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by Joël GASTELAARS

Organizations these days use all kinds of assessments in their selection process to
find suitable candidates for an open position. These companies believe that hiring
applicants with scores above a certain threshold and with specific behavioral com-
petencies will result in higher performance and potential scores and therefore add
more economical value to the company.

This research tests the hypothesis that assessment scores can predict your future
performance and potential using Linear Regression, k-Nearest Neighbor and Sup-
port Vector Machines. The predictions are validated by Root Mean Square Error and
Mean Absolute Error and compared against a ’standard-3 prediction’ which predicts
average performance and potential scores.
The optimal models do not significantly differ from the standard prediction and
there is therefore no reason to believe that the assessment variables of the provided
dataset can be used to predict your future performance or potential score.
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Chapter 1

Introduction

Since the 1990s, most large organizations use some sort of assessment process be-
sides the resume screening to select suitable applicants for an open position. These
assessments can be IQ-related like numerical and logical tests or more EQ-related
like questionnaires about personality and behavioral competencies. These compa-
nies, supported by their research, believe that selecting candidates with scores above
a certain threshold or whose behavioral traits fit within the team and matches the
job profile capabilities will result in higher future job performance and potential.
Research shows both supporting and contradicting evidence for the use of assess-
ments as predictors of performance scores. As most research has been conducted
in the field of Psychology, it is interesting to see whether we can give additional
insights into this area with the available data.

The goal of this research is therefore simple: "Predicting future performance and
potential based on assessment scores". We would like to answer the research ques-
tion: "Can your assessment scores predict your future performance and potential?". This
research uses different techniques to predict the performance and potential scores:
Linear Modeling (LM), k-Nearest Neighbor (kNN) and Support Vector Machines
(SVM). These different regression and classification models will be individually ex-
plained in Chapter 4.

First, Chapter 2 reviews the related work in the area of performance prediction,
mostly using behavioral assessments. Chapter 3 discusses the data used for this
research, beginning with data acquisition, processing the dataset and assumptions
made before modeling. This includes the initial data analysis which shows the dis-
tribution of some of the variables. Chapter 4 explains the tools and techniques used
and gives the theoretical background, with formulas, assumptions and error estima-
tions of each method. It also shows the tests used to confirm these assumptions and
the validation methods to check the results against. These results will be discussed
in Chapter 5. Here the predictions are compared to a standard prediction. In the final
chapter, Chapter 6 the significance of the results will be discussed, the implication
on the business and the research questions will be answered.
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Chapter 2

Literature Review

In every organization it is of high importance to make sure the employees perform
well and reach their potential, as this adds economical value to the company. This
goes all the way back to the selection process, where companies use different tech-
niques to select suitable applicants with an expected high performance and poten-
tial. Several scientific articles have been published about the prediction of employee
performance, most of which are in the field of Psychology. In this chapter we discuss
some of the related work that has been published on this topic.

First, we have to discuss bad hires and their associated costs. The search for high
performers, and therefore their characteristics, is greatly influenced by the costs of
hiring and firing a low performer, e.g., a bad hire.
Boushey and Glynn (2012) took thirty case studies from eleven scientific papers on
the costs of employee turnover and demonstrated that, according to this data, the
median cost of turnover was 21.4% of an employee’s annual salary.1 According to
the U.S. Department of Labor in 1996 the associated costs of bad hires, if discovered
within the first six months, were even higher and may be up to 30% of an employees
first years salary.2
Especially the last statement is cited in many newspapers, articles and HR blogs on
the internet. These costs can go up exponentially if the bad hire stays longer within
the organization and you also take into account compensation costs and indirect
costs like disruption costs and missed business opportunities according to the Soci-
ety of Human Resource Management, Undercover Recruiter and others.3,4,5,6

In 1998, Schmidt and Hunter quantified that high performing employees cre-
ate on average 80% more economical value for the organization than low perform-
ing employees, assuming normally distributed performance scores.7,8 Schmidt and
Hunter (1998) analyzed data collected in 85 years of psychological research which re-
sulted in three considered reliable (with validity greater than 0.5) selection methods:
work samples, General Mental Ability Tests (GMAT) and structured interviews. Two
years ago, Hunter et al. (2016) analyzed 100 years of data and came up with com-
bined methods of GMAT and integrity test and GMAT and structured interview,
both with a mean validity greater than 0.75.9



Chapter 2. Literature Review 3

Richardson and Norgate (2015) state however that "considerable caution needs
to be exercised in citing such correlations for test validation purposes". This is be-
cause correlations of 0.5 and higher are used to justify of the use of these assessments
in selection processes while assumptions and many corrections in the data is needed
to get these results. The quality of the original data is therefore also examined in
their research.10

Most related work has been conducted in the field of Psychology and was a meta-
analysis of the ’Big Five’ personality dimensions (Extraversion, Emotional Stability,
Agreeableness, Conscientiousness and Openness to Experience) and their influence
on employees’ performance.11,12,13,14
These five dimensions have been greatly researched since the 1960s and their influ-
ence on job performance and how to use them in the employee selection process
started to have impact in the 1990s.11 The research of Barrick and Mount (1991)
showed consistent relations in all researched occupations of Conscientiousness with
their three job performance indicators: job proficiency, training proficiency and per-
sonnel data. For the other personality dimensions the correlations varied but the
impact was small with ρ < 0.10. With low correlations like this it has to be seen
whether it is actually possible to predict a significant difference in performance for
people with higher personality traits in the Conscientiousness area than others.
Hurtz and Donovan (2000) state that much data used in the previous meta-analyses
was not derived from studies that used Big Five measures. These were later cate-
gorized in the Big Five categories, which is a potential threat to the validity of the
research as the data it is based on may not be classified to the Big Five personality
dimensions correctly. Their research showed a similar validity and correlation for
Conscientiousness as Barrick and Mount (1991) and notes that Barrick and Mount
(1995) and Salgado (1997) appear to have overestimated the validity of the Big Five
personality dimensions and their impact on job performance.12
Zhao and Seibert (2006) studied the differences Of the Big Five personality dimen-
sions between entrepreneurs and managers and concluded that entrepreneurs score
higher on Conscientiousness and Openness to Experience, where they score lower
on Neuroticism and Agreeableness.13

According to McKenna (2002), management competencies associated with high
performance can be identified. However, it is too simplistic to think that they can be
represented as generalized behavioral characteristics as there are "no competencies
that are truly general, but only competencies that are context-specific".15 This means
that in order to get an accurate performance prediction, the required competencies
should be adapted according to the job-specific context, the job personality profile.
SuccessFinder and Technically Compatible are two companies who got into this niche
of personality assessments and claim to provide a more accurate prediction of job



Chapter 2. Literature Review 4

performance with their assessments which cover different behavioral traits, compe-
tencies, career paths and 1000s of questions.16,17 Larry Cash, founder of Success-
Finder states that personality tests have almost no validity and predict little to none
of the job performance and is only useful to understand the personality and their fit
in the company. They claim however, that with their method they have an accuracy
in predicting job performance of 85%.6,18 This may be true if they were able to use
related behavioral traits to each specific job description. A salesperson for example
obviously needs to be extravert and a secretary has to be precise and pay attention to
detail. The business psychologist at Technically Compatible mentions that according
to SHL/CEB, a known international assessment bureau, cheating rarely happens and
most assessments have ’lie-scales’ built-in. Also, follow-up interviews can be used
to test some of the behavioral traits.19
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Chapter 3

Data Analysis

3.1 Data acquisition

The datasets were provided by an international organization which prefers to stay
anonymous. The data is pseudonymous to preserve data confidentiality and the
privacy of the employees involved. Pseudonymous data is data where information
that could be used to identify a specific person is replaced by a unique identifier, only
known by the providing organization. Only that company has the unique identifiers
matched to the individuals the data belongs to. The difference with anonymous data
is that it is reversible. 20
The following four datasets were provided in Excel format:

• Performance data • LAS assessment data
• CAS assessment data • VIT assessment data

The performance data consists of the following data between 2012-2017: unique
employee identifier, year, evaluation stage, evaluation score description and poten-
tial score description. All other datasets also contain this unique employee identifier,
which is used to link the datasets together. The other variables in the assessment
dataset are descriptive information about the employee, e.g., job-scale, region, year
hired and for every category an assessment score, e.g., self-awareness, innovative,
drive. It is unclear when the assessments have taken place, but it is assumed that
all assessments were prerequisites to get hired. All variable names and the range of
their data can be found in Appendix A.

