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Abstract

Which are the most relevant attributes to describe a response vari-

able?

This is one of the first question a researcher need to ask himself while

analyzing a dataset, and the answer is not trivial.

This research paper aims to explain and discuss the use of the LASSO

method to address the feature selection task.

Feature selection is a crucial and challenging task in the statistical

modeling field, there are many studies that try to optimize and stan-

dardize this process for any kind of data, but this is not an easy thing

to do.

In the first chapter an introduction of feature selection task and the

LASSO method are presented.

In the second chapter we will apply the LASSO feature selection prop-

erty to a Linear Regression problem, and the results of the analysis

on a real dataset will be shown.

Finally, in the third chapter the same analysis is repeated on a Gen-

eralized Linear Model in particular a Logistic Regression Model for

a high-dimensional dataset. In the same chapter the findings of the

scientific study of J.Chen and Z.Chen [4] are presented.
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1 Introduction

In statistics one of the main goals is to build a model that better represent

a dataset, this process include the task of features selection.

The only aim of the researcher is to build a model that describes a response

variable; in order to do so one of the first question that the researcher should

be able to answer is which features/variables should I take into considera-

tion? or Which are the most important attributes to describe the response

variable?.

This research paper aims to answer this questions showing the process of

feature selection and describing one of the possible methods to accomplish

this task. In particular the focus is on feature selection using the LASSO

method.

The goal of this paper is to describe the Lasso method. The LASSO method

will be analyzed for both the linear models and the Generalized Linear Mod-

els. Furthermore in order to test the efficiency of LASSO, the method will

be applied to real data, and the results will be analyzed and described.

1.1 Feature Selection

The feature selection is the process that choose a reduced number of explana-

tory variable to describe a response variable. The main reasons why feature

selection is used are:

• make the model easier to interpret, removing variables that are redun-

dant and do not add any information;

• reduce the size of the problem to enable algorithms to work faster,

making it possible to handle with high-dimensional data;

• reduce overfitting.

The variable selection is even more important for the high-dimensional datasets;

here the number of features is very high, sometimes higher than the num-

ber of observation. In these situation it is hard to easily say which of the

variables are relevant and which ones are irrelevant, and on the other hand,
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it is difficult, due to dimensionality issues, to build and interpret a model

that takes into consideration all the variables. For these reasons the feature

selection is an important task.

In the literature there are several types of methods to complete the feature

selection task.

First the Filter Methods select the features by ranking them on how useful

they are for the model, to compute the usefulness score statistical test and

correlation results are used (e.g. Chi-square, ANOVA, Pearson’s correlation).

Secondly Wrapper Methods generates different subsets of features, each sub-

set is then used to build a model and train the learning algorithm. The best

subset is selected by testing the algorithm. To select the features for the

subsets different criteria are used (e.g. Forward and Backward selection)

Finally the Embedded Methods are a combination between the two previous

methods. The Embedded Methods included the LASSO methods that is going

to be studied in details in this paper.

1.2 What is LASSO?

LASSO - Least Absolute Shrinkage and Selection Operator - was first formu-

lated by Robert Tibshirani in 1996. It is a powerful method that perform

two main tasks: regularization and feature selection. The LASSO method

puts a constraint on the sum of the absolute values of the model parameters,

the sum has to be less than a fixed value (upper bound). In order to do so

the method apply a shrinking (regularization) process where it penalizes the

coefficients of the regression variables shrinking some of them to zero. During

features selection process the variables that still have a non-zero coefficient

after the shrinking process are selected to be part of the model. The goal of

this process is to minimize the prediction error.

In practice the tuning parameter λ, that controls the strength of the penalty,

assume a great importance. Indeed when λ is sufficiently large then coeffi-

cients are forced to be exactly equal to zero, this way dimensionality can be

reduced. The larger is the parameter λ the more number of coefficients are

shrinked to zero. On the other hand if λ = 0 we have an OLS (Ordinary

Least Sqaure) regression.
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There are many advantages in using LASSO method, first of all it can pro-

vide a very good prediction accuracy, because shrinking and removing the

coefficients can reduce variance without a substantial increase of the bias,

this is especially useful when you have a small number of observation and a

large number of features. In terms of the tuning parameter λ we know that

bias increases and variance decreases when λ increases, indeed a trade-off

between bias and variance has to be found.

