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Abstract

Variational Autoencoders (VAEs) are, together with Generative Adversar-
ial Networks (GANs), one of the most popular deep generative models of
this moment. Its applications can be found in, for instance, computer vision
and natural language processing. While GANs have difficulty in working
with text, due to the fact that text is discrete data, VAEs are perfectly suit-
able for working with discrete data.
In this paper, an extensive explanation on the working of VAEs is given.
The VAE is discussed from both a probability model and neural network
model perspective. Furthermore, we carry out an experiment in which a
VAE is proposed to generate novel text. To this end, a VAE consisting of
a bi-LSTM encoder and a LSTM decoder is used to encode text to a latent
space. We used the proposed VAE to generate novel text, by interpolating
in the latent space. Although it is technically possible to use the VAE for
text generation, the generated sentences are not coherent or grammatically
correct. More research is necessary to identify factors that have a positive
effect on the quality of the generated sentences.

Keywords: Variational Autoencoder, generative models, neural networks,
text generation, encoder, decoder, latent space, machine learning.
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Chapter 1
Introduction

Machine learning algorithms can be subdivided into two categories: discriminative
models and generative models. Discriminative models learn to discriminate between
classes, but do not learn how the data might have been generated. Logistic regres-
sion and traditional neural networks are examples of discriminative models. On the
other hand, there are generative models that learn to model the actual distribution of
each class. Examples of generative classifiers are Hidden Markov Models (HMM) and
Naïve Bayes (NB).

The power of generative models lies in the fact that using unsupervised learning
to discover how data is generated, is less prone to handling data that includes novel
variances. Discriminative models are more likely to make poor predictions when en-
countered with data that varies too much from their training data. Moreover, generative
models can be used to generate novel content, and generate new training data for dis-
criminative models.

A specific class of machine learning algorithms is deep learning algorithms, which
model high-level abstractions in data. To this end, model architectures composed of
multiple nonlinear transformations are used. Many deep learning algorithms are based
on Artificial Neural Networks (ANN), like Convolutional Neural Networks (CNN) and
Long Short-Term Memory (LSTM) models.

Deep generative models (DGM) are a category of deep models and have applica-
tions in computer vision (e.g., image generation [10], image super resolution [11]),
computational speech (e.g., text-to-speech [12], audio super resolution [13]) and natu-
ral language processing (NLP), (e.g., text generation [14], dialog systems [15]).

Two popular DGMs of the moment are Generative Adversarial Networks (GANs)
and Variational Autoencoders (VAEs). GANs were first proposed by [16]. The basic
idea behind GANs is that there are two networks; a generator and a discriminator. The
generator generates new data instances, the generated instances are inserted into the
real dataset and the discriminator must decide for each instance if the instance is real
or generated. The idea is based on game theory, more specifically the zero-sum non-
cooperative game. In other words, the discriminator wants to maximize the probability
of correctly distinguishing between ‘real’ and ‘fake’ data, while the generator wants
to minimize the probability that the discriminator correctly identifies the ‘fake’ data.
When the discriminator and the generator have reached a Nash equilibrium, the GAN
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Chapter 1. Introduction 2

model will converge.
GANs have been predominantly used for image generation compared to VAEs.

However, when it comes to generating text, GANs suffer from the fact that they are not
a natural fit for working with discrete data (as is text). The generator learns from the
discriminator by obtaining the gradient information from the discriminator. But this
only works for continuous data. For example, the generator can change a pixel value
from 0 to 0 + 0.001, but changing ‘chair’ to ‘chair’ + 0.001 is nonsensical.

Several methods have been proposed to circumvent this problem: Reinforcement
Learning-based solutions [14], a continuous approximation of the softmax function
[17] and working with the continuous output of the generator (thus avoiding the dis-
crete spaces) [18]. Some of these methods have shown promising results, but the fact is
that a lot of work needs to be done in order to make GANs suitable for text generation.

On the other hand, there are VAEs which can work with discrete data directly,
making them a more natural fit for generating text. VAEs were originally proposed
by Kingma and Welling [19] and Rezende et al. [20]. The VAEs resemble after au-
toencoders, which basically compress data in order to recreate the original data. The
compressing is done in the so-called bottleneck vector. One can compare this with an
audio file which can be compressed by using MP3.

VAEs map the input to a latent space using an encoder. To this end, the bottleneck
vector is replaced by two vectors, namely the mean of the distribution and the standard
deviation of the distribution. One can then take random samples from the latent space,
and these random samples can be decoded back using a decoder. This then results in
novel output (can be images or text).

After recognizing the power of VAEs in dealing with discrete data, the research
question can be formulated as follows:

HOW CAN WE USE VARIATIONAL AUTOENCODERS TO ENCODE TEXT TO A LATENT

SPACE AND HOW CAN WE GENERATE NOVEL TEXT BY INTERPOLATING IN THE

LATENT SPACE?

1.1 Outline report
To present the findings of this set-up in a logical way, the remainder of this paper
is structured as follows. Chapter 2 serves as a background information chapter, in
which VAEs are explained in detail. Chapter 3 will discuss related work on VAEs
used to generate text. In the fourth chapter, the data used in this research is discussed.
Followed by the research method in Chapter 5, after which the experimental set-up will
be described in Chapter 6. Chapter 7 is devoted to the results of the experiment, and
Chapter 8 concludes this paper with the conclusion and discussion.



Chapter 2
Background

In this chapter, VAEs and their mathematical properties will be explained. We will first
discuss VAEs from a probability model perspective. Followed by explaining how this
forces us to approximate the posterior distribution. After this, we derive a tractable
lower bound for approximating the posterior distribution. Hereafter, we explain the
technique to parametrize the lower bound and how we must perform a reparametriza-
tion trick in order to optimize the lower bound. Lastly, we can connect the original
probability model to a neural network model and hence we arrive at the Variational
Autoencoders.

2.1 Probability model
Recall that VAEs are deep generative models with latent variables. One can visualize
this as a graphical model, as is shown in Figure 2.1.

Figure 2.1: The graphical model representation of the model in the variational autoen-
coder. Source: [1]

In the model in Figure 2.1, z denotes the latent (non-observable) variable and x
denotes the observed variable. More formally:

• p(z) denotes the prior from which the latent variables are drawn

• p(x|z) denotes the likelihood of data x conditioned on latent variables z

3



Chapter 2. Background 4

• p(x,z) denotes the joint probability distribution over data and latent variables

• p(x,z) can be decomposed into p(x,z) = p(x|z)p(z)

If one would consider this from the generative perspective, the intuition is that
latent variables z might capture informative properties (e.g., syntactic structure in case
of text) about x and can therefore be suitable when generating novel data.

Before starting to generate new data, one wants good values for the latent variables
z. This makes sense, as z is the main building block when it comes to generating
novel data. An optimization technique for latent variable models is called variational
inference (VI), and VAEs are a specific VI model.

One can find good values for the latent variables by using the observed data. For
this, one can use Bayes’ rule to find the posterior p(z|x):

p(z|x) =
p(x|z)p(z)
p(x)

(2.1)

The denominator p(x) is called the evidence and can be calculated by using the
following formula:

p(x) =
∫
p(x|z)p(z)dz (2.2)

If this were a simple model, it would be perfectly feasible to compute the posterior
using Formula 2.2. However, since modern machine learning models are very complex,
it is not feasible (also called intractable) in terms of time to compute the exact solution.
Therefore, approximation methods are required to compute the posterior distribution.