3.2 Data processing

The performance dataset can contain multiple rows per employee, as each employee
may or may not have had multiple evaluations depending on their tenure at the
company. Each of the assessment datasets consists of only one row per employee.
However, not all employees did all of the assessments. Only a few employees did
the LAS assessments, which therefore will not be considered as a predictor of per-
formance or potential. The analysis starts with the employees who did the CAS and
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VIT assessments and have a performance and potential score. As Table 3.1 shows,
these have a substantial amount of data. This is our initial merged dataset.

Dataset # rows # unique rows # unique with performance
CAS 951 876 400
VIT 777 755 330
LAS 88 88 38
Performance 2485 612 532
Initial dataset 330 330 330

TABLE 3.1: Amount of (unique) data per dataset

To be able to use this data to train our model, the data has to be merged, cleaned
and some assumptions have to be made. To merge the datasets we start with the
performance dataset and add all CAS and VIT assessment data, linked using the em-
ployee’s unique identifier. We start with the first row of each employee if they have
multiple performance scores, as this is their oldest performance score (and therefore
the first score for a new employee) and remove their other scores. The employees
without any performance or potential scores are removed from the dataset. After
removing unusable variables as entity, current job scale and also gender and age (as
this data would also be available without conducting an assessment), the merged
dataset contains 89 variables of 330 unique employees.

After merging all data in the new data-frame, it is time to have a good look at the
data, clean it and make assumptions where needed. First, the data is imported into
R, our preferred programming language. There the description of the performance
and potential scores are removed and the potential scores are re-ordered, as we as-
sume that a promotion within 1 year is better (and therefore should have a higher
score) than a promotion in 1-3 years. All missing values are set to NA and the per-
formance and potential scores are transformed to numerical values to calculate the
correlations in Section 3.2.3.

3.2.1 Performance dataset

As mentioned in Table 3.1, the performance dataset consists of 2,485 observations
of 612 unique employees between 2012-2017. Of these 612 employees, there are 80
without any performance or potential score. These will therefore be excluded from
the dataset. Of the remaining 532 employees there are 23 without potential score,
these will only be included as predictors for the performance score. After merging
the datasets, we are left with 400 employees with performance scores and CAS as-
sessments of which 330 also have done the VIT assessment. Other than the unique
employee identifier, the performance and potential score and all assessment scores
all other descriptive variables like gender and age are removed from the merged
dataset as they could be derived without assessments and therefore cannot be used
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as predictors in our model.

Performance Score Description Score Potential Score Description
Unknown 0 Unknown
Inadequate 1 Not discussed
Partially met 2 No promotion
Good 3 Growth opportunities current level
Above Expectations 4 Short-term promotion (<1 yr)
Excellent 5 Long-term promotion (1-3 yr)

TABLE 3.2: Performance & Potential Score Description

Evaluation Score Description describes on scale 0-5 how well an employee is per-
forming and Potential Score Description also has a scale from 0-5, both described in
Table 3.2. We assume that a prediction of an ’0. Unknown’ or ’1. Not discussed’
score is useless and therefore remove these score and replace them, if possible, with
newer scores.

FIGURE 3.1: Potential and performance score distributions

The distributions of the cleaned performance and potential scores are plotted in
Figure 3.1. Both have between 60-70% average scores (respectively 3. Good and 3.
Growth opportunities current level). Where the performance scores are already in
increasing order from 1-5, we decided to switch 4 and 5 of the potential scores as we
assume that promotion within 1 year is better than promotion in 1-3 years.

3.2.2 Assessment datasets

All the scores of the variables in the CAS, LAS and VIT assessments are between
1-9 without missing values. The VIT assessment measures the more IQ-related vari-
ables, like numerical, logical and verbal skills. The CAS assessment is focused on
the behavioral traits like drive and creativity. Two of their variable distributions are
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plotted in Figure 3.2.

FIGURE 3.2: VIT Verbal skills score distribution (left) and CAS drive
score distribution (right)

Some other variables in the assessment datasets are hiring year, gender and age.
As this information is already available without applicants doing an assessment this
is not taken into account in this research as a predictor for future performance and
potential. The hiring year of the provided data is between 1986 and 2017 with a
mean in 2013. Of the hired people with performance and CAS/VIT assessment
scores 61.8% is female and the hiring age is between 19 and 59 with an average
of 29.3 years. The age distribution is plotted on the left in Figure 3.3. It shows that
over 76% of the employees were between 24 and 33 when hired. The educational
background of employees is plotted on the right in Figure 3.3. This shows that 69%
of the employees have a higher vocational education (hbo) and 10% has a university
background.

FIGURE 3.3: Hiring age distribution (left) and educational back-
ground of employees (right)
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3.2.3 Correlations

Another reason not to take into account the educational background is that when
calculating correlations between all variables and performance or potential scores,
the educational background seems to have the highest impact, with correlations of
+0.22 for university and -0.19 for ’hbo’. Of the assessment variables however, there
are none with a correlation over +0.10 and only 12 (out of 86) that have a correlation
lower than -0.10 with the performance score. These are:

• Interest • Service-orientated
• Sensation seeking • Willingness to change
• Imagination • Analysis and judgment
• Culture for change • Creativity
• Involvement • Innovation
• Listening skills • Environmental awareness

There are two positively correlated assessment variables with values higher than
+0.10 with the potential score. These are ’Performance Motivation’ and ’Negoti-
ation’. The other individual correlations of all variables with the performance and
potential scores can be found in Appendix A. As the correlations found are very low,
the expectation is that it will be tough to conclude that assessments are a significant
predictor for future performance or potential.

3.2.4 Assumptions

1. All assessments were prerequisites to get hired and are therefore potential pre-
dictors for the first performance and potential scores of applicants.

2. Only assessment data which is available before hiring is a potential predictor
of performance. And all data which could be received without conducting
assessments is ignored, as these would also be available without assessments.

3. In case of multiple scores, we assume that the oldest available performance
and potential score are the first given scores and therefore the ones to predict.

4. In case the oldest performance score does not have a potential score, the next
potential score is used if there is any and vice versa.

5. A short-term promotion (within 1 year) is ’better’ than a long-term promotion
(within 1-3 years).

6. Unknown or not discussed scores are irrelevant.
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Chapter 4

Methodology

4.1 Linear Regression

Linear regression models the relationship between the response variable yi and ex-
planatory variables xi,1 to xi,j, where j is the amount of explanatory variables used.
The goal of linear regression is to plot a line through the data points and minimize
the distance of the points to the line. For this dataset we use a multivariate ordinal
regression several explanatory variables:

yi = β0 + β1 ∗ Xi,1 + . . . + β j ∗ Xi,j + εi (4.1)

Where in this case i = 1, 2 and j = 1, 2, . . . , k. And k ≤ 86. Where response
variables y1 and y2 are the performance score and potential score, explanatory vari-
able Xi,j refers to assessment score j and εi measures the error of response variable i.
There are j+1 coefficients β which are estimated and show the effect of each explana-
tory variable on the response variable.

4.1.1 Assumptions

The following assumptions have to be tested to be able to correctly interpret the
coefficients and therefore use the linear model in the right way. If an assumption fails
to be true, this does not mean linear regression cannot be used. This only means that
the estimator is not necessarily the maximum likelihood estimator and the results
can be unreliable.

1. Independence of errors. The residuals εi are independently distributed and
there is no correlation between the errors.

To check the independence of errors for time series, the autocorrelation func-
tion (acf) can be plotted or the Durbin-Watson test can be used. Because this is
not a time series model, it is enough to show that the residuals are randomly
distributed and therefore do not correlate with each other. The Runs test can
be used to check the randomness of the residuals’ distribution. This will be
shortly explained in Section 4.1.2.
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2. Normality of errors. The residuals are normally distributed with expected
value E(εi) = 0 and variance σ2: εi ∼ N(0, σ2).

The residuals should be normally distributed around 0, otherwise the results
could be unreliable. There are several ways to check the normality of the resid-
uals e.g., using a qq-plot, the (Robust) Jarque-Bera test, D’Agostino-Pearson
test, Shapiro-Wilk test or Kolmogorov-Smirnov test. The used tests in this re-
search are shortly explained in Section 4.1.2.

