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Summary 
 
 

 

 
The goal of Financial Risk Management (FRM) is to measure and manage risks across a 
diverse range of activities used in financial sectors. Risk can be defined as a hazard, a 
chance of bad consequences, loss or exposure to mischance. There are different types of 
risks, but we will focus on the three most important: market, credit, and operational risk. 
There are different ways to measure risk. Two risks measures that are often used, based 
on loss distributions, are Value at Risk (VaR) and Expected Shortfall.  

Within FRM dependencies between random variables play an important role. A popular 
and often used dependence measure is correlation, also called the correlation coefficient, 
which indicates the strength and direction of a linear relationship between two random 
variables. It is a reasonable measure when the random variables are elliptically 
distributed and a good measure when the random variables are multivariate normally 
distributed. But research shows that the multivariate normal distribution is inadequate 
because it underestimates both the thickness of the tails of the marginals of the risks and 
their dependence structure.  

Apart from that correlation has more disadvantages. Correlation is not invariant under 
strictly increasing transformations of the risks. It is a scalar measure of dependence and 
therefore cannot tell us everything we would like to know about the dependence structure 
of risks. Correlation is only defined when the variances of the risks are finite. It is not an 
appropriate dependence measure for very heavy-tailed risks where variances tend to 
infinity. This inadequacy of correlation requires an appropriate dependence measure: the 
copula. The main objective of this thesis is as follows:  

“What are the advantages of using a copula model to model dependencies between 
variables in financial risk models over a more traditional method such as correlation?” 

A copula function couples n univariate marginal distributions together to form a 
multivariate distribution resulting in a joint distribution function of n standard uniform 
random variables. Assume that you have two random variables (X,Y). Then the standard 
formulation is: H (x,y) = C(F (x), G (y)), where C(u,v) is the copula, F and G are 
marginal distribution functions, and H is the joint cumulative distribution function.  

Important copula functions are the Fréchet-Hoeffding upper and lower bound given by 
( ) ( )vuvuM ,min, =  and ( ) ( )0,1max, −+= vuvuW , respectively, and the product 

copula ( ) uvvu =∏ , . Copulas are invariant under strictly increasing transformations of 

the risks. 
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In 1959 Abe Sklar was the first who used the term copula in a mathematical sense. The 
theorem, that was named after him, states that any joint cumulative distribution function 
F can be written in terms of a copula and marginal cumulative distribution functions. If 
the marginals are continuous then the copula is unique for F.  

The copula is in comparison to correlation invariant under transformations of the risks. 
Correlation is a scalar measure of dependence; it does not tell us everything we would 
like to know about the dependence structure of risks. A copula determines the 
dependence relationship by joining the marginal distributions together to form a joint 
distribution. The scaling and the shape are entirely determined by the marginals. In 
contrast to correlation the copula function can be applied when risks are heavily tailed.  

A copula model that has become a standard market model for valuating collateralized 
debt obligations (CDOs) is the Gaussian copula model. The risk of a CDO is distributed 
over several tranches, where each tranche represents a group of investors with different 
risk degrees. To determine the price of the tranches of a CDO, the following are needed: 
the default probability, the default severity (or recovery), and the default correlation.  

The default correlation is the likelihood that the default of one asset causes the default of 
another and is much higher between credits within the same industrial sector. Default 
correlations can be modeled through the use of the one-factor copula model.  

Suppose a CDO contains assets from n companies, then the default time of the ith 
company is denoted by iT . Its corresponding cumulative probability distribution that 
company i will default before time t is denoted by ( )tQi . It is assumed that iT  is related 
to a random variable iX , so that for any given t, there is a corresponding value x such that: 
( ) ( )tTPxXP ii ≤=≤ . The default of the n companies can then be modeled by the 

following copula model: iiii ZaMaX 21−+= . The model maps iX to it  on a 

“percentile to percentile” basis.  