Moreover the LASSO helps to increase the model interpretability by elimi-

nating irrelevant variables that are not associated with the response variable,

this way also overfitting is reduced. This is the point where we are more in-

terested in because in this paper the focus is on the feature selection task.
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2 LASSO in Linear Models

In this chapter we introduce the linear models together with a brief expla-

nation of their main features. Moreover we explain how to use the LASSO

method in this context.

2.1 Linear Model

2.1.1 Statistical Model

A statistical model is a mathematical representation of a real-world problem.

The model should summarize and explain the data as close as possible to the

reality but it also should be simple and easy to understand and apply.

Usually the researcher has some data collected from the real world and his

purpose is to build a model on them without losing too much information.

A model can be composed by two different type of variables.

Response variable (dependent variable) is the focus of the experiment, it

is the output of the model that the researcher wants to investigate

on. The response variable can be a single one, Univariate Models, or

can be multiple, Multivariate Models. In this paper we only consider

Univariate Models.

Explanatory variables (independent variables) are measured or set by the

researcher, these are the input of the model. These variables are called

explanatory because they explain how the response variable is affected

by their changes.

During the modeling process one of the phases is the features selection, that

can be done using the LASSO method. In this task the role of the explana-

tory variables is central, in fact it is really important, in order to build a good

model, to choose the right variables that influence the response variable.

In particular in the high-dimensional datasets, where the number of vari-

ables is bigger than the number of observations, the selection of features

gains greater importance.
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The response variable can have different type of probability distributions.

When the response variable is normally distributed we consider the Linear

Model while when the response variable follows different distributions we talk

about Generalized Linear Model, explained in chapter 3. In this chapter we

will consider the Linear Model.

2.1.2 Linear Model

Linear Model, often called Linear Regression Model, is the model that de-

scribes the relationship between response Yi and explanatory variables Xij.

The case of one explanatory variable is called Simple Linear Regression while

the case with two or more explanatory variables is called Multiple Linear Re-

gression. The first assumption of the Linear Regression Model is that the

response variable is normally distributed

Yi ∼ N(µi, σ
2) i = 1, ..., n

with mean µi and variance σ2.

Another assumption is the linearity of the model, that is a linear relationship

between the response variable and the explanatory variables.

The Linear model can be expressed as follow

Yi = β0 + xi1β1 + ...+ xikβk + εi i = 1, ..., n

where the parameters β0, β1, ..., βk are the regression coefficients and k is the

number of explanatory variables. Moreover εi represent the random error,

we assume they have 0 mean, constant variance and they are independent.

ε ∼ N(0, σ2I)

The vector-notation is also used

Y = Xβ + ε

with response vector Yn×1, design matrix Xn×k, coefficient vector βk×1 and

the error vector εn×1

The goal of linear regression is to fit a straight line to a number of points
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minimizing the sum of squared residuals.

Regression models are used for many purposes, for instance analysis of vari-

ance (ANOVA), parameters estimation, prediction and variable selection.

Later, in the practical example, we will show how to implement some of

them and we will focus on variable selection using LASSO method.

2.2 The LASSO estimator

LASSO is a regularization and variable selection method for statistical mod-

els. We first introduce this method for linear regression case. The LASSO

minimizes the sum of squared errors, with a upper bound on the sum of the

absolute values of the model parameters.

There are different mathematical form to introduce this topic, we will refer

to the formulation used by Bühlmann and van de Geer [1].

The lasso estimate is defined by the solution to the l1 optimization problem

minimize

(
‖Y−Xβ‖22

n

)
subject to

k∑
j=1

‖β‖1 < t

where t is the upper bound for the sum of the coefficients. This optimization

problem is equivalent to the parameter estimation that follows

β̂(λ) = argmin
β

(
‖Y−Xβ‖22

n
+ λ‖β‖1

)
where ‖Y−Xβ‖22 =

∑n
i=0(Yi − (Xβ)i)

2, ‖β‖1 =
∑k

j=1 |βj| and λ ≥ 0 is the

parameter that controls the strength of the penalty, the larger the value of

λ, the greater the amount of shrinkage.

The relation between λ and the upper bound t is a reverse relationship.

Indeed as t becomes infinity, the problem becomes an ordinary least squares

and λ becomes 0. Viceversa as t becomes 0, all coefficients shrink to 0 and

λ goes to infinity.

In this research paper we are going to use LASSO for its variable selection

property.

When we minimize the optimization problem some coefficients are shrank
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to zero, i.e. β̂j(λ) = 0, for some values of j (depending on the value of the

parameter λ). In this way the features with coefficient equal to zero are

excluded from the model. For this reason LASSO is a powerful method for

feature selection while other methods (e.g. Ridge Regression) are not.

