of 100.

The global algorithm would let Controller 1 go from A to B to C and
Controller 2 go from D to A. This would give a total revenue of 149. Prob-
lems occur when the route for the personal maximum revenue of a controller,
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conflict with a different controller’s optimal route. It is possible to enlarge
the difference between the heuristic’s revenue and the global algorithm’s
revenue, as shown below.

3.1.3 Example 3 - Largest Possible Difference in Performance

Consider the same layout and controller schedule as above, but with a dif-
ferent Revenue Matrix:

R =


33 0 0
0 33 0
0 0 33
1 0 0
0 99 0


The heuristic will still find a revenue of 100, because the first controller will
‘claim’ any possible revenue Controller 2 could have gotten. However, the
global algorithm now finds a total revenue of 198. This is almost a difference
of factor 2! In fact, rewriting R as:

1− δ 0 0
0 49 0
0 0 50
δ 0 0
0 100− δ 0


where δ is an infinitisemally small positive value, the global algorithm finds
a revenue of 200 − δ. This example exploits the weakness of the heuristic
algorithm to the maximum. However, the strength of the heuristic lies in
its computation speed compared to the global algorithm. We disucss this in
the next section.

3.2 Computation Time

In this section we compare the computation times of the heuristic and global
algorithm. We see that the heuristic produces a strategy in a fraction of
the time the global algorithm takes. In particular, increasing the number
of controllers exponentially increases the computation time for the global
algorithm, whereas the heuristic seems to grow in a slower fashion. The
computation time of both algorithms depends on:

• The size of A (the number of connections).
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• The length of R (the number of timesteps).

• The number of controllers.

To measure the effect of varying the parameters, a simple layout of stations
was calculated for various settings:

Figure 8: Station layout for measuring computation time

3.2.1 Size of A

First we only consider connections c1 to c6 and calculate the optimal strat-
egy. This process is repeated with the addition of {c7, c8}, and then {c9, c10}
and then {c11, c12}. The computation time for both algorithms with varying
number of controllers is recorded and graphed in Figure 5 and 6.
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Figure 9: Computation time for number of connections (heuristic)

Figure 10: Computation time for number of connections (global algorithm)
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An increase in the number of connections seems to have a exponential
increase in the computation time. This applies to both the heuristic and
global algorithm. This seems fair because each new connection creates a
new state that needs to be tested and an extra possible connection that
can be taken. The effect is particularly clear for multiple controllers in the
global algorithm. Note that the computation times for the global algorithm
with 3 controllers are based on estimates of the time it took to perform one
timestep. This was done because it became clear that running the algorithm
would be incredibly time consuming.

3.2.2 Size of R

We consider only connections c1 to c6. The number of timesteps are in-
creased from 7 to 11.

R=

20 0 25 0 0 20 0 0 0 20 0 25
0 15 0 30 0 0 10 25 0 5 0 0
0 25 0 35 10 0 15 45 20 0 0 25
0 0 50 0 0 50 0 0 0 40 0 0
55 0 0 0 45 0 0 0 30 5 55 0
10 0 15 0 10 0 15 0 15 0 10 0

The left portion represents the original value of R. To test the effect
of additional time steps on computation time, a new column was added
one at a time. Similar to above, the computation times are recorded and
graphed below (Figure 7). We see that increasing the number of timesteps
has a linear increase in computation size. Because we are applying dynamic
programming, it makes sense that each timestep would be similar in terms
of computation size.

3.3 Conjectures on the Performance of the Heuristic

By choosing the heuristic, one can quickly have a strategy for all the con-
trollers. However, it is not guaranteed optimal. By contrast, the global
algorithm is particularly slow when the parameter sizes grow but does offer
a guaranteed optimal solution. It is up to the user to decide which algorithm
to use. Two additional hypotheses are listed below. It is our belief that they
hold, but it has not been possible to prove or disprove them.
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Figure 11: Computation time for number of timesteps

3.3.1 Bounded Optimal Value in Heuristic

Conjecture 1 The heuristic algorithm will generate a revenue that is at
least equal to the half of the optimal revenue.

The third example offers some insight to why we believe this to hold. Al-
though a rigorous proof cannot be given, we do offer a simplified argumen-
tation. To start with, the hypothesis holds for 1 controller. In such a case,
the heuristic mimics the approach of the global algorithm, and consequently
generates the same total revenue.