When the cumulative distribution of iX  is denoted by iF  and the cumulative distribution 
of iZ  (assuming that the iZ are identically distributed) by H, then we can write iZ  as 
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Correlation comes in trouble when the random variables are not elliptically distributed.  
The performance of the copula does not depend on the fact if you are dealing with 
elliptical distributions or not. Add the fact that copulas possess handy properties and the 
winner of the two is the copula.  
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Chapter 1 Introduction 
 
 
 
 

1.1 Background 

Financial Risk Management is currently a hot topic in the financial world. The goal of 
Financial Risk Management (FRM) is to measure and manage risks across a diverse 
range of activities used in, e.g., banking, securities and insurance sectors. Within FRM 
dependencies between random variables play an important role. Take for example the 
risk of a portfolio. A portfolio that contains a variety of stock types will be less risky than 
one holding only a single type of stock.  

A popular and often used dependence measure is the correlation coefficient based on a, 
which is a reasonable measure when the random variables are elliptically distributed and 
a good measure when the random variables are multivariate normal1 distributed. But what 
if the marginals are not normal distributed and a model can make the difference between 
thousands or even millions of Euros loss or revenue for an institute? Under these 
circumstances reasonable is not good enough anymore.  

The market risk portfolio value distributions, which typically occur in banking, are often 
approximated by a normal distribution. It is a standard assumption in many risk 
management applications, because this distribution is easy to implement. However, 
research shows that the multivariate normal distribution is inadequate because it 
underestimates both the thickness of the tails of the marginals and their dependence 
structure [2]. The credit and especially the operational risks are approximated with more 
skewed distributions because of occasional, extreme losses. 

So it seems that the marginals of risks are often not elliptically distributed. However, 
when you step outside the elliptical world, the marginal distributions and correlations do 
not suffice to determine the joint multivariate distribution. It no longer tells us everything 
we need to know about dependence, particularly in the tails. In those cases correlation is 
no longer a suitable dependence measure. This inadequacy of the use of correlation 
outside the elliptical world requires an appropriate dependence measure: the copula. 

1.2 Object and Scope 

The focus in this thesis lies on modeling the dependence structure between risks, an 
essential activity which is needed in the assessment of risk. In this thesis we will restrict 
ourselves to the field of banking. 

                                                      
1  Note that the multivariate normal is a special member in the family of elliptical distributions. 
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Due to the fact that the copula maneuvers around the pitfalls of correlation, it has become 
quite popular in financial risk management to model dependencies between risks. Areas 
of application include credit risk modeling, portfolio Value at Risk calculations, default 
and credit risk dependence, and tail dependence. In this thesis we will discuss the pitfalls 
of correlation and how the copula function deals with them. The main objective of this 
thesis is as follows:  

“What are the advantages of using a copula model to model dependencies between 
variables in financial risk models over a more traditional method such as correlation?” 
 
Based on the objective we have derived the following questions that will be answered in 
this thesis: 

Chapter 3 - When and where does correlation come short in risk modeling?  

Chapter 4 - What is a copula function and what are its properties? 

Chapter 5 - How can copulas be applied in financial risk management?    

1.3 Thesis structure 

A graphical representation of the thesis structure can be seen in Figure 1.1. In Chapter 2 
we will go deeper into risks and risk measures. It is necessary to cover these subjects to 
gain a better understanding of Financial Risk Management in order to discuss the main 
subject: dependence modeling in FRM.  

  
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Figure 1.1: Graphical representation of the thesis structure. 
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Conclusion
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As mentioned before, Chapter 3 will explain the concept of correlation and the 
shortcomings of correlation when it comes to risk modeling.  

In Chapter 4 we will explain what a copula is, what its properties are, and how a copula 
function can be constructed. 

Now that the copula methodology is covered, some possible applications of copula 
functions in financial risk management are presented in Chapter 5. 

Finally, the last chapter summarizes the conclusions of our study, and furthermore some 
points for further research are stated. 
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Chapter 2 Financial Risk Management  
 
 
 
 

2.1 Introduction 

The concept of risk is based on the uncertainty about future outcomes. In the introduction 
we already mentioned three different types of individual risks: the market, the credit, and 
the operational risk. In this chapter we will go deeper into these risks, especially the ones 
last mentioned and we will discuss two generally used risk measures: the variance and the 
Value at Risk (VaR).  

2.2 Risk 

According to the Concise Oxford English Dictionary risk can be defined as: 

“A hazard, a chance of bad consequences, loss or exposure to mischance.” 

In other words, risk indicates any uncertainty that might trigger losses. However, 
uncertainty is hardly visible in contrast to revenues or costs. Consequently, risks remain 
intangible until they have materialized into loss. This makes the quantification of risks 
more difficult. 