As shown in Figure1 both Ridge Regression and LASSO methods find the

first point where the least squares error function border touch the constraint

region.

For the LASSO method the constraint region is a diamond, therefore it has

corners; this means that if the first point is in proximity of the corner, then it

has one coefficient βj equal to zero. While for the Ridge Regression method

the constraint region is a disk, thus it has no corners and the coefficients can

not be equal to zero.

Figure 1: Graph for the Ridge Regression (left side) and LASSO (right

side).The two areas are the constraint regions: the disk for the ridge re-

gression, β2
1 +β2

2 ≤ t, and the diamond for the LASSO, |β1|+ |β2| ≤ t. While

the ellipses are the borders of the least squares error functions.

2.2.1 Elastic Net

Elastic Net is an extension of LASSO, it has been proposed by Zou and

Hastie in 2005 [7].
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The LASSO method has some limitations:

• In small-n-large-p dataset the LASSO selects at most n variables before

it saturates.

• If there are grouped variables (highly correlated between each other)

LASSO tends to select one variable from each group ignoring the others

Elastic Net overcomes LASSO limitations using a combination of LASSO

and Ridge Regression methods.

β̂en(λ) = argmin
β

(
‖Y−Xβ‖22

n
+ λ2‖β‖2 + λ1‖β‖1

)
where λ1 ≥ 0 and λ2 ≥ 0 are two regularization parameters.

Adding a quadratic part to the penalty, Elastic Net removes the limitation

on the selected variables number and stabilize the selection from grouped

variables.

2.2.2 LASSO R implementation

In our analysis we will make use of the R statistical software that already

has different built in function to implement LASSO. In particular there are

two main package that perform regularization methods.

Glmnet (Lasso and elastic-net regularized generalized linear models) is a R

package that fits linear models or generalized linear model penalizing

the maximum likelihood with both the LASSO method and the Ridge

Regression and also the mixture of the two penalties (the elastic net).

To find the minimum the glmnet algorithm uses cyclical coordinate

descent.

Lars (Least Angle Regression) is a new model-selection method based on the

traditional forward selection, i.e. given a collection of possible explana-

tory variables, we select the one having largest absolute correlation with

the response y. In the Lars package there is an implementation of the

LASSO method.
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The method used to implement the LASSO is similar for both the algorithm.

The main difference is that glmnet computes a cyclical coordinate descent

on a grid of possible value for λ and as output it finds a sequence of models

related to the loss function. On the other hand, Lars is able to compute the

exact value of λ where a new variable enters the model.

However, glmnet is the most commonly used nowadays, and one point in

its favor is that it can be used for generalized linear model while Lars only

works for linear regression models. Furthermore there are studies that show

that glmnet also performs better in many situations.

In conclusion we will use glmnet for our analysis because we want to analyze

both linear model and generalized linear model.

2.3 Example: mtcars

2.3.1 Dataset description

The dataset contains data extracted from the Motor Trend US magazine,

and comprises fuel consumption and 10 aspects of automobile design and

performance for 32 models of car.

There are 32 observation and 10 features, the response variable we want to

study is mpg, that is the miles per gallon (or fuel efficiency).

The explanatory variables are:

• cyl : Number of cylinders

• disp : Displacement (volume of the engine)

• hp : Gross horsepower

• drat : Rear axle ratio

• wt : Weight (1000 lbs)

• qsec : 1/4 mile time

• vs : V/S engine

• am : Transmission (0 = automatic, 1 = manual)
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• gear : Number of forward gears

• carb : Number of carburetors

The goal of our analysis is to underline which explanatory variables are most

relevant to predict the response variable mpg, in order to do so we will use

the LASSO method, but first we will analyze the dataset to understand the

data better.

As we can see in Table 1 some correlations between variables are stronger

than others. For instance the response variable mpg is highly correlated with

the following variables: weight (wt), number of cylinders (cyl), displacement

(disp) and horsepower (hp).