3. Homoscedasticity. All errors are assumed to have approximately the same
variance for different values of the response variables and are therefore uncor-
related with the explanatory variables: var(εi|Xi) = σ2

ε for i = 1, . . . , n.

If the homoscedasticity of the residuals does not hold, than the significance
tests of the estimated coefficients β would be unreliable. This is called het-
eroscedasticity. However, it does not necessarily mean that the estimators are
biased.

4. Weak exogeneity. The explanatory variables X are assumed to be free of (mea-
surement) errors.

5. Linearity. The relationship between the response variables and explanatory
variables is assumed to be linear, as demonstrated in equation 4.1.

The linear relationship between the response variables and explanatory vari-
ables can be tested by plotting the data, although more complex relationships
may be hard to find. To check possible non-linear relations, the variables can
be added to the model and checked for their significance.

6. Lack of perfect (multi)collinearity. The correlation of any two of the used
explanatory variables X is not perfect e.g., unequal to 1 or -1.

If this does not hold, it could influence the estimated coefficients β as its vari-
ance would increase.

4.1.2 Used tests

This section will shortly explain all tests used to check the assumptions of Linear
Regression.

Runs test

The Runs test is used to check the randomness of the distribution of the residuals.
Therefore is has the null hypothesis H0: the residuals are randomly distributed. H0

is rejected if the resulting p-value is lower then the significance level α.
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The test statistic is formulated as:

Z =
R− R

σR

With R =
2n1n2

n1 + n2
+ 1

And σ2
R =

2n1n2(2n1n2 − n1 − n2)

n1 + n2(n1 + n2 − 1)

(4.2)

Where n1 and n2 are the number of positive (above median) and negative (below
median) values. Its visualization looks like Figure 4.1, where the red A’s stand for
the positive values and the blue B’s for the negative values.

FIGURE 4.1: Runs test visualization

(Robust) Jarcque-Bera test

The (Robust) Jarcque-Bera (JB) test checks whether the residuals have the skewness
and kurtosis of a normal distribution. It has therefore the null hypothesis H0: The
residuals are normally distributed. H0 is rejected if the resulting p-value is lower
then the significance level α.
The test statistic of JB can be mathematically written as follows:

JB =
(n− k + 1)

6
(S2 +

1
4
(C− 3)2) (4.3)

Where n is the number of observations/degrees of freedom, S the skewness of the
data, C the kurtosis of the data and k the amount of explanatory variables/number
of regressors.

S =
µ̂3

σ̂3 =
1
n ∑n

i=1(xi − x̄)3

( 1
n ∑n

i=1(xi − x̄)2)3/2
(4.4)

C =
µ̂4

σ̂4
=

1
n ∑n

i=1(xi − x̄)4

( 1
n ∑n

i=1(xi − x̄)2)2
(4.5)

Where µ̂3 is the estimation of the third moment, µ̂4 the estimation of the fourth mo-
ment, x̄ the sample mean and σ2 the variance.
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QQ-plot

The QQ-plot, R function qqnorm from the package stats, can be used as a visual check
of the normality assumption of the residuals. The residual values are plotted against
the normal distribution, a line in the form of y = ax + b with a, b ∈ R+. In case of a
normal distribution, the residual values will be approximately around the line, as in
Figure 4.2.

FIGURE 4.2: QQ-plot
of normal distributed

data
FIGURE 4.3: Correla-

tion plot example

Correlation plot

To check the lack of perfect multicollinearity the R function corrplot from the package
corrplot provides a visualization of the correlations between all variables. This can
be used to see whether there are still explanatory variables with high correlation in
the model, where darkblue is high positive correlation and darkred is high negative
correlation, see Figure 4.3.

4.2 K-Nearest Neighbor

K-Nearest Neighbor (kNN) is a non-parametric, lazy machine learning algorithm
which takes the k most similar neighbors using a similarity measure to classify
an object (classification) or provide it with a value (regression). As kNN is a non-
parametric and lazy algorithm, there are no assumptions made about the data dis-
tribution and there is a minimal training phase, all training data is used in the testing
phase. The only assumption is that the data is in a metric space, which means that
there is a way to measure similarity (e.g., distance) between variables. A commonly
used way to calculate the similarity is the Euclidean distance. The number k refers
to the amount of neighbors that affect the classification or regression.24,25

We can use both kNN classification and regression in this research, they will be
explained in the subsections below.
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4.2.1 Classification

Figure 4.4 gives an example of how kNN classification works. The green circle is
the new observation, ready to be classified as a blue square (class 1) or a red triangle
(class 2). First, the similarity between the new observation and the training instances
are calculated. Then, the classifications of the k training instances with the highest
similarity (in case of Euclidean distance therefore the lowest distance) are checked
and the new example is classified to the category of the majority. In this case, for k=1
it is assigned to the first class and for k=3 it is assigned to the second class. When
an even number of k is chosen and there is a ’tie’, a random decision will be made
depending on the settings of your model.

FIGURE 4.4: kNN classification example. 26

In this research there are four classes for performance (1,2,3,5) and also four
classes for potential (2,3,4,5) which makes the classification a bit harder but it works
similar as the example. Therefore both classification and regression models are used.
For classification, the R function knn from the package class is used, which calcu-
lates the Euclidean distance when provided with the training set, test set, number
of neighbors k considered and factor of true classifications of the training set. After
this its classifies the object according to the majority vote. 27

4.2.2 Regression

In the kNN regression model the performance or potential scores of the k most sim-
ilar employees are averaged to provide the new object with an averaged perfor-
mance/potential score:

ynew =
∑k

i=1 yi

k
(4.6)
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Where ynew is the performance or potential score of the new employee and yi the
score of of the i-th most similar employee, according to the Euclidean distance. The
R function knn.reg from the FNN package is used, which calculates the Euclidean
distance when provided with the training set, test set, number of neighbors k con-
sidered and factor of true values of the training set. After this the average of its k
neighbors is assigned to the object. 28

4.3 Support Vector Machine

Just like k-Nearest Neighbor, the Support Vector Machine algorithm (SVM) is a non-
parametric technique which does not make any assumptions about the data. The
basic concept of Support Vector Machines is to design a hyperplane to divide all in-
stances into two sets. The best hyperplane is the one which maximizes the margin
γ = 2/||w|| of the two closest points of the classes, which are called the support
vectors.
Figure 4.5 intuitively shows how this works. The optimal hyperplane separates the
two target groups with the maximum margin. The six points on the margin hyper-
planes are now the support vectors for this model.

FIGURE 4.5: SVM classification example. 29

SVMs use kernels to linearly separate the data points and reduces the influence
of misclassified instances by adding cost C per misclassification, also called the ’soft
margin hyperplane’. Maximizing the margin gives us a unique global minimum,
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another advantage of SVMs. Mathematically, this can also be formulated as the fol-
lowing minimizing quadratic optimization problem:

minw,b Q(w) =
1
2
||w||2 + C

`

∑
i

ξi

w.r.t. yi(w · xi + b) ≥ 1− ξi, ∀xi, i = 1, . . . , `.

(4.7)

With yi ∈ Class {-1,1} and ξi ≥ 0. 30,31,32,33,35,36,37,38.

This means that a SVM can basically only solve classifications with two classes.
To solve multi-class classification problems, these are split up and solved by the
’one-against-one’ or ’one-against-all’ techniques. The ’one-against-one’ approach
basically splits the multi-class problem into binary class problems for each pair of
classes and solves these accordingly. When combined, a voting scheme is applied
to all K(K-1)/2 sub-problems and the classifier with the most ’+1’ predictions gets
assigned by the combined classifier. The ’one-against-all’ technique builds a SVM
for each class, separating it from all other classes. When combined, the class labels
of the classifiers with the highest confidence score are assigned.

4.3.1 The e1071 package

In this research the function svm from the R package e1071 is used for both the clas-
sification and regression models of the SVM calculations. The performance of SVMs
strongly depends on the parameters given to the model: cost C (of the regularization
term in the Lagrange formulation), kernel type, regression or classification type and
the kernel parameters. These parameters can be tuned manually or with the tune
function to find the best fit for the model.