Financial risks can be split into two parts: the individual risks and the dependence 
structure between them. This requires an approach for combining different risk types and, 
hence, risk distributions. There are many types of risks, but for now we will focus on the 
most important three: the market, the credit, and the operational risk.   

Market risk 

The market risk is the risk that the value of an investment will decrease due to adverse 
movements in market factors. These movements cause volatility in Profit & Loss.  

Credit risk 

The credit risk is the risk that a company or individual will be unable to pay the 
contractual interest or principal on its debt obligations. 

Operational risk 

The operational risk is the risk of loss resulting from inadequate or failed internal 
processes, people and systems, or from external events. 

The distributional shapes of each risk type vary considerably; some are better 
characterized and measured than others. For example, the market risk has portfolio value 
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distributions that are often approximated by a normal distribution. Credit and operational 
risk on the other hand are approximated with more skewed distributions because of 
occasional, extreme losses.  These might be due to large lending exposures in the case of 
credit risk, or large catastrophes such as 9/11, in the case of operational risk. 

2.3 Risk measures 

In practice, risk measures are used for a variety of purposes. One of the principal 
functions of financial risk measurement is to determine the amount of capital a financial 
institution needs to hold. This is important because an institution needs a buffer against 
unexpected future losses on its portfolio in order to keep the solvency of the institution 
healthy.  

Another purpose is that risk measures are often used by management as a tool for limiting 
the amount of risk a unit within a firm may take. There are different ways to measure risk. 
In this section we will discuss two risks measures that are based on loss distributions, 
namely Value at Risk (VaR) and Expected Shortfall. Losses are the central object of 
interest in FRM and so it is natural to base a measure of risk on their distribution.  

2.3.1 Value at Risk (VaR) 

Value at Risk (VaR) is defined as the maximum expected loss (measured in monetary 
units) of an asset value (or a portfolio) over a given time period and at a given level of 
confidence (or with a given level of probability), under normal market conditions 
[Coronado, 2000]. 

Consider a portfolio of risky assets, with a fixed time horizon Δ, and denote by 
( ) ( )lLPlFL ≤=  the distribution function of the corresponding loss distribution. It 

measures the severity of the risk of holding our portfolio over the time period Δ. 

DEFINITION 

Given some confidence level ( )1,0∈α . The VaR of the portfolio at confidence level α is 

given by the smallest number  l such that the probability that the loss L exceeds l is no 
larger than (1 – α).  

( ){ } { }ααα ≥∈=−≤>∈= )(:inf1:inf lFRllLPRlVaR L .    (1) 

In other words, the VaR of our portfolio is the loss L that is expected to be exceeded with 
a probability of (1 – α). In probabilistic terms, the VaR is thus simply the quantile of the 
loss distribution. For example if a bank’s 10-day 99% VaR is 3 million Euros, there is 
considered to be only a 1% probability that losses will exceed 3 million Euro in 10 days.  

Typical values for α are 0.95 or 0.99; in market risk management the time horizon Δ is 
usually 1 or 10 days, in credit risk management and operational risk management Δ is 
usually one year.  
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2.3.2 Expected Shortfall 

The Expected Shortfall (ES) is closely related to Value at Risk.  Mathematically this risk 
measure can be defined as: 

DEFINITION 

For a loss L with E(|L|) < ∞ and distribution function LF the Expected Shortfall at 
confidence level ( )1,0∈α  is defined as:  

( )duFqES Lu∫−
=

1

1
1

αα α
,       (2) 

where ( )Lu Fq  is the quantile function of LF . The ES is therefore related to VaR by: 

( ) ( )ααα α
VaRLLEduLVaRES u ≥=

−
= ∫ |

1
1 1

.    (3) 

So, in other words, the ES is defined as the expected size of a loss that exceeds VaR. If 
you take for example a alpha of 99% over a time horizon Δ of ten days, the ES is the 
average amount that is lost over a 10-day period, assuming that the loss is greater than the 
99th percentile of the loss distribution. In paragraph 2.3.1 we discussed an example of a 
bank with a 10-day 99% VaR of 3 million. However there is no differentiation between 
small and very large violations of the 3 million Euro limit.  The eventual loss can be 3 
million Euro as well as 30 million Euro. That is why ES gives a ‘bigger picture’ of the 
risk, because you look at the average VaR over all levels α≥u  as can be seen in 
Equation (3). 
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Chapter 3 Measuring dependencies 
 
 
 
 

3.1 Introduction 

In the previous chapter we generally discussed Financial Risk Management. In this 
chapter we will focus on the dependencies in FRM and how they can be measured with 
the correlation coefficient (correlation). In Section 3.5 we will discuss a way to approach 
the relation between correlation and the Normal distribution. The pitfalls of correlation 
will be dealt with in the last section of this chapter. 