Secondly we can build a linear regression model. One of the example model

Table 1: Correlations : mtcars
mpg cyl disp hp drat wt qsec vs am gear carb

mpg 1

cyl -0.85 1

disp -0.85 0.9 1

hp -0.78 0.83 0.79 1

drat 0.68 -0.7 -0.71 -0.45 1

wt -0.87 0.78 0.89 0.66 -0.71 1

qsec 0.42 -0.59 -0.43 -0.71 0.09 -0.17 1

vs 0.66 -0.81 -0.71 -0.72 0.44 -0.55 0.74 1

am 0.6 -0.52 -0.59 -0.24 0.71 -0.69 -0.23 0.17 1

gear 0.48 -0.49 -0.56 -0.13 0.7 -0.58 -0.21 0.21 0.79 1

carb -0.55 0.53 0.39 0.75 -0.09 0.43 -0.66 -0.57 0.06 0.27 1

to build can be a model that includes the highly correlated explanatory vari-

ables. Using the linear regression model we can observe which explanatory

variable are more significant for the model and which other are less. For this

purpose we will use the lm R function and print the ANOVA table.
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lm<−lm(mpg ˜ cy l + di sp + hp + wt)

Analyzing Table 2 we can see, looking at the p-values, that the variable cyl

Table 2: ANOVA
Df Sum Sq Mean Sq F value Pr(>F)

cyl 1 817.71 817.71 129.53 0.0000

disp 1 37.59 37.59 5.96 0.0215

hp 1 9.37 9.37 1.48 0.2336

wt 1 90.92 90.92 14.40 0.0008

Residuals 27 170.44 6.31

and wt are very significant; thus we can expect that these variables will be

included in the final model.

We still don’t know if the choice of the variable included in the model is

optimal, probably not because the variable hp is not significant and should

be excluded from the model.

To decide which variable should be included in the final model we will make

use of the LASSO method for variable selection.

2.3.2 Feature Selection: LASSO

The main goal of this research paper is to learn how to use LASSO method

for the feature selection task. In the mtcars dataset we want to build a model

to predict the response variable mpg. To choose which variable to use in the

model we use the LASSO method making use of the glmnet package in R

(α = 1 LASSO, α = 0 Ridge Regularization).

c<−glmnet ( as . matrix ( mtcars [ −1 ] ) , mtcars [ , 1 ]

, s t andard i z e=TRUE, alpha=1)

Glmnet returns a sequence of different models for different values of λ.
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The user has to choose between these models taking into consideration the

problem to be solved. We will now use the function on all the explanatory

variables in the mtcars dataset, to predict the response variable mpg.

The results of the analysis are shown in Figure 2 and Figure 3. On the

x-axis the different values of λ are shown. Each line represent one of the

explanatory variable and its role in the model. In the plots we can see when

each variable entered in the model and to which extent they influenced the

response variable. Analyzing the plot in Figure 2 we can say that the

Figure 2: Glmnet: all variables

variable that most influence the model is wt, because it enters the model

first, and steadily negatively affect the response variable.

The second most important variable is am that enters later in the model but

positively affect the response variable; as we can see clearly in the plot am

also affect the trend of the wt variable once it enters in the model.

Furthermore we can select other important variables, looking at their trends,

such as: cyl, drat and carb. All the other variables seems to be less significant
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Figure 3: Glmnet: most significant variables

for the model. What has been said can be summarized in Figure 3; where

green lines determine the more important attributes that negatively affect the

response variable, while red lines determine the ones that affect it positively.

The next step is to choose which value of λ to consider. Even if for this

small dataset we will not get very informative results, we can still use the

cross-validation.

cv<−cv . glmnet (M[ , c ( 1 , 3 , 5 ) ] , mtcars [ , 1 ] , s t andard i z e=TRUE,

, type . measure=’mse ’ , n f o l d s =5, alpha=1)

where M represent a subset of the most important features selected using

glmnet.

The R function cv.glmnet helps the user to select the most appropriate

value for λ, choosing the number of nfold validation. The relevant plot is

shown in Figure 4.

In order to choose the most appropriate value for λ the LASSO method
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extracts different values for λ, such as λmin (first vertical dotted line) that

gives minimum mean cross-validated error and λ1se(second vertical dotted

line), that gives a model such that error is within one standard error of the

minimum. At this point the user can choose the value for λ that better fit

Figure 4: Cross-Validation (nfold=5)

the problem. In our case λmin is not really visible because the plot shows

an exponential trend. Moreover for both the values of λ three features are

selected and as expected, the most significant variables, shown in Figure 3,

are chosen.

For comparison we conduct the same analysis using Lars R package and we

obtained similar results, the selected variables by Lars are cyl and wt.

l a r s <− l a r s ( as . matrix ( mtcars [ −1 ] ) , mtcars$mpg ,

, type=” l a s s o ”)

cv <− l a r s : : cv . l a r s ( as . matrix ( mtcars [ −1 ] ) , mtcars$mpg ,

, p l o t . i t = TRUE)
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3 LASSO in GLM

In this third chapter we briefly introduce the Generalized Linear Models.