The e1071 package has a R interface with the awarding winning C++ libsvm li-
brary from Chang and Lin (2001). When there are k>2 classes to classify, the libsvm
library uses the ’one-against-one’ approach by training all subset classifiers and us-
ing a voting system to provide the right class. A sparse data representation is used
which saves computational time, as only non-zero values are stored.

4.3.2 The svm function

As mentioned before, the performance of a SVM strongly depends on the parame-
ters given to the model. The svm function has the several input parameters to vary
or choose from.

Formula. Just like for linear regression the formula represents the model to be fitted.
Data. This contains the test set sample data.
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Class.weights. This can be used to provide asymmetric class sizes different weights.
Cost. Costs of violation of the constraints.
Epsilon (ε). Used to control the width of the ε-insensitive zone to fit the training
data. The bigger ε the fewer support vectors.
Type. As SVMs can be used for both classification and regression, there are choices
to be made:

• C-classification

• nu(ν)-classification

• one-classification (for novelty detection)

• eps(ε)-regression

• nu(ν)-regression

Nu (ν). A parameter for nu-classification and nu-regression.
Kernel. There are four possible kernels: Linear, Polynomial, Radial and Sigmoid.
Each of which has its own parameters.
Gamma (γ). A parameter for all but linear kernels.
Coef0. A parameter for polynomial and sigmoid kernels.

There is also a cross input parameter possible, which is used for k-fold cross
validation of the training data to assess the model’s quality.

4.3.3 The tune function

The function tune helps finding the optimal parameters for the Support Vector Ma-
chine. It uses randomized 10-fold cross validation to split the training set and tunes
with performance measure the classification error or the mean squared error. The
first one is used for classification SVMs and the latter for regressions SVMs.

4.4 Validation

There are several ways to validate how accurate the used models are in predicting
performance and potential score in this research. First of all, a standard prediction
is made by prediction that all future employees have an average performance and
potential score, which in both case is a 3. Then, the Root Mean Square Error (RMSE)
and Mean Absolute Error (MAE) are calculated on the test set for the standard pre-
diction and all used methods.

Cross-validation is also a commonly used validation method, which is already
built in the packages FNN (10-fold cross validation using function knn.cv) and e1071
(k-fold cross validation using function svm with parameter cross=k). In this research,
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we use this on the training set, creating a validation set to optimize the parameters
and prevent overfitting.

4.4.1 Mean Absolute Error

The Mean Absolute Error (MAE) measures the absolute differences between the pre-
diction and the actual values, the size of the average prediction error. In mathemati-
cal form, we can write this as:

MAE =
1
n

n

∑
i=1
|yi − ŷi| (4.8)

With yi the actual value and ŷi the predicted value of i.

4.4.2 Root Mean Square Error

The Root Mean Square Error (RMSE) also measures the difference between the pre-
dicted values and actual values. It represents the sample standard deviation of the
residuals.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (4.9)

With yi the actual value and ŷi the predicted value of i.

The RMSE gives a relatively higher value to large errors. RMSE is therefore more
desirable to use than MAE when large errors are to be penalized (e.g., a misclassifi-
cation by 2 instead of 1 is twice as bad).
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Chapter 5

Results

In this research three different techniques were tested and compared against a ’standard-
3 prediction’, which meant predicting an average performance and potential score
for every new employee.
After merging, cleaning and preparing the data as explained in Chapter 3, the data
had to be split in a training set and test set. We used the rule of thumb to split this in
an 80% training set and 20% test set, as this left enough instances to test the models
on.

5.1 Linear Regression

To check the assumptions made for linear regression, we did several (visual) tests,
as explained in Chapter 4. First, to test the independence of the residuals, we did the
Runs test from the lawstat package. The result was a p-value of 0.267 which is not
enough to reject H0: the residuals are randomly distributed. In Figure 5.1 there is no
clear pattern to be found.

FIGURE 5.1:
Runs test
visualization

FIGURE 5.2: Correlation plot of
14 possible predictors

After creating a correlation matrix of all 86 assessment variables, some variables
with minimal correlation between themselves were selected for the linear regression.
This to prevent multicollinearity, which was also visually tested with the potential
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explanatory variables in Figure 5.2.

The mean of the residuals is 3.5e-17, which is almost 0. However, the Jarcque-
Bera test got us a p-value of 6.7e-16 which means they are not normally distributed.
This can also been seen in the qq-plot at the top-right in Figure 5.3. This means that
the linear regression estimator could be unreliable.

FIGURE 5.3: Several plots of the residuals in the linear regression
model

The top-left and bottom-left plots in Figure 5.3 show that there is still a bit het-
eroscedasticity, as there is a slightly downward trend in the top-left figure. However,
when tested with the gvlma package the homoscedasticity assumption is acceptable.
For all different models the variables used were uncorrelated with the residuals,
using Pearson’s product of moment correlation which makes assumption about ho-
moscedasticity acceptable.

Several different combinations of independent variables were tested, and the two
best models are compared in Table 5.1. The model with the lowest Root Mean Square

Performance Potential
Variables RMSE MAE RMSE MAE
1,3,6,8 0.767 0.455 0.578 0.431
1,3,6 0.763 0.438 0.578 0.430

TABLE 5.1: Linear Regression results
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Error (RMSE) and Mean Absolute Error (MAE) was model with assessment vari-
ables 1,3,6: Sensitivity, Imagination and Sensation Seeking. The other model also
included the variable Service-oriented and provided similar results, depending on
the sample. Mathematically the best models can be written as:

y1 = 3.26 + 0.03X1,1 − 0.06X1,2 − 0.01X1,3

y2 = 3.54 + 0.03X1,1 − 0.02X1,2 − 0.05X1,3
(5.1)

5.2 k-Nearest Neighbor

As mentioned in Chapter 4, both the classification and regression methods of k-
Nearest Neighbor (kNN) were used in this research. For both methods, the amount
of neighbors k used was varied between 1 and 50 to find the optimal k with the
lowest RMSE and MAE. To put the results into perspective, they were plotted against
the RMSE and MAE of the ’standard-3 prediction’. In Figure 5.4 the two plots on the
top show the kNN classification method and its RMSE for performance (top-left) and
potential (top-right), where the bottom two plots show the kNN regression method
and its RMSE for performance (bottom-left) and potential (bottom-right).

FIGURE 5.4: kNN classification (top) and regression (bottom) RMSE
for the prediction of performance (left) and potential (right) score.

Figure 5.4 showed that the kNN regression model has for both performance and
potential a lower RMSE than the classification model. It also showed that the RMSE
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is lower than the ’standard-3 prediction’ and that around 15 and 25 neighbors seems
to get the lowest RMSE for respectively performance and potential for this sample.
The MAE however, is higher than the MAE of the standard-3 prediction, which is
shown in Table 5.3.

5.3 Support Vector Machine

For the Support Vector Machine algorithm (SVM) one classification and two regres-
sion methods were compared. The nu(ν)-classification method was infeasible as it
has hard bounds on allowed misclassification which could not be satisfied.

Performance Potential
Method Cost Gamma ε/ν Cost Gamma ε/ν
C-classification 10 0.5 NA 1 2 NA
Nu-regression 0.1 2 0.5 1 2 0.5
Eps-regression 0.1 0.5 0.1 1 2 0.1

TABLE 5.2: Optimal parameters for SVM models

After tuning the models using 10-fold cross validation on the training set, the
optimal parameters of all SVMs used a radial kernel and 251 support vectors. Table
5.2 shows the other optimal parameters used for the three different models.

5.4 Model errors

In Table 5.3 all model errors are compared and the method with the lowest RMSE
and MAE are highlighted for both the performance and potential score predictions.

Performance Potential
Method RMSE MAE RMSE MAE
Standard-3 prediction 0.773 0.371 0.648 0.290
Linear Regression (optimal model) 0.763 0.438 0.578 0.430
k-Nearest Neighbor (classification) 1.191 1.000 1.362 1.178
k-Nearest Neighbor (regression) 0.740 0.421 0.559 0.424
Support Vector Machine (C-classification) 0.773 0.371 0.596 0.466
Support Vector Machine (eps-regression) 0.764 0.428 0.595 0.455
Support Vector Machine (nu-regression) 0.771 0.377 0.773 0.466

TABLE 5.3: Scores
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Chapter 6

Discussion & Conclusion

The aim of this research was to find a model in which assessment scores can be
used as a predictor for future performance and potential scores. Three different
techniques were used to test the hypothesis: Assessment scores can be used as a predictor
for your future performance and potential scores. The results in Chapter 5 however, show
that these predictions are basically the same as predicting an average performance
(3. Good) and potential score (3. Growth opportunities current level) for all new
employees.