2.2 Approximating the posterior distribution
The first widely adopted technique for approximating the posterior is Markov Chain
Monte Carlo (MCMC) sampling. MCMC, however, is less suitable when working with
large datasets, as it may become too computationally expensive for sampling [21].

Variational inference considers calculating the posterior as an optimization prob-
lem. To this end, a family of approximate densities Q is posited. Q is a set of densities
over the latent variables. Hereafter, one must find a member of this family that mini-
mizes the Kullback-Leibler (KL) divergence to the exact posterior distribution. The KL
divergence measures the similarity between two probability distributions. The smaller
the value, the more similar the two distributions are.

The optimal member of the family, q∗(z), can be denoted as:

q*(z) = argmin
q(z)∈Q

KL(q(z) ‖ p(z|x)) (2.3)

This optimal member of the family is then used to approximate the posterior. The
main strength of VI is that one can choose any family of densities, and thus choose the
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family of densities that is most suitable for a given problem. One can, for instance,
choose a family of Normal or Gaussian distributions. There is however a trade-off
between simple and complex variational families. If the chosen variational family is
too simple, it may be that the true posterior cannot be approximated with this simple
variational family. On the other hand, too complex variational families can result in
inefficient optimization.

The KL divergence in Equation 2.3 can also be written out in expectation form:

KL(q(z) ‖ p(z|x)) = Eq(z)[log q(z)]− Eq(z)[log p(z|x)]
= Eq(z)[log q(z)]− Eq(z)[log p(z, x)] + log p(x)

(2.4)

As is shown, Equation 2.4 holds the p(x) term which we have explained to be
intractable. To come to a formula which is tractable to find variational inference, one
must rewrite Equation 2.4:

log p(x)− KL(q(z) ‖ p(z|x)) = Eq(z)[log p(z, x)]− Eq(z)[log q(z)] (2.5)

As Kullback and Leibler [22] have shown, the KL divergence is always greater than
or equal to zero. And hence, we can rewrite Equation 2.5 to:

log p(x) ≥ Eq(z)[log p(z, x)]− Eq(z)[log q(z)]︸ ︷︷ ︸
ELBO

(2.6)

The right-hand side of this inequality is called the Evidence Lower Bound (ELBO).
The ELBO gives a lower bound to the (log) evidence, log p(x). Now we will study
the relationship between the ELBO and the KL divergence. One will notice that the
ELBO is the negative KL divergence (Equation 2.4) plus log p(x), which is a constant
with respect to q(z). Since we want to minimize the KL divergence, this is equal to
maximizing the ELBO. Maximizing the ELBO is however tractable, which is exactly
what we want.

The relation between the log p(x) and the ELBO is known as the KL divergence
gap, and is shown in Figure 2.2. The KL gap depends on the quality of the posterior
approximation.

By rewriting the ELBO to the sum of the expected log-likelihood of the data and
the KL divergence between the prior p(z) and q(z), we obtain:

ELBO(q) = E[log p(z)] + E[log p(x|z)]− E[log q(z)]
= E[log p(x|z)]︸ ︷︷ ︸

Expected likelihood

−KL(q(z) ‖ p(z))︸ ︷︷ ︸
Regularization term

(2.7)
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The first term is a measure of how well the model can reconstruct x (data) given
latent variable z (learned representation). The second term can be viewed as a regular-
ization term, as it forces the learned posterior to stay close to the prior.

The next step is to optimize the ELBO, and hereto stochastic backpropagation with
amortized inference was proposed by [19] and [20]. This technique parametrizes the
approximate posterior using an inference network.

Figure 2.2: The KL divergence gap. Source: [2]

2.2.1 Amortized variational inference
Before explaining how to optimize the ELBO, we will first explain what is meant by
‘amortized’ VI, as it is different from traditional VI.

In traditional VI, one would optimize separate variational parameters for each latent
variable. If we would have a Gaussian posterior approximation, this would result in a
mean and variance parameter for every data point. All these parameters then have to
be optimized jointly. It becomes clear immediately that in case of a large dataset, this
will become too computationally expensive.

When using amortizing inference, we introduce a parametrized function with global
variational parameters. These global parameters are then shared across all data points.
For instance, let us assume we have a Neural Network as inference network. This NN
takes a data point as input, and outputs the mean and variance parameter of the latent
variable that is associated with that data point. Instead of optimizing the individual
parameters of each data point, we can now optimize the parameters of this NN. This
does not mean that the local parameters of the distribution of each latent variable will
be the same. The local parameters are still unique, but they are predicted by the NN,
instead of separately optimized.

Amortized VI has the advantage of being independent of the number of observa-
tions, which is very convenient when dealing with a large dataset. The downside of
amortized VI is that it is less expressive. By forcing to use global parameters across
data points, one looses representational power of the variational family.
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After explaining how amortized VI works, we can now move towards explaining
how to actually optimize the ELBO.

2.3 Parameterizing distributions
As mentioned, the final step to take is to parametrize the approximate posterior q(z|x).
If we now connect this to a neural network, we can use an inference network (encoder)
that takes data x as input and parameter φ as output.

The likelihood p(x|z) is parametrized using a generative network (decoder), that
takes latent variables z and outputs parameters to the data distribution p(x|z). More
formally:

• qφ(z|x) is the parametrized approximate posterior with variational parameter φ

• pθ(x|z) is the parametrized likelihood with generative parameter θ

A visualization of the graphical model with parameters is shown in Figure 2.3.
The generative model is expressed by the solid lines, and the dashed lines show the
variational approximation qφ(z|x).

Figure 2.3: The graphical model with parameterization. Source: [3]

Now, for a single data point i from data x, we can take Equation 2.6 and rewrite it
to:

ELBO(θ, φ;xi) = Eqφ(zi|xi)[log pθ(xi, zi)] + Eqφ(zi|xi)[log qφ(zi|xi)] (2.8)

In order to optimize this ELBO, we would need to differentiate w.r.t. both the
variational parameters φ and generative parameters θ and set it to zero. However,
as Kingma and Welling explain, taking the gradient w.r.t. φ is problematic. This is
due to the fact that the ELBO contains an expectation w.r.t. qφ(z|x), which can be
approximated with a Monte-Carlo estimate. However, this sampling method shows
very high variance making it impractical to use.
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To circumvent this problem, Kingma and Welling proposed the reparameterization
trick. This trick basically moves the randomness out z, and into an auxiliary variable ε.
This results in samples that deterministically depend on the parameters of the distribu-
tion.

Figure 2.4: The reparameterization trick. Source: [1]

A schematic overview of the reparameterization trick is shown in Figure 2.4. In the
original setting, variable z is indicated by a circle (indicating randomness), and in the
reparametrized setting z is indicated by a diamond (indicating deterministic dependen-
cies). In other words, we made this transformation:

z ∼ qφ(zi|xi)⇒ z = µ+ σ ∗ ε; ε ∼ N (0, 1) (2.9)

Translating this to our case, variable z is now a deterministic function of x and ε.
With this trick backpropagation w.r.t. φ through the objective (the ELBO) becomes
possible. The ELBO after the reparameterization trick is defined as follows:

ELBO(θ, φ;xi) = Eεi [log pθ(xi, zi)] + Eεi [log qφ(zi|xi)],
where zi = gφ(εi, xi) and εi ∼ p(εi)

(2.10)

The reparameterization trick allows for optimization with stochastic gradient de-
scent.