First we distinguish two routes for each controller: the system optimal
route, and the personal optimal route. The first is the route that a controller
should take, to optimise revenue for all controllers. This may not be the most
profitable route for the controller personally, but if each controller in the
system takes their system optimal route, then the largest possible revenue is
obtained. By definition, each controller must have a system optimal route,
even if this is to stand still for the entire schedule. Each system optimal
route must contain a portion that is not overlapped by any other system
optimal route. If this was not the case, the route would simply be to stand
still. The personal optimal route is the route that is the most profitable for
a controller personally, with no consideration of what the consequences are
for other controllers. This route will only differ from the system optimal
route if its revenue is larger than the system optimal route’s revenue.
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The heuristic algorithm always looks for the personal optimal route of
each controller. Now consider a situation with two controllers. The following
diagram is a worst case scenario, where the first controller takes the system
optimal route of the second controller:

In the worst case scenario, the first controller takes the system optimal
route of the second controller (black/red line). Note that this must mean
that the the system optimal revenue of Controller 1 must be less than per-
sonal optimal revenue (hence the arbitrarily small term δ). If this was not
the case, Controller 1 would not be directed upwards in the first place. In
this worst case, Controller 2 generates 0 revenue because it cannot take any
other route. For instance, the green route may not fit in the controller’s
time schedule. The system optimal revenue is 2R + δ, while the heuristic
would find a revenue of R + δ. Letting δ → 0 we see that the heuristic’s
revenue is bounded by half the global algorithm’s revenue. h

In practice, we have seen that for 3 or more controllers, the heuristic’s
revenue has never been less than half of the optimal revenue.

If this hypothesis is true, this would be very useful for decision makers.
This is because the heuristic does not perform arbitrarily bad compared to
the the global algorithm. Given a revenue value from the heuristic, a user
can decide whether running the global algorithm is worth finding (at most)
double the heuristic’s revenue.

3.3.2 Correct Order finds the Optimal Value in Heuristic

Conjecture 2 Given all possible orders of K controllers, there exists an
order which generates the optimal revenue value that the global algorithm
also generates.

The order the controllers are put into the heuristic, has a large impact on
the revenue. Generally, when more restrictive controller schedules (shorter
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working time, hard to reach begin/end locations, etc) are put ahead of more
flexible controllers, this will cause the heuristic to underperform. However,
in the examples above, the heuristic can actually perform as well as the
global algorithm, if the correct order of controllers is used.

To disprove the hypothesis, a situation must be created where all per-
mutations of controllers do not generate as much revenue as the global al-
gorithm. In this situation, a controllers must grant priority to a different
controller, but also be granted priority in a later stage (or vice versa). If this
is not the case (ie a controller always grants or takes priority to a constant
set of other controllers) then we can construct the global optimal strategy
using the heuristic. We believe that, in order for controllers to give and
take priority, the controllers must either have different objectives or that A
and R must be different for each controller. From an NS perspective, those
two possibilities both seem unlikely. The controllers are employed by NS (so
should not have differing objectives) and each controller has the same travel
time and freedom of choice as the other.

Again, if this hypothesis holds, this would be very handy for decision
makers. Considering the computation time of the global algorithm, it will
likely be faster to run the heuristic for K! permutations, and then keeping
the best solution.

4 Conclusion

Summing up, both algorithms have their advantages for solving the optimal
strategy for a set of controllers. The heuristic can offer a fast, not neces-
sarily optimal solution, while the global algorithm offers a slow, guaranteed
optimal solution.

4.1 Relevance to NS

We believe this algorithm could quite easily be implemented for the NS.
Each controller can specifiy their preferences, and the input matrices R and
A are flexible in use. Changes in the train schedule can quickly be applied
to R and any new types of connections can easily be added to A. By varying
the parameters, a user could experiment with certain policies. For instance,
how much revenue is lost if all controllers worked an hour less? How much
extra revenue does one extra controller generate? The algorthims could help
with such types of analysis of the current system.

One important issue is the large size of the Dutch railway system. As we
have seen, the computation time for the global algorithm grows exponen-
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tially with the number of connections and controllers. Calculating such a
system with the global algorithm is possible, but extremely time consuming.
Another assumption in the model is that the revenue on each train is deter-
ministic. In practice, this is not the case. However, it could be considered
as an expected revenue of some uknown distribution, allowing the algorithm
to calculate the expected optimal revenue.

4.2 Further Research

As hinted above, modelling the revenue of each connection as a stochastic
variable may be a better approximation of reality. Additionally, the model
assumes that controlling a connection does not have any effect on the revenue
of adjacent connections. Referring back to our first station layout, if a
controller goes on connection c1 at time t and gives all illegal passengers
a fine, this will likely have an effect on the number of illegal passengers
on c5 at time t + 1. Modelling this effect would make this a considerably
more difficult problem because for each state at each time, we would need
to adjust R.

A List of Symbols

ci A connection.
t = 1 . . . T Time. May also be the remaining time, depending on the context.
R Revenue Matrix.
A Adjacency Matrix.
K The number of controllers in the system.
xt State at time t as the connection the K controllers have last taken.
Xt The set of all states xt at time t.
a A set of connections the controllers could take.
A(xt) The set of all possible actions for the controllers, given state xt
xt+1(a) The new state at time t+ 1 when taking action a in state xt.
V (xt) The total generated revenue from xt to xT .
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