Linear Regression

The optimal linear regression model does not meet the normality assumption of the
residuals. However, the residuals are randomly distributed with mean 0 and no
correlation with each other or the explanatory variables. The homoscedasticity as-
sumption does not seem to hold according to the model plot, but the R function
gvlma says it is still an acceptable assumption. All in all, it seems reasonable to say
that the estimator of the linear regression is possibly unreliable. The predictions
of performance between 2.7 and 3.3 and potential between 3.0 and 3.7 are mainly
because of β0, as equation 5.1 revealed.

k-Nearest Neighbour

The results for kNN show only for the KNN regression models a slightly lower
RMSE than the standard prediction. And again, the prediction lie between respec-
tively 2.8 and 3.2 for the performance scores and 3.1 and 3.6 for the potential scores.
In Figure 5.4 you can see that a k>10 seems to get lower errors. However, this only
means that the KNN regression method is converging to the standardized value.
The bigger k gets, the more values it averages and the closer the range of values
predicted around 3.

Support Vector Machines

The results for SVM show minimal improvements over the standard prediction. And
again the predicted values lie around 3. Tuning the versions of SVM, did not make
much difference. Neither did weighing the classes, which is unexpected as there are
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significantly more ’3’ values then other values and putting a higher cost on misclas-
sifying the other values could have changed things.

Limitations and future research

It is important to note that the provided datasets with assessment and performance
scores are relatively small compared to the datasets large organizations might have.
As some research mentioned, splitting the data into several job categories might
help finding ’suitable’ behavioral traits for that job. Still, especially because most
companies already use a certain threshold which reduces the spread, it is not certain
that with bigger datasets any proclaimed patterns will be found.

Impact and summary

Even though some researchers in Psychology claim to have proven that some behav-
ioral traits can predict future performance, nothing in this research supports their
claim. Little correlation is found between any of the variables and the performance
or potential score. The ’standard-3 prediction’ has comparable RMSE and MAE as
the optimized models, which makes them irrelevant. With these results there is no
reason to believe that your assessment scores can be used as predictor of your future
performance or potential.
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Appendix A

Data Tables

A.1 Table A.1 Variable names and range

Variable name Range Average
gevoeligheid 1-9 4.56
extraversie 1-9 5.99
interesse 1-9 5.55
mensgerichtheid 1-9 5.30
taakgerichtheid 1-9 5.53
g1_nervositeit 1-9 4.98
g2_boosheid 1-9 4.87
g3_neerslachtigheid 1-9 4.27
g4_gene 1-9 4.60
g5_stressgevoeligheid 1-9 4.70
e1_vriendelijkheid 1-9 5.89
e2_contactbehoefte 1-9 5.87
e3_dominantie 1-9 5.69
e4_dynamiek 1-9 5.29
e5_spanningsbehoefte 1-9 5.86
e6_opgewektheid 1-9 6.06
i1_verbeeldingskracht 1-9 5.32
i2_artistieke_interesse 1-9 4.96
i3_emotionaliteit 1-9 5.54
i4_veranderingsgezindheid 1-9 5.53
i5_intellectuele_interesse 1-9 5.32
i6_vrijzinnigheid 1-9 5.39
m1_vertrouwen 1-9 5.31
m2_integriteit 1-9 5.29
m3_betrokkenheid 1-9 5.97
m4_meegaandheid 1-9 4.74
m5_bescheidenheid 1-9 4.98
m6_compassie 1-9 5.17
t1_zelfverzekerdheid 1-9 5.58
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Variable name Range Average
t2_ordelijkheid 1-9 4.98
t3_gewetensvol 1-9 5.55
t4_prestatiemotivatie 1-9 5.86
t5_zelfdiscipline 1-9 5.79
t6_bedachtzaamheid 1-9 5.05
Impressiemanagement 1-3 1.20
Zelfdeceptie 1-3 1.06
Accuratesse 1-9 5.26
Besluitvaardigheid 1-9 5.63
Delegeren 1-9 5.48
Kwaliteitsgerichtheid 1-9 5.36
Onderhandelen 1-9 5.36
Plannen 1-9 5.14
Plichtsbesef 1-9 5.59
Presenteren 1-9 5.67
Presteren onder druk 1-9 5.40
Resultaatgerichtheid 1-9 5.54
Structureren 1-9 5.40
Sturen 1-9 5.70
Aanpassingsvermogen 1-9 5.55
Contactvaardigheid 1-9 5.85
Draagvlak creeren 1-9 5.50
Feedback geven 1-9 5.62
Klantgerichtheid 1-9 5.96
Luistervaardigheid 1-9 5.87
Motiveren 1-9 5.84
Onderzoeken van drijfveren 1-9 5.63
Organisatiesensitiviteit 1-9 5.44
Overtuigen 1-9 5.75
Samenwerken 1-9 5.93
Teambuilding 1-9 5.80
Assertiviteit 1-9 5.48
Commerciele drive 1-9 5.84
Dienstverlenend 1-9 5.34
Drive 1-9 5.64
Dynamiek 1-9 5.36
Flexibiliteit 1-9 5.16
Initiatief 1-9 5.53
Integriteit 1-9 5.06
Ondernemerschap 1-9 5.70
Sensitiviteit 1-9 5.75
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Variable name Range Average
Stressbestendigheid 1-9 5.29
Veranderingsbereidheid 1-9 5.67
Zelfontwikkeling 1-9 5.50
Analyseren en oordeelsvorming 1-9 5.28
Creativiteit 1-9 5.42
Helicopterview 1-9 5.46
Innoveren 1-9 5.65
Marktgerichtheid 1-9 5.73
Omgevingsbewustzijn 1-9 5.25
Strategisch inzicht 1-9 5.37
MPI_Basisaanleg 1-9 5.53
Totaalscore 1-9 6.26
Cijfermatig redeneervermogen 1-9 5.71
Logisch redeneervermogen 1-9 5.98
Rekenvaardigheid 1-9 6.34
Verbale aanleg 1-9 6.10