After viewing variational inference from a probabilistic model, we can now make
the connection to neural networks.

2.4 Neural networks

We have extensively discussed the variational posterior qφ(z|x) and the likelihood
pθ(x|z). If both the variational posterior and the likelihood are neural networks, we
finally arrive at the Variational Autoencoders.
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The variational posterior encodes data point x to a distribution over possible values
of z. Hence the name encoder. Likewise, the likelihood pθ(x|z) can be thought of as a
decoder. It takes the input (variable z) from the latent space and it outputs a distribution
over possible values of x. This explains the name variational autoencoder.

The autoencoder perspective is shown in Figure 2.5. In this perspective an image
is given as input to the inference network.

Figure 2.5: The Autoencoder perspective. Source: [4]

The encoder must efficiently encode the input data to the latent space z. The latent
space can also be seen as a bottleneck, as it is a lower-dimensional space. As the de-
coder takes representation z as input, it must try to find parameters that can reconstruct
input image x as good as possible.

When encoding, we want our latent space representation to stay close to the true
input. We can view the closeness as the KL divergence, which tells us how close
qφ(z|x) is to p(z).

When decoding, we loose information and this can be viewed as the so-called re-
construction loss. We want to minimize this reconstruction loss. These two phenomena
both need to be covered in the loss function the VAE has to optimize. The loss function
for data point xi can be derived as follows:

li(φ, θ) = −Ez∼qφ(z|xi)[log pθ(xi, z)]︸ ︷︷ ︸
Reconstruction loss

+KL(qφ(z|xi) ‖ p(z))︸ ︷︷ ︸
Regularization term

(2.11)

The first term is the expected negative log-likelihood of the i-th data point. This
terms forces the decoder to learn to reconstruct the data. If the reconstruction is poorly,
the cost will be large in this loss function.

The second term is the well-known KL divergence which acts as an regularizer. In
effect, different data points xi that share similarities, are also represented close to one
another in the latent space.
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If one looks again at Equation 2.7, one can see that:

li(φ, θ) = −ELBO(θ, φ;xi)
The loss function of Equation 2.11 can be optimized using gradient descent. And

hence we have connected the neural network perspective to the probabilistic perspec-
tive.

2.5 Summary
In this chapter, we have seen all the building blocks to specify exactly what a Vari-
ational Autoencoder is. Starting from a probabilistic model view, we approximated
the posterior distribution and the reparametrization trick allowed us to optimize this
approximate posterior. Hereafter, optimization with stochastic gradient descent was
possible and we could then connect this to a Neural Network perspective.

Because different terms are used when discussing VAEs from different perspec-
tives, we will clarify the terms first from a probabilistic model view:

. VAE: Approximate inference in a latent model where the approximate poste-
rior and model likelihood are parametrized by neural networks

. Loss function: Maximizing the ELBO

. Encoder: Known as the inference network which parametrizes the approximate
posterior q(z|x) of the latent variables z

. Decoder: The likelihood p(x|z) is parametrized by a generative network

. Inference: Inferring the values of latent variables given observed data

And from a Neural Network perspective:

. VAE: Consists of an encoder, decoder, and loss function

. Loss function: Minimizing the loss function, which comes down to minimizing the
negative ELBO

. Encoder: Neural network that outputs a representation z of data x.

. Decoder: Neural network that learns to reconstruct the data x given a representa-
tion z

. Inference: Most commonly used in the context of predicting latent representations
given new observations



Chapter 3
Related work

In this Chapter we will discuss related work on VAEs that were used to model language.
VAEs can be also be used to model images (i.e., continuous data), but in this paper we
will restrict ourselves to language.

The experimental set-up of this Research Paper is mostly build on the work of
Bowman et al. (2015) [5]. We will therefore start by discussing the work of Bowman
et al. in detail, and then also cover some other related work that is build upon the work
of Bowman et al.

3.1 Generating Sentences from a Continuous Space
Bowman et al. have tried to build a VAE generative model that used distributed latent
representation of entire sentences. The aim of their work was to compare their model
to a standard Recurrent Neural Network language model (RNNLM). Some of the ex-
periments they have carried out, included the task of imputing missing words and also
generating sentences by interpolating in the latent space.

The standard RNNLM are currently state-of-the-art in generating natural language
sentences in an unsupervised setting. These models generate sentences word-by-word,
allowing for modeling distributions over sequences without having to make heavy in-
dependence assumptions. In other words, the next word of a sentence is predicted
conditioned on only the previous word and hidden state. The models, however, do not
learn a vector representation of the full sentence and thus are not capable of represent-
ing global features such as the topic or high-level syntactic features of the sentences.
This can be a downside when making use of RNN language models.

By creating a VAE architecture for text, the downside of the RNNLM can be tack-
led. The researchers have used a LSTM RNN for both the encoder and decoder. The
structure of their VAE language model is shown in Figure 3.1.

The µ and σ are inferenced by the RNN-encoder, using a Gaussian distribution and
the reparametrization trick of Kingma and Welling [19]. The words that are given to
the encoder as input, are represented using word embedding vectors. The models are
trained using stochastic gradient descent. The decoder operates by taking a sample z
from the posterior (qφ(z|x)), from which the decoder can then generate sentences.

11



Chapter 3. Related work 12

Figure 3.1: The structure of the VAE language model proposed by Bowman et al.
Source: [5]

Specific attention has been given to analyzing the behavior of the loss function
of the VAE. The loss function consists of two terms, as is shown in Equation 2.11.
The researchers have found that, using their original structure the KL divergence term
always converged to zero. This phenomena is also known as the KL collapse. This
means that the prior and the posterior are equal, and thus the model does not learn any
useful latent representation from the input data. When the model shows this behavior,
the model essentially acts as a RNNLM, which is something we wanted to avoid.

In order to alleviate this problem, Bowman et al. proposed a KL cost annealing
function. Hereto, they added a variable weight to the KL term in the loss function.
By setting the weight to zero in the early stages of training, no penalty is given to the
encoder. This allows for maximum encoding of information in z as possible. During
training, the weight gradually increases, forcing the posterior to stay closer to the prior.
The weight is increased up to a value of 1, after which we are back to the original
Equation 2.11. The KL cost annealing function can be seen as an enforce method for
the encoder. The alternative loss function, with KL weight term, is shown below:

li(φ, θ) = −Ez∼qφ(z|xi)[log pθ(xi, z)]︸ ︷︷ ︸
Reconstruction loss

+ κ︸︷︷︸
KL weight

∗ KL(qφ(z|xi) ‖ p(z))︸ ︷︷ ︸
Regularization term

,

with κ between [0, 1]

(3.1)

Another suggestion Bowman et al. proposed to cope with the KL collapse, is to
weaken the decoder. This can be achieved by removing conditional information during
learning, i.e., word dropout. By removing the previous word, which the RNNLM uses
to predict the next word, the decoder is forced to rely on latent variable z to make good
predictions. In case of the VAE language model, they have dropped a percentage of
the input at random and replaced it with the word token <UNK>.