Furthermore we describe issues and possible solutions with high-dimensional

datasets, and we explain which methods are more efficient and how they can

be used with high-dimensional dataset. Finally we show how to use LASSO

method in the GLM context.

3.1 GLM

Generalized Linear Models are a generalization of the usual Linear Model

that permits the response variable to have a different distribution than the

normal one. The assumption is that the probability distribution has to be

from the exponential family, this means that it can be rewrite in the expo-

nential family formulation. There is a wide range of possible distributions for

the response variable Y, such as Normal, Multinomial, Poisson or Binomial.

Furthermore we have k explanatory variables, X.

There are three main components in the GLM:

Random Component . The random component states the probability dis-

tribution f of the response variable.

Yi ∼ f with Yi ∈ Rn ∀i = 1, ..., n.

Systematic Component . It specifies the linear combination of the explana-

tory variables, it consist in a vector of predictors ηi

ηi = xTi β with β, xi ∈ Rk ∀i = 1, ..., k.

Link Function . It connects the random and the systematic component. It

shows how the expected value of the response variable is connected to

the linear predictor of explanatory variables.

ηi = g(µi) ∀i = 1, ..., n.

where µ is the expected value for Yi and g is a strictly monotone link

function.
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Table 3: Canonical link functions

Model Distribution Link Function

Linear Regression Normal Identity

Logistic Regression Binomial log[µi/(1− µi)]
Log-linear Poisson log(µi)

There are many different link functions existent, the most used are the canon-

ical ones shown in Table 3.

3.1.1 Logistic Regression Model

The Logistic Regression is a regression analysis where the response variable

is binary, that means it can only assume 0 or 1 values. The explanatory

variables can be either discrete or continuous. For this model the main

components are:

Random Component . The probability distribution f of the response vari-

able is Binomial.

Yi ∼ Binomial(ni, πi)

where ni is the binomial denominator and πi is the probability.

Systematic Component , It is the linear combination of the explanatory

variables.

ηi = xTi β

Link Function . The link function is the logit function.

ηi = logit(π) = log

(
π

1− π

)
=

p∑
j=0

βjx
(j)

3.1.2 LASSO Logistic Regression

The LASSO method puts a fixed upper bound on the sum of the absolute

values of the model parameters. In the GLM case this constraint can be

18



expressed by penalizing the negative log-likelihood with l1-norm.

In the Logistic regression model the negative log-likelihood is given by

−
n∑
i=1

log(Pβ(Yi|Xi)) =
n∑
i=1

{−Yi(
p∑
j=0

βjx
(j)) + log(1 + exp(

p∑
j=0

βjx
(j)))}.

That can be written in terms of the loss function ρ:

ρ(β)(x, y) = −y(

p∑
j=0

βjx
(j)) + log(1 + exp(

p∑
j=0

βjx
(j))).

The LASSO estimator for a Logistic regression model is defined as:

β̂(λ) = argmin
β

(n−1

n∑
i=1

ρ(β)(Xi, Yi) + λ||β||1).

3.2 High-dimensional datasets

Before introducing the practical example for LASSO in GLM, we want first

to mention the typical problems and dataset for which the feature selection

task is a crucial part of the analysis.

The high-dimensional datasets, also called small-n-large-p datasets (p >> n),

are one of the biggest challenges for researchers. In this type of dataset the

number of features is much larger than the sample size, and usually data are

sparse, this means that only a few features really affect the response variable.

For these two reasons feature selection here is task on which researchers focus

most.

Another task, closely related to the feature selection, is the model selection.

This task consist in a selection of candidate models and then a criterion to

choose one model among the candidates proposed. There are many tradi-

tional criteria to address this task, for instance the AIC (Akaike’s information

criterion) and the BIC (Bayesian information criterion), but many of them

fail when dealing with small-n-large-P datasets.

In the next sections we are going to analyze and review the paper from Chen

and Chen [4] that propose a solution for the model selection task in high-

dimensional datasets. Moreover we will implement the LASSO method on a

Logistic regression model in a high-dimensional environment.
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3.3 Related Work: Chen and Chen’s scientific paper

The second goal of this paper is to present and discuss the contents of the

scientific article by J. Chen and Z. Chen ”Extended BIC for small-n-large-P

sparse GLM” [4]. The paper shows different approaches to deal with small-

n-large-P datasets, in particular a new model selection criterion is presented.