A.2 Table A.2 Correlations

Variable name Correlation performance score Correlation potential score
gevoeligheid 0.0601 0.0749
extraversie -0.0807 -0.0549
interesse -0.1461 -0.0590
mensgerichtheid -0.0726 -0.1638
taakgerichtheid 0.0351 0.0142
g1_nervositeit 0.0604 0.0556
g2_boosheid 0.0044 0.0741
g3_neerslachtigheid 0.0472 0.0879
g4_gene 0.0365 0.0336
g5_stressgevoeligheid 0.0229 0.0512
e1_vriendelijkheid -0.0755 -0.0926
e2_contactbehoefte -0.0490 -0.0858
e3_dominantie 0.0545 0.0485
e4_dynamiek 0.0800 0.0699
e5_spanningsbehoefte -0.1730 -0.0227
e6_opgewektheid -0.0758 -0.0482
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Variable name Correlation performance score Correlation potential score
i1_verbeeldingskracht -0.1326 -0.0115
i2_artistieke_interesse -0.0362 -0.0518
i3_emotionaliteit -0.0358 -0.0697
i4_veranderingsgezindheid -0.1401 0.0072
i5_intellectuele_interesse -0.0977 -0.0744
i6_vrijzinnigheid -0.0799 -0.0286
m1_vertrouwen -0.0027 -0.0902
m2_integriteit -0.0062 -0.1190
m3_betrokkenheid -0.1022 -0.0653
m4_meegaandheid -0.0325 -0.0881
m5_bescheidenheid -0.0353 -0.0732
m6_compassie -0.0681 -0.1438
t1_zelfverzekerdheid 0.0019 -0.0173
t2_ordelijkheid 0.0236 0.0447
t3_gewetensvol 0.0050 -0.0808
t4_prestatiemotivatie 0.0441 0.1014
t5_zelfdiscipline -0.0462 -0.0791
t6_bedachtzaamheid 0.0368 0.0953
Impressiemanagement -0.0128 -0.0098
Zelfdeceptie 0.0054 0.0881
Accuratesse 0.0214 0.0172
Besluitvaardigheid -0.0049 -0.0395
Delegeren 0.0521 0.0443
Kwaliteitsgerichtheid 0.0619 0.0579
Onderhandelen 0.0416 0.1209
Plannen 0.0081 0.0000
Plichtsbesef -0.0005 -0.1137
Presenteren -0.0254 0.0286
Presteren onder druk -0.0381 -0.0420
Resultaatgerichtheid -0.0028 0.0451
Structureren -0.0678 -0.0699
Sturen 0.0253 0.0752
Aanpassingsvermogen -0.0691 -0.1192
Contactvaardigheid -0.0435 -0.0909
Draagvlak creeren 0.0521 0.0508
Feedback geven 0.0758 0.0132
Klantgerichtheid -0.0795 -0.1000
Luistervaardigheid -0.1053 -0.0653
Motiveren -0.0008 0.0031
Onderzoeken van drijfveren -0.0642 -0.0617
Organisatiesensitiviteit -0.0235 -0.0170
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Variable name Correlation performance score Correlation potential score
Overtuigen -0.0456 0.0070
Samenwerken -0.0562 -0.1089
Teambuilding -0.0711 -0.1325
Assertiviteit 0.0136 0.0305
Commerciele drive -0.0673 -0.0173
Dienstverlenend -0.1380 -0.1830
Drive 0.0539 0.0729
Dynamiek 0.0076 0.0302
Flexibiliteit -0.0777 0.0182
Initiatief -0.0057 -0.0386
Integriteit -0.0236 -0.1375
Ondernemerschap -0.0231 0.0121
Sensitiviteit -0.0658 -0.1007
Stressbestendigheid -0.0351 -0.0702
Veranderingsbereidheid -0.1405 -0.0301
Zelfontwikkeling 0.0161 0.0606
Analyseren en oordeelsvorming -0.1335 -0.0542
Creativiteit -0.1368 -0.0425
Helicopterview -0.0984 0.0033
Innoveren -0.1445 -0.0192
Marktgerichtheid -0.0875 0.0497
Omgevingsbewustzijn -0.1001 0.0366
Strategisch inzicht -0.0785 0.0318
MPI_Basisaanleg 0.0147 0.0278
Totaalscore -0.0374 0.0287
Cijfermatig redeneervermogen -0.0745 -0.0561
Logisch redeneervermogen 0.0199 0.0683
Rekenvaardigheid -0.0458 0.0640
Verbale aanleg -0.0304 -0.0209
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Appendix B

R-code

B.1 JWG_ResearchPaperBA2018.R

# Research Paper Business Analyt i cs − Apri l 2018
# J o e l G a s t e l a a r s − 2132710
#
# Supervised by : Prof . dr . Sandja i Bhulai
#
# Assessment s c o r e s as a p r e d i c t o r of your future performance and p o t e n t i a l .
#

rm( l i s t = l s ( ) )

l i b r a r y ( dplyr )
l i b r a r y ( data . t a b l e )
l i b r a r y ( base )
l i b r a r y ( ggplot2 )
l i b r a r y ( readxl )
l i b r a r y ( s t a t s )
l i b r a r y ( c l a s s )
l i b r a r y (FNN)
l i b r a r y ( base )
l i b r a r y ( hydroGOF )
l i b r a r y ( e1071 )
l i b r a r y ( lmtes t )
l i b r a r y ( lawsta t )
l i b r a r y ( gvlma )
l i b r a r y ( c o r r p l o t )
l i b r a r y ( RColorBrewer )

setwd ( "C:/ Users/ J o e l /Documents/Business Analyt i cs/Master/Research Paper/Research data /" )

# Import data
merged <− read . csv ( " perfVIT−17. csv " , header = TRUE) #313 rows with performance , p o t e n t i a l , VIT and CAS data

##### Preparing d a t a s e t
#Removing comments from s c o r e s
merged$Evaluation . Score . Descr ipt ion <− as . numeric ( subs t r ( merged$Evaluation . Score . Descr ipt ion , 0 , 1 ) )
merged$Potential . Score . Descr ip t ion <− as . numeric ( subs t r ( merged$Potential . Score . Descr ipt ion , 0 , 1 ) )

#Re−arranging p o t e n t i a l scores , as shor t term promotion ( within 1 yr ) i s ’ b e t t e r ’ than long−term ( in 1−3 years )
merged$Potential . Score . Descr ip t ion [ merged$Potential . Score . Descr ip t ion == 4] <− 6
merged$Potential . Score . Descr ip t ion [ merged$Potential . Score . Descr ip t ion == 5] <− 4
merged$Potential . Score . Descr ip t ion [ merged$Potential . Score . Descr ip t ion == 6] <− 5

#Focus f i r s t on CAS/VIT with performance AND POTENTIAL s c o r e s
t a b l e ( merged$Evaluation . Score . Descr ipt ion )

# Ca l c u l a te c o r r e l a t i o n s PERFORMANCE
cor_vec tor = NULL
f o r ( i in 4 : 8 9 ) {

cor_vec tor [ i −3] <− cor ( merged [ , i ] , merged$Evaluation . Score . Descr ipt ion , use = " complete . obs " , method = " pearson " )
}
summary ( cor_vec tor )
cor_vec tor

#Check names of a l l c o r r e l a t i o n s with higher abso lute value then 0 . 1
useful_pos_cor <− 3 + which ( cor_vec tor > 0 . 1 ) # p o s i t i v e corr > 0 . 1
colnames ( merged [ useful_pos_cor ] )
useful_neg_cor <− 3 + which ( cor_vec tor < −0.1) # negat ive corr <−0.1
colnames ( merged [ useful_neg_cor ] )
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# Ca l c u l a te c o r r e l a t i o n s POTENTIAL
cor_vectorPOT = NULL
f o r ( i in 4 : 8 9 ) {

cor_vectorPOT [ i −3] <− cor ( merged [ , i ] , merged$Potential . Score . Descr ipt ion , use = " complete . obs " , method = " pearson " )
}
summary ( cor_vectorPOT )
cor_vectorPOT

#Check names of a l l c o r r e l a t i o n s with higher abso lute value then 0 . 1
useful_pos_corPOT <− 3 + which ( cor_vectorPOT > 0 . 1 ) # p o s i t i v e corr > 0 . 1
colnames ( merged [ useful_pos_corPOT ] )
useful_neg_corPOT <− 3 + which ( cor_vectorPOT < −0.1) # negat ive corr <−0.1
colnames ( merged [ useful_neg_corPOT ] )

t a b l e ( merged$Potential . Score . Descr ip t ion )

############## P r e d i c t Performance & P o t e n t i a l Scores

## Create t r a i n and t e s t s e t 80/20 %
index <− 1 : nrow ( merged )
t e s t I n d e x <− sample ( index , trunc ( length ( index ) / 5 ) )
#62 i n s t a n c e s t e s t
t e s t s e t <− merged [ tes t Index , ]
check = t e s t s e t $ E v a l u a t i o n . Score . Descr ipt ion # performance score
checkPOT = t e s t s e t $ P o t e n t i a l . Score . Descr ipt ion # p o t e n t i a l score
#Remove per f/pot score and employee key
t e s t s e t [ 1 : 3 ] <− NULL

#251 i n s t a n c e s t r a i n
t r a i n s e t = merged[− tes t Index , ]
c l = t r a i n s e t $ E v a l u a t i o n . Score . Descr ip t ion # performance score
clPOT = t r a i n s e t $ P o t e n t i a l . Score . Descr ipt ion # p o t e n t i a l score
t r a i n s e t [ 1 : 3 ] <− NULL
#Remove per f/pot score and employee key

#################################################################################################################