After carrying out the experiments, the researchers found that they were unable
to train models for which the KL term dominated the reconstruction term in the loss
function. Suggesting that it is easier to learn local statistics, as does the RNNLM.
Also, in terms of total cost of the loss function, they found that the standard RNNLM
performed slightly better than the VAE language model.
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A qualitative analysis, however, showed that the VAE language model produces
more varied vocabulary and words related to the topic of the sentence compared to
the RNNLM, when imputing missing words. Also, they were able to let the decoder
construct meaningful and grammatically correct sentences by interpolating in the latent
space. The interpolated sentences mostly showed syntactic information similarity, such
as the number of words and parts-of-speech (POS).

They also showed that the higher the word dropout rate, the higher the KL diver-
gence term in the loss function. Meaning the amount of information stored in the latent
variable z increases. The qualitative analysis also showed better results for a higher KL
divergence term.

3.2 Other related work
The problem with the KL collapse has also been addressed by others. Yang et al.
(2017) [6] replaced the LSTM decoder by a dilated Convolutional Neural Network.
The structure of their proposed VAE is shown in Figure 3.2.

Figure 3.2: The structure of the VAE language model proposed by Yang et al. Source:
[6]

They showed a better result (in terms of total cost) on their experiments, compared
to the model proposed by Bowman et al. and the RNNLM. By using the dilated CNN
as decoder, the KL collapse can be prevented during training.

Also Semeniuta et al. (2017) [23] tried to alleviate the KL collapse during train-
ing. Hereto, they proposed a hybrid architecture with a convolutional encoder and a
deconvolutional decoder combined with a recurrent layer. Furthermore, they added
an auxiliary cost term in the optimization function (the ELBO), in order to force the
decoder to rely more on the latent variable z.

Their hybrid VAE language model converges faster and better than the model of
Bowman et al. Their proposed auxiliary cost also prevented the KL term to collapse to
zero.
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Also Hu et al. (2017) [24] have build upon the work of Bowman et al. They
have combined a VAE with holistic attribute discriminators. To this end, they have
allocated separate dimensions of the latent space to different attributes. In other words,
the unstructured variables z are combined with a set of structured variables c, each of
which contains an independent semantic feature of sentences. The sentence generator
can then generate sentences conditioned on the combined vector (z, c). One can then
for instance control the sentiment or tense of a generated sentence by specifying the
attribute c. One can see this method as controlled text generation.

In conclusion, Bowman er al. were the first to use VAEs for text generation. A
qualitative analysis of their proposed showed the capability of the VAE to generate
consistent and grammatically correct sentences. However, they also noticed the KL
collapse prevented their model from learning. Hereto, they proposed several techniques
to alleviate this problem. Other researchers have built upon the work of Bowman et
al., and proposed different solutions to the KL collapse or more advanced techniques
to create a VAE capable of generating text.

In the next chapter, we will elaborate on the data used for our experiment.
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Data

To illustrate how we can use a VAE to encode text to a latent space, and create novel
text by interpolating in the latent space we will use the freely available News Category
Dataset [25].

The dataset contains about 200k news headlines + 200k short descriptions of the
article from the year 2012 to 2018 obtained from the news website the Huffington Post
(HuffPost). All headlines have been annotated with their corresponding category. A
snapshot of the headlines along with the short description is shown in Table 4.1 and
Table 4.2 respectively.

Table 4.1: Snapshot of headlines from News Category Dataset.

News Category Dataset - headlines
News headline Category
There Were 2 Mass Shootings In Texas Last Week, But Only 1
On TV

Crime

Will Smith Joins Diplo And Nicky Jam For The 2018 World Cup’s
Official Song

Entertainment

‘Trump’s Son Should Be Concerned’: FBI Obtained Wiretaps Of
Putin Ally Who Met With Trump Jr.

Politics

Mystery ’Wolf-Like’ Animal Reportedly Shot In Montana, Baf-
fles Wildlife Officials

Weird News

Table 4.2: Snapshot of short descriptions from News Category Dataset.

News Category Dataset - short description
Short description Category
She left her husband. He killed their children. Just another day in
America.

Crime

Of course it has a song. Entertainment
The wiretaps feature conversations between Alexander Torshin
and Alexander Romanov, a convicted Russian money launderer.

Politics

‘We have no idea what this was until we get a DNA report back.’ Weird News

15
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In total there are 40 different news categories. The categories along with their
headline counts are shown in Table 4.3.

Table 4.3: Categories along with their headline count.

Category Headline count Category Headline count

Arts 1509 Media 2815
Arts & Culture 1339 Money 1707

Black Voices 4528 Parenting 8677
Business 5937 Parents 3955
College 1144 Politics 32739
Comedy 5175 Queer Voices 6314
Crime 3405 Religion 2556

Culture & Arts 1030 Science 2178
Divorce 3426 Sports 4884

Education 1004 Style 2254
Entertainment 16058 Style & Beauty 9649
Environment 1323 Taste 2096

Fifty 1401 Tech 2082
Food & Drink 6226 Travel 9887

Good News 1398 Weddings 3651
Green 2622 Weird News 2670

Healthy Living 6694 Wellness 17827
Home & Living 4195 Women 3490

Impact 3459 World News 2177
Latino Voices 1129 WorldPost 6243

A few statistics of the dataset are shown in Table 4.4. As is shown, the short
description is on average 10 words longer than the headline. During the experiment, we
will concatenate the headlines and short description into one dataset, yielding 401.706
instances in total. There are 116.617 unique words present in the dataset.

Table 4.4: Statistics of dataset

Average number of words

Headline 9,54
Short description 19,73

In the next chapter we will explain the methodology for our experiment.
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Research method

In this section, the proposed VAE text generation model is presented. We will start
with explaining how we pre-processed the data in order to feed it to the model. Next,
we will elaborate on the architecture of the VAE model. We will explain the working
of each of the components, and clarify the design choices made.

5.1 Pre-processing
We cannot feed the raw text to a neural network, as NNs can only work with numerical
vectors as input. In order to create these vectors, we will first need to do some pre-
processing. The first step to take is to tokenize the text. Tokenization means splitting
texts into space-separated sequences of words, and then split these sequences into lists
of tokens (words). By default, all punctuation is removed.

Next, all instances will be transformed into sequences of integers, with each word
mapped to a unique integer value. Since not all sentences are equally long, the vectors
also differ in length. Hereafter, we need to pad all sequences to a fixed vector length
because the model cannot work with different vector lengths. We set the fixed the
vector-length at 10 words. Meaning, all sentences longer than 10 words will be trun-
cated and all sentences shorter than 10 words will be filled up with zeros. A schematic
overview of the pre-processing pipeline is shown in Figure 5.1.

Raw text Tokenize Text to sequence Pad sequence

Figure 5.1: Pre-processing pipeline

5.2 VAE architecture
As explained in the previous section, after pre-processing we will have a sequence
and this sequence will be fed to the model. Since we want to generate text (i.e., a se-
quence), our VAE model will be based on a so-called sequence-to-sequence (seq2seq)
architecture.

17
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This architecture is comprised of two models: a bidirectional LSTM encoder and
an LSTM decoder. We will first explain the working of a (bi)LSTM network in detail,
after which we will explain how this is implemented in the VAE model.

5.2.1 Encoder-Decoder networks
We will start with giving a detailed description on the working of a LSTM network
(the decoder in the VAE). Followed by the working of a bidirectional-LSTM (biLSTM)
network (the encoder).

5.2.1.1 LSTM network

A LSTM network is build upon a Recurrent Neural Network (RNN), which are both an
extension to a standard NN. Standard NNs are a feed-forward network, i.e., they feed
information straight through a number of layers and assume that two successive inputs
are independent of each other.