3.3.1 EBIC and LASSO

The EBIC, Extended Bayesian Information Criterion, is an extension that

goes beyond the traditional BIC model selection criterion.

BIC is a criterion that introduce a penalty on the number of parameters

in the model and approximates the posterior probability when the prior is

uniform on the model. The main limitation of this method is encountered

in high-dimensional datasets, where BIC fails and often returns too many

variables in the selected model.

The extended BIC (EBIC) takes into account the complexity of the data and

in the paper it is demonstrated that, for high-dimensional dataset, it gives

very good results.

We will not go into the details of the EBIC formulation because it is not the

goal of our paper.

Basically each model selected among the model candidates is created by using

a feature selection method, in this case we will describe how to address the

feature selection task using the LASSO method.

The show in practice how to implement LASSO on high-dimensional GLM

we will use the same example as in the paper we are reviewing [4]. The model

used is the Logistic Regression Model with logit link function, and it will be

implemented with the R package glmnet.
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3.4 Example: Prostate cancer data

The data we used are taken from the Singh et al. (2002) study.

Singh et al. (2002) is a built-in R dataset, that can be loaded through the

”sda” package.

The dataset contains prostate cancer tumor data, in particular 6033 genes

expression data. The sample size counts 102 observations (men), whereof 52

have the prostate tumor and 50 does not have the prostate tumor.

The response variable Y is a binary variable that shows the presence or

absence of the prostate tumor (cancer or healthy).

The goal of the study is to build a model that correctly classifies the cancer

and the healthy observations.

As we can see here we deal with a p >> n situation, thus probably not all

the 6033 genes expressions are relevant for the problem the study wants to

solve. The purpose of our analysis is to address the feature selection task and

underline which genes are more relevant to predict the response variable, in

order to do so we will use the LASSO method.

3.4.1 Results

The dataset has been analyzed using the R glmnet function,

f i t <− glmnet (x , y , f ami ly = ” binomial ” ,

,pmax=20, alpha=1)

here x indicates the matrix of the explanatory variables and y is the re-

sponse variable, pmax = 20 means that we want to have maximum 20 genes

expressions as result, alpha = 1 indicates that we are using the LASSO regu-

larization and family = ”binomial” is stated for the Logistic regression model.

The result in Figure 5 shows the trends of the 20 most relevant features.

Looking at the graph we can clearly see that genes V610 and V1720 influ-

enced the response variable the most and these are also the first two features

to enter the model. Thus we can assume that these two genes expressions
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are relevant in order to assess if a new sample has the prostate tumor or it

does not have.

As for linear regression, the next step would be to find the most appropriate

values for λ in order to build a good model.

Figure 5: Glmnet: 20 genes

To obtain the values of λ we can analyze the output using the cross-validation,

as we did for the linear model in section 2.3.2. In Figure 6 the two vertical

dotted lines indicates the two selected values for λ, in particular those are

λmin that gives minimum mean cross-validated error or λ1se, that gives a

model such that error is within one standard error of the minimum.

c v f i t<−cv . glmnet (M, y , fami ly = ” binomial ” ,

, n f o l d s =5, type . measure=’ c l a s s ’ , alpha =.99)

where M represent the matrix of the features selected by glmnet.
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Figure 6: Cross-Validation (nfold=5)

For both the values of λmin and λ1se the following 10 features (genes expres-

sions) are selected: V332, V610, V1720, V364, V1077, V914, V1068,V579,

V4331, V3940.

Using this analysis we obtained the most relevant genes in the detection of

a prostate cancer.
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4 Conclusion

The goal of this research paper was to explain and show how to deal with

one of the main statistical modeling task: feature selection.

Feature selection is crucial and challenging in this field of study, mainly be-

cause the desired output varies for different set of data, and it is hard to

find a model that works for every kind of problem. For these reasons re-

searchers always try to find feature selection model that are well adaptable

for the dataset they want to analyze. The task becomes even more challeng-

ing when dealing with high-dimensional datasets.

In this paper we decided to face the feature selection problem using the

LASSO method. We tested this method using different setups, mainly we

focused on two type of statistical models: Linear model, Generalized linear

model. For the GLM we considered the Logistic regression model for a small-

n-large-P dataset.

Finally, we can say that in both our examples the LASSO method helps us

to choose a model with the most relevant features in it.

Further improvement are possible, first Elastic Net can be used to overcome

LASSO’s limitations.

Secondly, a selection of the most appropriate model can be done using in-

formation criteria, such as EBIC [4]. These criteria can be used to evaluate

different models using different values of λ.
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