####LINEAR REGRESSION
# variance−cov matrix
tempset <− matrix ( , nrow = 251 , ncol = 14)
tempset [ , 1 ] = t r a i n s e t $ g e v o e l i g h e i d
tempset [ , 2 ] = t r a i n s e t $ I n t e g r i t e i t
tempset [ , 3 ] = t r a i n s e t $ i 1 _ v e r b e e l d i n g s k r a c h t
tempset [ , 4 ] = t r a i n s e t $ i n t e r e s s e
tempset [ , 5 ] = t r a i n s e t $ I n n o v e r e n
tempset [ , 6 ] = t r a i n s e t $ e 5 _ sp a n n i n g s b e h o e f t e
tempset [ , 7 ] = t r a i n s e t $ i 4 _ v e r a n d e r i n g s g e z i n d h e i d
tempset [ , 8 ] = t r a i n s e t $ D i e n s t v e r l e n e n d
tempset [ , 9 ] = t r a i n s e t $ C r e a t i v i t e i t
tempset [ , 1 0 ] = trainset$m3_betrokkenheid
tempset [ , 1 1 ] = t r a i n s e t $ L u i s t e r v a a r d i g h e i d
tempset [ , 1 2 ] = t r a i ns e t $A n al ys er en . en . oordeelsvorming
tempset [ , 1 3 ] = trainset$Omgevingsbewustzi jn
tempset [ , 1 4 ] = t ra inse t$Verander ingsbere idhe id

# Best combinations : 1 , 3 , 6 , 8 (RMSE, MAE) SOMETIMES ( DIFF SAMPLES) depending on MAE or RMSE preference .

covmat = matrix ( c ( cov ( tempset ) ) , nrow =14 , ncol =14)
# cor matrix
cormat=cov2cor ( covmat )
rownames ( cormat ) <− c ( " S e n s i t i v i t y " , " I n t e g r i t y " , " Imagination " , " I n t e r e s t " , " Innovation " , " Sensat ion seeking " , " Culture f o r change " ,

" Service−o r i e n t a t e d " , " C r e a t i v i t y " , " Involvement " , " L i s t e n in g s k i l l s " , " Analysis and judgement " ,
" Environmental awareness " , " Wi l l ingsness to change " )

colnames ( cormat ) <− c ( " S e n s i t i v i t y " , " I n t e g r i t y " , " Imagination " , " I n t e r e s t " , " Innovation " , " Sensat ion seeking " , " Culture f o r change " ,
" Service−o r i e n t a t e d " , " C r e a t i v i t y " , " Involvement " , " L i s t e n i ng s k i l l s " , " Analysis and judgement " ,
" Environmental awareness " , " Wi l l ingsness to change " )

#No p e r f e c t m u l t i c o l l i n e a r i t y <<−− OK
c o r r p l o t ( cormat , type = " upper " , method = " c i r c l e " , t l . c o l =" black " , t l . s r t =45)

l inear_model <− lm ( c l ~ gevoel igheid + i n t e r e s s e + I n t e g r i t e i t , data= t r a i n s e t )
pred2 <− p r e d i c t . lm ( linear_model , t e s t s e t )
RMSE_LM <− rmse ( pred2 , check )
MAE_LM <− mae( pred2 , check )

linear_modelPOT <− lm ( clPOT ~ gevoel igheid + i n t e r e s s e + I n t e g r i t e i t , data= t r a i n s e t )
pred2POT <− p r e d i c t . lm ( linear_modelPOT , t e s t s e t )
RMSE_LMPOT <− rmse ( pred2POT , checkPOT )
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MAE_LMPOT <− mae( pred2POT , checkPOT )

# l i n e a r r e g r e s s i o n worse then " standard−3"

############################ Check assumptions LM − http :// r−s t a t i s t i c s . co/Assumptions−of−Linear−Regression . html
#model equation i s l i n e a r <<− NOT OK, p l o t ( merged$Evaluation . Score . Descr ipt ion , merged$gevoeligheid )

#mean e r r o r i s 0 <<− OK
mean( l inear_model$res idua ls )
mean( l inear_modelPOT$residuals )

#no a u t o c o r r e l a t i o n of re s id u a l s , randomness r e s i d u a l s <<− OK
# a c f ( l inear_model$res idua ls ) # ( time s e r i e s )
lawsta t : : runs . t e s t ( l inear_model$res iduals , p l o t . i t =TRUE) # p−value > 0 . 0 5 means H0 : r e s i d u a l s are random , no p a t t e r n s
lawsta t : : runs . t e s t ( l inear_modelPOT$residuals , p l o t . i t =TRUE)
# lmtes t : : dwtest ( l inear_model ) # ( time s e r i e s ) p−value > 0 . 0 5 means H0 : a u t o c o r r e l a t i o n i s 0
## YES INDEPENDENT ERRORS ( time s e r i e s )
#Box . t e s t ( l inear_model$res idua ls ^2 , lag =12 , type =" Ljung−Box " ) # p−value >0.05 means H0 : r e s i d u a l s are independent d i s t r i b u t e d

## NOT NORMAL DIST ERRORS
r j b . t e s t ( l inear_model$res iduals , option =" JB " ) # p−value >0.05 means H0 : r e s i d u a l s are normal d i s t r i b u t e d
shapiro . t e s t ( l inear_model$res idua ls ) # not normal
r j b . t e s t ( l inear_modelPOT$residuals , option =" JB " ) # p−value >0.05 means H0 : r e s i d u a l s are normal d i s t r i b u t e d
shapiro . t e s t ( l inear_modelPOT$residuals ) # not normal

#The X v a r i a b l e s and r e s i d u a l s are uncorrelated , high p−value means no r e j e c t i o n h0= 0 corr . <<<− OK
cor . t e s t ( t r a i n s e t $ g e v o e l i g h e i d , l inear_model$res idua ls ) # check f o r every used v a r i a b l e
cor . t e s t ( t r a i n s e t $ I n t e g r i t e i t , l inear_model$res idua ls )
cor . t e s t ( t r a i n s e t $ i 1 _ v e r b e e l d i n g s k r a c h t , l inear_model$res idua ls )
cor . t e s t ( t ra inse t$e5_spanningsbehoef te , l inear_model$res idua ls )
cor . t e s t ( t ra inse t$Diens tver lenend , l inear_model$res idua ls )
#CHECK SAME FOR POTENTIAL
cor . t e s t ( t r a i n s e t $ g e v o e l i g h e i d , l inear_modelPOT$residuals ) # check f o r every used v a r i a b l e
cor . t e s t ( t r a i n s e t $ I n t e g r i t e i t , l inear_modelPOT$residuals )
cor . t e s t ( t r a i n s e t $ i 1 _ v e r b e e l d i n g s k r a c h t , l inear_modelPOT$residuals )
cor . t e s t ( t ra inse t$e5_spanningsbehoef te , l inear_modelPOT$residuals )
cor . t e s t ( t ra inse t$Diens tver lenend , l inear_modelPOT$residuals )

# Homoscedasticity <<− OK, normality of r e s i d u a l s <<−− NOT OK
par ( mfrow=c ( 2 , 2 ) )
p l o t ( l inear_model ) #PERFORMANCE
p l o t ( linear_modelPOT ) #POTENTIAL
par ( mfrow=c ( 1 , 1 ) )

#Number of obs must be g r e a t e r than number of X <<−− OK
var ( t r a i n s e t $ g e v o e l i g h e i d ) #3 .81
var ( t r a i n s e t $ I n t e g r i t e i t ) # 3 .
var ( t r a i n s e t $ i 1 _ v e r b e e l d i n g s k r a c h t ) #3 .21
var ( t r a i n s e t $ D i e n s t v e r l e n e n d ) #3 .18
var ( t r a i n s e t $ e 5 _ s p a n n i n g s be h o e f t e ) #3 .18

#TEST ALL <<−−− 3 NOT OK
gvlma : : gvlma ( linear_model , a l p h a l e v e l = 0 . 0 5 ) #PERFORMANCE
gvlma : : gvlma ( linear_modelPOT , a l p h a l e v e l = 0 . 0 5 ) #POTENTIAL

#################################################################################################################

## K Nearest Neighbours CLASSIFICATION & REGRESSION
###########PERFORMANCE
RMSE_KNN = NULL
MAE_KNN = NULL
RMSE_KNNreg = NULL
MAE_KNNreg = NULL
#RMSE_CV = NULL
#MAE_CV = NULL
f o r ( j in 1 : 5 0 ) {

knn <− knn ( t r a i n = t r a i n s e t , t e s t = t e s t s e t , c l , k = j ) #knn c l a s s i f i c a t i o n
knnreg <− knn . reg ( t r a i n = t r a i n s e t , t e s t = t e s t s e t , c l , k = j ) #knn r e g r e s s i o n