This assumption, however, does not hold when one is dealing with text. For in-
stance, when one wants to predict the next word in a sequence, it is important to know
which words came before it. RNNs are able to use this sequential information, and are
thus much more suitable when dealing with text. RNNs have loops in their network,
allowing for a ‘memory’ which captures information about previous input. The RNN
can be seen as multiple copies of the same network, each passing information to a suc-
cessor network. A part of a RNN with a loop and an unrolled RNN is showed in Figure
5.2.

(a) RNN with loop (b) Unrolled RNN

Figure 5.2: Visualization of a RNN. Source: [7]

By unrolling we mean that we write out the network for the entire sequence. For
instance, in case of a sentence of 10 words, this network would be unrolled into a
10-layer Neural Network. To put it more formally:

• xt denotes the input at time step t.

• ht denotes the hidden state at time step h. ht is calculated based on the previous
hidden state and the input of the current time step. ht = f(Uxt +Wht−1 + b),
with f a non-linearity function, W and U the weights, and b the bias
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• σt denotes the output at step t. σt = 1
1+e−t

. For instance, if we want to predict
the next word in a sentence, it would be a vector of probabilities across the
vocabulary.

A RNN shares the parameters U,W across all steps, reflecting the fact that we are
performing the same task at every time step, just with different inputs. Sharing the
parameters greatly reduces the total number of parameters we need to learn.

In theory, RNNs can pass on information of previous time-steps infinitely long. In
practice however, RNNs suffer from vanishing or exploding gradients, which obstructs
the model from learning long-term dependencies. The gradients are used to update
the parameters of the RNN. But when the gradient becomes smaller and smaller, the
parameter updates become insignificant. In effect, no learning is done.

On the other hand, if the gradients have large values, they can get larger very fast
and eventually crash the model. This is the exploding gradient problem.

To tackle this problem, the LSTM network was proposed by Hochreiter and Schmid-
huber (1997) [26]. As was shown in Figure 5.2, the RNN consists of a chain of repeat-
ing modules of neural networks. Inside the module, there is a very simple structure,
such as a single tanh layer. LSTMs also have a chain structure, but the repeating mod-
ule has a much more sophisticated structure within. A visualization of a LSTM cell is
shown in Figure 5.3.

Figure 5.3: The structure within a LSTM cell. Source: [8]

The upper horizontal line in Figure 5.3 is the cell state. This cell state can be seen
as a conveyor belt. This belt runs through the entire chain of modules, with some
interactions on its way. The LSTM can remove or add information to the cell state.
These actions (removing/adding) are controlled by so-called gates.

LSTMs have four NN layers: input gate layer it, output gate layer ot, forget gate
layer ft and cell state Ct (also referred to as memory state). There are four steps the
LSTM takes:
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1. Decide what information to remove from the cell state

2. Decide what new information to store in the cell state

3. Update the old cell state, Ct−1, into the new cell state Ct

4. Decide what information to output

We will elaborate on each of the steps taken, and the steps are also visualized in
Figure 5.4.

(a) Decide what to remove from cell state (b) Decide what new information to store in
cell state

(c) Update the old cell state into the new cell
state

(d) Decide what information to output

Figure 5.4: Working of a LSTM cell. Source: [7]

5.2.1.2 Forget gate

The LSTM starts with deciding what information to remove from the cell state. To this
end, it uses the forget gate layer ft. The formula of ft is:

ft = σ(Wf ∗ xt + Uf ∗ ht−1 + bf ) (5.1)

The forget gate takes the input of the previous hidden state, ht−1, and the input, xt
into account, and outputs a number between zero and one. A value of zero means all
information will be removed, while a value of one means all information is kept.
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5.2.1.3 Input gate

The next step is to decide what new information to store in the cell. The input gate it
will first decide which values to update. Secondly, a vector with new candidates values,
C̃t, is created by a tanh layer. This vector can be added to update the state, which will
be done in the next step. The formulas for it and C̃t are:

it = σ(Wi ∗ xt + Ui ∗ ht−1 + bi)

C̃t = tanh(WC ∗ xt + UC ∗ ht−1 + bC)
(5.2)

5.2.1.4 Update new cell state

Now the old cell state, Ct−1, will be updated into the new cell state Ct. The formula
for Ct will be:

Ct = it ∗ C̃t + ft ∗ Ct−1 (5.3)

As is shown, the old stateCt−1 is multiplied by the forget state ft, and the candidate
values C̃t are multiplied by how much we want to update each state value (it).

5.2.1.5 Output gate

Lastly, the LSTM must decide what to output. This output will be based on the cell
state, after applying a filter. The sigmoid layer will decide what parts of the cell state
to output, and then a tanh function will be applied on the cell state to push the values
between -1 and 1. After applying the tanh function, we will multiply it by the output
of the sigmoid layer. We can summarize this as follows:

ot = σ(Wo ∗ xt + Uo ∗ ht−1 + bo)

ht = ot ∗ tanh(Ct)
(5.4)

Now that we know how a LSTM network works, we can explain how a biLSTM
network works.

5.2.1.6 biLSTM network

Bidirectional LSTMs are an extension of standard LSTMs [27]. Using a biLSTM
means that two instead of one LSTMs are trained on the input sequence. The first
LSTM takes the input sequence as-is, and the other takes a reversed copy of the input.
In effect, the LSTM that runs backwards contains information from the future and
this can add additional context to the network. The outputs of the two networks are
concatenated at each time step. A schematic overview of a biLSTM network is shown
in Figure 5.5. A standard LSTM only contains information of the past, as the only
inputs it receives are from the past.
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Figure 5.5: Schematic overview of biLSTM network. Source: [9]

Until this point, we have explained that our model is based on a seq2seq architec-
ture and explained in detail the working of both neural nets. Next, we will elaborate
on the specific input given to the encoder and decoder, and also the output they return.

5.3 Encoder architecture

Recall from Chapter 2 that we have defined qφ(z|x) as our (approximate) variational
posterior. We will specify this as a diagonal Gaussian distribution. Our posterior dis-
tribution then becomes:

qφ(zn|xn) = N (zn|µφ(xn), diag(σ2
φ(xn))), given xn (5.5)

As explained in Chapter 2, we will not optimize every local variational parameters
φn for every data point, but learn the global variational parameters φn instead. These
parameters are the weights of the inference network.

Our approximating distribution of Equation 5.5 outputs the mean µφ(x) and log
variance log σ2

φ(x). In order for our inference network to output the mean µφ(x) and
log variance log σ2

φ(x), we need to specify the architecture of our encoder network.
That is, qφ(zn|xn) is a neural network with several hidden layers.

5.3.1 Word embedding
The NN architecture starts with giving the padded sequences as input to our network.
We have capped the padded sequences at 10 words, hence there will be 10 time steps
in the model. Each word of the sentence will be fed to the model at each time step.
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In many NLP applications word embeddings are used as extra feature for a given
task. Word embeddings represent words as real-valued vectors in a high-dimensional
space. To this end, words that are semantically close are also mapped close to each
other in the high-dimensional space.

We will include an embedding layer in the model, using the pre-trained
300-dimensional Global Vectors for Word Representation (GloVe) [28]. We will use
the GloVe to create an embedding matrix, and this matrix is then given to the embed-
ding layer as word embedding weights. Our dataset contains almost 120.000 unique
words, but to reduce memory requirements and complexity we will use the 12.000
most frequently used words to create our embeddings matrix. As we chose the 300-
dimensional version of GloVe, we will end up with a [12.000 x 300] embedding matrix.

Thus, in this layer each word will be transformed into a real-valued vector of length
300. In effect, 300 features are created.

After the embedding layer, several hidden layers with certain transformations will
follow and the network gives µφ(x) and log σ2

φ(x) as output. A total overview of our
encoder network is shown in Figure 5.6. Each layer processing the output from the
previous layer and passes on its output to the next layer. As is shown, the encoder
outputs the latent variables zmean and zlog_var with 32 neurons.

Also, a summary of the hyperparameters of the biLSTM network along with the
values used is given in Table 5.1.

Table 5.1: biLSTM Hyperparameters used in this research and their values.

Type of layer Hyperparameter Value/Method

biLSTM
Layer LSTM

Merge mode Concatenate
Weights None

Fully connected
Number of neurons [96, 32]
Activation function {Linear, ELU}
Dropout probability [0,2]

5.3.2 Sampling latent variable z
After obtaining zmean and zlog_var from the encoder, there is one final step we need
to do before we can obtain z. We cannot sample z directly from a Gaussian which
parameters are the outputs of the encoder. As explained in Chapter 2, we will first
need to do the reparameterization trick if we want to train the network with gradient
descent. We will thus create a sampling function that is outside the network. We can
then obtain z by using the sampling function, which does not depend on anything in
the encoder network.

After explaining how to obtain latent variable z, which is the input for the decoder,
we can now move towards the decoder architecture.
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Input x = Padded sequence

Embedding layer (GloVe)

Hidden layer = biLSTM with 96 neurons

Hidden layer = Dropout (keep 0.8)

Hidden layer = Dense with 96 neurons and linear activation

Hidden layer = ELU activation

Hidden layer = Dropout (keep 0.8)

zmean = Dense with 32 neurons zlog_var = Dense with 32 neurons

Figure 5.6: Encoder architecture

5.4 Decoder architecture

Recall from Chapter 2 that we have defined pθ(x|z) as the parameterized likelihood and
pθ(x|z) is our decoder network.

After obtaining z by sampling, we feed the latent representation at every time step
as input to the decoder by repeating the vector. Meaning, each time step will get the
same input but a different hidden state.

This repeated vector will then go into a LSTM hidden layer, followed by a TimeDis-
tributed layer. The TimeDistributed layer applies fully connected dense on each time
step and outputs on each time step separately. The decoder will output the recon-
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structed (decoded) mean of original input x. A schematic overview of the decoder
architecture is shown in Figure 5.7. Also the parameters of the LSTM and TimeDis-
tributed layers are shown in Table 5.2.

Input z = Repeated vector

Hidden decoder = LSTM with 96 neurons

Mean decoder = TimeDistributed with linear activation

Hidden decoded = Hidden decoder (Repeated vector)

Decoded mean x = Hidden decoder (Hidden decoded)

Figure 5.7: Decoder architecture

Table 5.2: LSTM and TimeDistributed Hyperparameters used in this research and their
values.

Type of layer Hyperparameter Value/Method

LSTM
Units (Neurons) 96

Return sequences True
Recurrent dropout 0,2

Time distributed Layer Dense with linear activation

Now we have explained how to encode our raw input to latent space, and explained
how we can feed this output as input into the decoder. After obtaining the decoded
mean x from the decoder network, it is now time to show how we use our output from
the encoder and decoder to train our network.
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5.5 Custom loss layer
As shown in Equation 2.11, our loss function consists of two parts: the reconstruction
loss and the regularization term (KL divergence).

The KL divergence can be computed in closed form (see Kingma and Welling [19]
for the derivation):

KL(qφ(z) ‖ pθ(z|x)) = −
1

2

N∑
n=1

(1 + zlog_var − (zmean)
2 − ezlog_var),

with N the dimensionality of latent variable z (32 in our case)
(5.6)

To estimate the reconstruction loss we use weighted cross-entropy loss for a se-
quence of logits [29], which calculates the final softmax internally. Hereto, we let de-
coded mean x (y_pred) be the sequence of logits and input x is our true label (y_true).

In conclusion, we use the output from the encoder (zmean, zlog_var) to compute
the KL divergence, and the output from the decoder (decoded mean x) to estimate our
reconstruction loss. The total cost will be the two terms summed, and this cost function
will be optimized during training.

5.6 Summary
To summarize, we discussed how to pre process the data in order to feed it to a NN.
Next, we explained extensively the working of (bi)LSTM networks, which are the
building blocks of both the encoder- and decoder network. We also considered the
architecture of both the encoder and decoder, as well as the different parameters used
in the architecture. Finally, we examined how the output of the encoder and decoder
are used to define the loss layer. The loss layer is used to train our network.

In the next chapter we will explain how we have set up our experiment.
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Experimental set-up

In order to find the best possible architecture of the VAE to generate text, experiments
have been carried out. In this chapter we will start with explaining how we have split
our dataset into a train/validation/test set, and elaborate on some more machine learn-
ing set-up choices. Followed by explaining what different parameter setting we have
used in our models. Thereafter, we will elaborate on how we will evaluate our models.
Lastly, we will give a brief overview of the programming tools used.

6.1 Machine Learning set-up
Before we will run several NN architectures (models) on the data, we will first split the
data in a training, validation and test dataset. Since our dataset is relatively large, we
will use most of the instances for training, and a relatively small number of instances
for validating and testing. From the 401.706 instances, we will use 10.000 instances
for both the validation and test dataset, and the remaining instances for the training
dataset.

The training dataset will be solely used for training the network. The validation
dataset will be used for choosing the best possible model after training. That is, we
will track the loss on the validation data during training the NN network, and the model
which has the lowest loss on the validation data will be chosen as the best model.
The test dataset will be used to calculate the final performance of the model (i.e., we
compute the loss on the test data). Also, we will use the test data to create new text.

In order to obtain a robust estimate of the performance of each model, we will run
each model 10 times on the dataset. To this end, we will shuffle the dataset before each
run. In effect, the training/validation/test dataset will contain different instances in
each run. The performance measure is then averaged across all runs for each different
model.

We will train each model for 200 epochs and we will use the gradient descent
algorithm Adam [30] to update the weights of the network during training. Since 200
epochs is quite a lot, resulting in a high computational cost, we will also consider so-
called ‘early stopping’ during training. Meaning, if the loss does not improve during
10 consecutive epochs, we will stop the training process.

27
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Since our dataset is relatively large, our entire training dataset cannot fit into Random-
access memory (RAM). To be able to use the the entire training dataset, we will use a
‘fit_generator’ function. This function gradually feeds our headlines to the model until
all we have reached the desired number of epochs. In effect, the memory requirements
are drastically reduced.

6.2 Model architecture set-up
As explained in the previous chapter, our network consists of different layers with
different number of neurons and activation functions. We will keep all those parameters
along with their values fixed. We will, however, experiment with different values for
the weight of the KL divergence (see Equation 3.1). If the weight is set to zero, no
regularization at all is enforced on the encoder. This gives maximum freedom to the
encoder, as it can encode as much information as possible into the latent variable z. If
the weight is set to one, we are back at Equation 2.11, and equal weight is given to
the reconstruction loss and the KL divergence. We will experiment with the following
values for the KL weight term: [0, 0.25, 0.5, 0.75, 1].