# knn_cv <− knn . cv ( t r a i n s e t , c l , k = j , prob = FALSE) #Cross−v a l i d a t i o n

RMSE_KNN[ j ] = rmse ( as . numeric ( knn ) , check )
MAE_KNN[ j ] = mae( as . numeric ( knn ) , check )
RMSE_KNNreg[ j ] = rmse ( as . numeric ( knnreg$pred ) , check )
MAE_KNNreg[ j ] = mae( as . numeric ( knnreg$pred ) , check )

# RMSE_CV[ j ] = rmse ( as . numeric ( knn_cv ) , as . numeric ( c l ) )
# MAE_CV[ j ] = mae( as . numeric ( knn_cv ) , as . numeric ( c l ) )
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}
#COMPARE TO PREDICTING ALL 3S −− STANDARD PREDICTION , a l l average performances
standard = NULL
f o r ( i in 1 : length ( knn ) ) {

standard [ i ] = 3
}
RMSE_STANDARD = rmse ( standard , check )
MAE_STANDARD = mae( standard , check )

#################POTENTIAL
RMSE_KNNPOT = NULL
MAE_KNNPOT = NULL
RMSE_KNNregPOT = NULL
MAE_KNNregPOT = NULL
#RMSE_CV = NULL
#MAE_CV = NULL
f o r ( j in 1 : 5 0 ) {

knnPOT <− knn ( t r a i n = t r a i n s e t , t e s t = t e s t s e t , clPOT , k = j ) #knn c l a s s i f i c a t i o n
knnregPOT <− knn . reg ( t r a i n = t r a i n s e t , t e s t = t e s t s e t , clPOT , k = j ) #knn r e g r e s s i o n

# knn_cv <− knn . cv ( t r a i n s e t , c l , k = j , prob = FALSE) #Cross−v a l i d a t i o n

RMSE_KNNPOT[ j ] = rmse ( as . numeric (knnPOT ) , checkPOT )
MAE_KNNPOT[ j ] = mae( as . numeric (knnPOT ) , checkPOT )
RMSE_KNNregPOT[ j ] = rmse ( as . numeric ( knnregPOT$pred ) , checkPOT )
MAE_KNNregPOT[ j ] = mae( as . numeric ( knnregPOT$pred ) , checkPOT )
# RMSE_CV[ j ] = rmse ( as . numeric ( knn_cv ) , as . numeric ( c l ) )
# MAE_CV[ j ] = mae( as . numeric ( knn_cv ) , as . numeric ( c l ) )

}

#COMPARE TO PREDICTING ALL 3S −− STANDARD PREDICTION , a l l average performances
standardPOT = NULL
f o r ( i in 1 : length (knnPOT ) ) {

standardPOT [ i ] = 3
}
RMSE_STANDARDPOT = rmse ( standardPOT , checkPOT )
MAE_STANDARDPOT = mae( standardPOT , checkPOT )

##################### COMBI PLOT PERFORMANE AND POTENTIAL

#The KNN RMSE and MAE converge to the values of the standard p r e d i c t i o n
par ( mfrow=c ( 2 , 2 ) )
p l o t (RMSE_KNN, xlab = " k " , ylim = c ( 0 . 8 , 2 . 3 ) , main = "RMSE f o r KNN c l a s s i f i c a t i o n of performance " ) + a b l i n e ( h=RMSE_STANDARD, c o l = " red " )
# p l o t (MAE_KNN, xlab = " k " , ylim = c ( 0 . 4 , 2 . 1 ) ) + a b l i n e ( h=MAE_STANDARD, c o l = " red " )
p l o t (RMSE_KNNPOT, xlab = " k " , ylim = c ( 0 . 6 5 , 2 . 4 ) , main = "RMSE f o r KNN c l a s s i f i c a t i o n of p o t e n t i a l " ) + a b l i n e ( h=RMSE_STANDARDPOT, c o l = " red " )

p l o t (RMSE_KNNreg, xlab = " k " , main = "RMSE f o r KNN r e g r e s s i o n of performance " ) + a b l i n e ( h=RMSE_STANDARD, c o l = " red " )
# p l o t (MAE_KNNreg, xlab = " k " , ylim = c ( 0 . 4 , 0 . 8 ) ) + a b l i n e ( h=MAE_STANDARD, c o l = " red " )
p l o t (RMSE_KNNregPOT, xlab = " k " , main = "RMSE f o r KNN r e g r e s s i o n of p o t e n t i a l " ) + a b l i n e ( h=RMSE_STANDARDPOT, c o l = " red " )

par ( mfrow=c ( 1 , 1 ) )

# standard = NULL
# f o r ( i in 1 : length ( knn_cv ) ) {
# standard [ i ] = 3
# }
# RMSE_CVSTANDARD = rmse ( standard , as . numeric ( c l ) )
# MAE_CVSTANDARD = mae( standard , as . numeric ( c l ) )
#
# Best s o l u t i o n at k=4
# p l o t (RMSE_CV) + a b l i n e ( h=RMSE_CVSTANDARD)
# p l o t (MAE_CV) + a b l i n e ( h=MAE_CVSTANDARD)

#When K=10 you get the ’ optimal ’ p r e d i c t i o n which converges with RMSE and MAE to the standard p r e d i c t i o n : Al l 3 ’ s
# Therefore KNN does not give s a t i s f i e d r e s u l t s .

#################################################################################################################

#####SUPPORT VECTOR MACHINES −−−−−−−−−−−−−−−−−−−−− PERFORMANCE
#nu−regress ion , eps−r e g r e s s i o n or c−c l a s s i f i c a t i o n
svm_model <− svm( c l ~ . , data= t r a i n s e t , type = "nu−c l a s s i f i c a t i o n " )
summary ( svm_model )
pred <− p r e d i c t ( svm_model , t r a i n s e t )
summary ( pred )
# t a b l e ( pred , c l )
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svm_tune <− tune (svm , t r a i n . x= t r a i n s e t , t r a i n . y=c l ,
kernel =" r a d i a l " , ranges= l i s t ( c o s t =10^(−1:2) , gamma=c ( . 5 , 1 , 2 ) ) )

p r i n t ( svm_tune )

svm_model_after_tune <− svm( c l ~ . , data= t r a i n s e t , kernel =" r a d i a l " , type = "C−c l a s s i f i c a t i o n " , c o s t =10 , gamma= 0 . 5 )
summary ( svm_model_after_tune )
## CHECK ON TESTSET
pred <− p r e d i c t ( svm_model_after_tune , t e s t s e t )
summary ( pred )

RMSE_SVM <− rmse ( as . numeric ( pred ) , check )
MAE_SVM <− mae( as . numeric ( pred ) , check )

#tuned SVM s c o r e s worse then " standard−3" predic t ion , but c l o s e .

#####SUPPORT VECTOR MACHINES −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− POTENTIAL
#nu−regress ion , eps−r e g r e s s i o n or c−c l a s s i f i c a t i o n
# c l a s s . weights only f o r c l a s s i f i c a t i o n , but doesnt seem to a f f e c t p r e d i c t i o n . . .
# c o s t <− t a b l e ( clPOT )
# c o s t [2]=100000000000000000
svm_modelPOT <− svm( clPOT ~ . , type = "nu−r e g r e s s i o n " , data= t r a i n s e t )
summary ( svm_modelPOT )
predPOT <− p r e d i c t ( svm_modelPOT , t r a i n s e t )
summary ( predPOT )
# t a b l e ( pred , c l )

svm_tunePOT <− tune (svm , t r a i n . x= t r a i n s e t , t r a i n . y=clPOT ,
kernel =" r a d i a l " , type = "nu−r e g r e s s i o n " , ranges= l i s t ( c o s t =10^(−1:2) , gamma=c ( . 5 , 1 , 2 ) ) )

p r i n t ( svm_tunePOT )

svm_model_after_tunePOT <− svm( clPOT ~ . , data= t r a i n s e t , kernel =" r a d i a l " , type = "nu−r e g r e s s i o n " , c o s t =10 , gamma=1)
summary ( svm_model_after_tunePOT )
## CHECK ON TESTSET
predPOT <− p r e d i c t ( svm_model_after_tunePOT , t e s t s e t )
summary ( predPOT )

RMSE_SVMPOT <− rmse ( as . numeric ( predPOT ) , checkPOT )
MAE_SVMPOT <− mae( as . numeric ( predPOT ) , checkPOT )

#tuned SVM s c o r e s worse then " standard−3" predic t ion , but c l o s e .
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