6.3 Evaluation methods
Our models will be evaluated both quantitatively and qualitatively.

The quantitative analysis will consist of computing the final loss (dissected into
the reconstruction loss + KL divergence) on the test dataset. The model is trained on
minimizing the loss function, i.e., a lower loss should indicate a better model. In order
to evaluate whether this is true, a qualitative analysis is needed.

One could state that the qualitative analysis is of more importance to this research
paper, as our research goal was to ‘generate novel text by interpolating in the latent
space’.

As explained in [5], a linear interpolation between sentences can also be seen as a
homotopy. We will follow the definition of [5] when creating a homotopy between two
codes ~z1 and ~z2:

zt = ~z1 ∗ (1− t) + ~z2 ∗ t,
for t ∈ [0, 1].

(6.1)

In other words, if we encode two sentences to a latent space and we enter those
latent space points into the formula, the formula finds points on the line between the
input points. We then have new latent space points, which we can decode back using
the decoder and as a result we obtain a new sentence.

The quality of the obtained homotopy can be evaluated by several criteria:

• Grammar: Are the new sentences grammatically correct?
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• Syntactic information: Do the new sentences have syntactic similarities with
the two input sentences (e.g., number of words, POS)?

• Semantic similarity: Do the new sentences contain words that are semantically
close with words from the two input sentences?

• Diversity: Are the newly generated sentences diverse and original?

6.4 Programming tools
Programming the VAE model is done in Python using Keras [31] with Tensorflow as
back-end. Furthermore, since training complicated NN architectures is very computa-
tionally expensive, we will use Google Colaboratory. Google Colab is a free Jupyter
notebook environment that runs in the cloud, and allows for the free use of a GPU.



Chapter 7
Results

In this chapter, the results of this research are presented. We will start with showing the
progress of the loss function during training the networks. Followed by the final quan-
titative performance on the test dataset. Next, we will move to the qualitative analysis
and create novel sentences by interpolating in the latent space. Also we will evaluate
the effect of the KL weight term on both the quantitative and qualitative analysis.

7.1 Training progress
We started with training for 200 epochs, and tracked the reconstruction loss and KL
divergence on both the training and validation dataset. The results are shown in Figure
7.1.

As is shown, for a balanced loss function (KL weight = 1), the reconstruction loss
stabilizes after about 50 epochs to a loss of 48. The KL divergence stabilized to a value
of about 2.5.

As the penalization weight decreases, one can see that the reconstruction loss be-
comes lower and the KL divergence increases. This makes sense, as the KL divergence
term becomes a smaller part of the loss function, which we are trying to minimize dur-
ing training.

When the KL weight term is zero, i.e., there is no regularization at all, the KL
divergence keeps on increasing until almost a value of 300. The reconstruction error
lowers until around a value of 23. The reconstruction error also shows a bit more spiky
behavior compared to the other KL weight parameter settings.

Furthermore it is noted that the error on the validation dataset is a bit smaller com-
pared to the training dataset. This might be due to the fact that we use dropout layers
in our network, which function as regularization layers. Because dropout is activated
during training, but deactivated when evaluating on the validation set, it might result in
a lower loss on the validation dataset.
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(a) KL weight = 1

(b) KL weight = 0.75

(c) KL weight = 0.5
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(d) KL weight = 0.25

(e) KL weight = 0

Figure 7.1: Progress of loss during training

7.2 Results on test dataset
As explained in the previous chapter, we used 10.000 instances as test dataset. We ran
all parameter settings 10 times, and took the mean of the results in order to obtain a
robust estimate of the models’ performance. The results (reconstruction error and KL
divergence) plus the standard deviation of the results are shown in Figure 7.2.
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Figure 7.2: Results on test dataset

As is shown, the KL divergence becomes larger as the weight term decreases. The
KL divergence ‘explodes’ when the weight term is set to zero. Furthermore, it is noted
that the total loss for a KL weight of [0.25, 0.5, 0.75, 1] does not differ that much. The
standard deviation of the results is not very large.

Now that we have seen the quantitative results for each parameter setting, we will
evaluate if in fact the models are capable of creating novel sentences.

7.3 Qualitative analysis
After the first iteration of training the models, we found that the generated sentences
only contained so-called stop words, i.e., a, the, that, etc. This was due to the fact
that our target vocabulary was very big (116.617 unique words). This large vocabulary
makes it impossible to use the regular softmax in our network, because then a prob-
ability for every word needs to be calculated. To circumvent this problem, we used
sampled softmax in our models. By doing this, you only take a subset of words from
your vocabulary into account when calculating the probability.

After implementing the sampled softmax, the models were capable of generating
words other than just stop words.

Also, as explained in the previous chapter, we experimented with early stopping to
speed up the training process. Training a model for 200 epochs took almost 9 hours,
which makes it difficult to do quick iterations. However, if we stopped the training
process when the loss had not improved during 10 consecutive epochs, the models
degraded again to only generating stop words. Therefore, all our models were trained
for 200 epochs.

To generate novel news headlines, we took 2x2 headlines from the dataset, and
interpolated in the latent space. For exemplary purposes, we will show the results of
the models with a KL weight of 1 and 0. The other homotopies are shown in the
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Appendix. The used headlines are:

1. • ‘Trump Says U.S. Has Had High-Level Talks With North Korea’
• ‘Trump Says U.S. Will Use Military To Protect Border With Mexico’

2. • ‘Facebook Will Let Users See Which Sites Are Tracking Them’
• ‘Facebook Pledges To Add More Local News To Newsfeeds’

We created six new headlines by interpolating in the latent space. The results for a
KL weight of 1, are shown in Figure 7.3. As one can see, the generated sentences are
not plausible English. The sentences are nor grammatically correct, nor show any kind
of syntactic similarity with the two input sentences.

‘Trump Says U.S. Has Had High-Level Talks With North Korea’
asleep represents smiles looking channing smiles costing dictator schedules schedules
asleep represents smiles asleep woods smiles entrepreneur dictator schedules prague
asleep represents smiles smiles smiles adoption virginia costing woods dictator
nuptials represents smiles wrapping smiles storms off embattled coupled costing
nuptials ’breaking smiles woods ’breaking condoms virginia costing costing off
asleep ’breaking drawn woods ’breaking dictator embattled embattled costing in-
formed
‘Trump Says U.S. Will Use Military To Protect Border With Mexico’

‘Facebook Will Let Users See Which Sites Are Tracking Them’
terms whistleblower grateful midst infamous 100 funding begun insecurity deeper
terms whistleblower grateful midst begun selena begun trains begun literary
terms whistleblower bon gulf midst bon 100 funding grateful emmanuel
terms whistleblower bon damaged begun revived solitude damaged evening evening
terms whistleblower bon eddie evening grateful midst midst funding arrangement
terms whistleblower bon midst cyberbullying aggression midst midst universe trains
‘Facebook Pledges To Add More Local News To Newsfeeds’

Figure 7.3: Sentences produced by model with KL weight = 1.

The results of the model with a KL weight of zero, are shown in Figure 7.4. As
shown, the generated sentences even make less sense compared to the sentences gen-
erated by the model with a KL weight of 1. Words are often repeated in the sentences,
and for some sentences the sentence consist of one word that is repeated 15 times.
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‘Trump Says U.S. Has Had High-Level Talks With North Korea’
immigration immigration brzezinski conan brzezinski eerie eerie contribution contri-
bution build
immigration immigration conan conan infants eerie eerie contribution contribution
contribution
follow rats conan conan conan petty rats son’s son’s son’s
follow rats rats conan conan rats rats rats rats rats
rats rats rats rats rats rats rats rats rats rats
rats rats rats rats rats rats rats rats rats rats
‘Trump Says U.S. Will Use Military To Protect Border With Mexico’

‘Facebook Will Let Users See Which Sites Are Tracking Them’
distribution bedtime bedtime bedtime distribution distribution distribution distribution
debris debris
distribution ’i bedtime bedtime distribution distribution distribution distribution recruit
writer
distribution scenarios finalized lisa distribution distribution distribution recruit writer
writer
follow follow follow boy’s follow follow follow follow writer writer
follow follow follow follow follow follow follow follow writer writer
follow follow follow follow follow follow follow writer writer writer
‘Facebook Pledges To Add More Local News To Newsfeeds’

Figure 7.4: Sentences produced by model with KL weight = 0.

The results of the models with a KL weight term of [0.25, 0.5, 0.75] are shown in
the Appendix. The generated sentences do not show any improvements compared to
the other parameter settings. The model with a KL weight of 1 suffered the least of the
phenomenon of repeating words in the sentence.



Chapter 8
Conclusion and discussion

In this research paper, an extensive overview on the working of VAEs is presented. A
VAE model was proposed to generate novel text by interpolating in the latent space.
The results have been presented in the previous chapter. In this chapter, we will eval-
uate the results and connect the results to our research question. Also, we will reflect
on the limitations of this research and give suggestions for future work.

8.1 Evaluating the results
We studied the effect of the KL weight term on the behavior of the loss function. We
saw that when the penalty on the KL divergence was relaxed, in effect the reconstruc-
tion error lowered at the cost of a higher KL divergence.

The effect of the KL weight term on the quality of the generated sentences was
not very clear. The only conclusion that we can draw is that a balanced loss function
resulted in sentences without words being repeated.

Although related work showed the potential of VAEs for generating text, we were
not able to produce coherent and grammatically correct sentences.

8.2 Research goal evaluated
After evaluating the results, we can answer the research goal which is repeated below.

HOW CAN WE USE VARIATIONAL AUTOENCODERS TO ENCODE TEXT TO A LATENT

SPACE AND HOW CAN WE GENERATE NOVEL TEXT BY INTERPOLATING IN THE

LATENT SPACE?

The proposed VAE model is the answer to the first part of the research question.
In short, we first need to tokenize the text and feed it to our Neural Network through
a word embedding layer. After several hidden layers, our encoder network outputs
latent variables zmean and zlog_var. We feed the output as input to our decoder, and the
decoder will output the reconstructed mean of our original input text.

36
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To answer the second part of the research question, we need to look at Chapter 6.
Here, we explained that one can encode two sentences to a latent space. One can then
draw a line between the two sentences, and find new points on that line. The points can
be decoded back using the decoder, with a new sentence as a result.

Although we can thus answer the research question, this only is the technical side
of the story. Meaning, it is technically possible to encode text to a latent space and
create ‘novel’ text by interpolation. However, the results show no resemblance after
real language. The results as they are now, are not suitable for any kind of task.

It is also worth mentioning that the data used in this research might be difficult for
a VAE to learn. News headlines contain a lot of names, and do not necessarily qualify
as ‘easy’ sentences. Besides that, the research discussed in the Related Work Chapter
carried out their experiments on much simpler simpler sentences. For instance, they
interpolated between sentences like ‘He was silent for a long moment’ and It was my
turn’.

8.3 Future work
As mentioned, it is technically possible to use VAEs to generate new text. However,
although we experimented with different settings, we could not identify factors that
have a positive effect on the quality of the generated sentences.

Therefore, for future work it might be desirable to spend time on trying to pin-
point what factors contribute to the quality of the created sentences. An easier/more
homogeneous dataset might be a good starting point.

Since VAEs are very flexible in the sense that one can basically use any kind of
encoder and decoder network, experimenting with a different kind of Neural Network
might also give better results. Also, no time on parameter tuning was spent in this
research, however, the results might benefit from doing so.
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Appendix A
Appendix

‘Trump Says U.S. Has Had High-Level Talks With North Korea’
posed posed posed posed posed posed posed posed debacle debacle
posed posed posed posed posed posed posed posed posed debacle
posed posed posed posed posed posed posed posed posed debacle
posed posed posed posed posed posed posed posed posed debacle
posed posed posed posed posed posed posed posed posed posed
posed posed posed posed posed posed posed posed posed posed
‘Trump Says U.S. Will Use Military To Protect Border With Mexico’

‘Facebook Will Let Users See Which Sites Are Tracking Them’
debacle 120 120 locals locals locals locals locals locals locals
honors honors honors honors honors honors honors locals locals locals
posed honors honors honors honors honors honors honors honors honors
posed posed posed honors honors honors honors honors honors honors
posed posed posed posed posed posed honors honors honors honors
bug posed posed posed posed posed posed posed debacle debacle
‘Facebook Pledges To Add More Local News To Newsfeeds’

Figure A.1: Sentences produced by model with KL weight = 0.75.

41



Appendix A. Appendix 42

‘Trump Says U.S. Has Had High-Level Talks With North Korea’
kushner sheen sheen sheen sheen competing competing competing competing compet-
ing
sheen sheen sheen sheen sheen competing competing competing competing competing
sheen sheen sheen sheen sheen competing competing competing competing competing
sheen sheen sheen sheen sheen competing competing competing competing competing
sheen sheen sheen sheen sheen competing competing competing competing competing
sheen sheen sheen sheen sheen sheen competing competing competing competing
‘Trump Says U.S. Will Use Military To Protect Border With Mexico’

‘Facebook Will Let Users See Which Sites Are Tracking Them’
competing competing competing competing competing competing competing compet-
ing competing competing
large competing competing competing competing competing competing competing
competing competing
competing competing competing competing competing competing competing compet-
ing competing competing
stated explosion explosion explosion unfortunate competing competing competing
competing competing
stated explosion explosion explosion explosion explosion competing competing com-
peting competing
stated explosion explosion explosion explosion explosion explosion explosion large
large
‘Facebook Pledges To Add More Local News To Newsfeeds’

Figure A.2: Sentences produced by model with KL weight = 0.5.
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‘Trump Says U.S. Has Had High-Level Talks With North Korea’
parents oz oz oz oz oz oz oz oz oz
parents oz oz oz oz oz oz oz oz oz
parents oz oz oz oz oz oz oz oz oz
parents oz oz oz oz oz oz oz oz oz
fallon fallon fallon fallon fallon fallon fallon fallon fallon fallon
fallon fallon fallon fallon fallon fallon fallon fallon fallon fallon
‘Trump Says U.S. Will Use Military To Protect Border With Mexico’

‘Facebook Will Let Users See Which Sites Are Tracking Them’
oz oz oz oz oz oz oz oz oz oz
fallon oz oz oz oz oz oz oz oz oz
fallon fallon oz oz oz oz oz oz oz oz
fallon fallon oz oz oz oz oz oz oz oz
fallon fallon oz oz oz oz oz oz oz oz
fallon muffins fallon oz oz oz oz oz oz oz
‘Facebook Pledges To Add More Local News To Newsfeeds’

Figure A.3: Sentences produced by model with KL weight = 0.25.
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