3.2 Dependencies in FRM 

Dependencies can be found everywhere, so also in the financial world. Take for example 
market and credit risk. Both risk types are related to the interest rate. But there can also 
be relations between risks. Assume an investor has a portfolio with two loans to two 
different companies. He can reduce the portfolio risk by holding assets that are not 
related with each other.  

For example, if the investor loans money to two Dutch farmers and there is continuing 
bad weather, which destroys the harvest of all Dutch farmers. Changes are high that both 
formers will default. The farmers are related to each other, because they are exposed to 
many of the same influences. That is why it is smart to hold a risk diversified portfolio. If 
the investor would loan to a farmer and to a umbrella factory, he balances the risk of bad 
weather. Because bad weather is a bad influence for the farmer, but it means big business 
for the umbrella factory. So they can reduce their exposure to asset risk by holding a 
diversified portfolio of assets.  

3.3 Correlation and regression, what’s the difference? 

Correlation and regression are two concepts that are often confused with each other. 
Before we will go deeper into correlation, we will shortly discuss the difference between 
both techniques by looking at their goals. The goal of linear regression is to find the 
equation of the line that best fits the data. This line is then used to represent the 
relationship between the variables, or for estimating unknown values of one variable 
when given the value of the other. The goal of correlation is to see whether two variables 
co-vary, and to measure the strength of any dependency between the variables. The 
results of correlation are expressed as a P-value (for the hypothesis test) and an r-value 
(correlation coefficient) or r2 value (coefficient of determination).  
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Figure 2.1: The univariate (1) and bivariate (2 & 3) normal distribution. 

3.4 The classic approach: correlation 

A concept that is often used in risk management, but which is often misunderstood, is 
correlation. Part of the misunderstanding can be the result of the usage of the word in 
literature. Correlation is a dependence measure, but is often used for almost every 
meaning of the word dependence. Even when it is used as a risk measure, there is a 
tendency to use it as if it were an all-purpose dependence measure. This results in 
correlation being misused and applied to problems for which it is not suitable. 

DEFINITION 

The correlation coefficient, indicates the strength and direction of a linear relationship 
between two random variables. The best known correlation measure is the Pearson 
product-moment correlation coefficient (r) (www.wikipedia.org). 
 

( ) ( )
( ) ( )YX

YXYXr
varvar
,cov, = ,       (4) 

With ( ) ( ) ( ) ( )YEXEXYEYX −=,cov , provided that var(X) and var(Y) are greater than 0. 

The correlation coefficient is a scalar measure of dependence with the property that 
( ) 1,1 ≤≤− YXr . 

In Sections 3.2 we discussed that the default of one company can be related to the default 
of another. This is called the default correlation. Default correlation is the likelihood that 
the default of one asset causes the default of another and is much higher between credits 
within the same industrial sector. In Chapter 5 we will go deeper into this matter. 

3.5 Correlation and the normal distribution 

Although correlation plays a central role in finance, it is important to realize that the 
concept is only a natural one in the context of multivariate normal or more generally, 
elliptical models. The visual relation between the normal distribution and correlation is 
demonstrated in steps one to three in Figure 2.1, which shows the gradual transformation 
from the bivariate normal distribution to a correlation line (Figure 2.2). 
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Figure 2.2: A scatter plot of x and y (1) and one when there is perfect correlation (2). 

In the first figure you can see the univariate normal distribution and in the last two figures 
you can see a bivariate normal distribution from above (2) and directly down on the 
bivariate normal distribution (3). The last figure (3) is a scatter plot and because of the 
circularity of the shape it can be said that there is no relationship (r = 0). In Figure 2.2, it 
can be seen that as the correlation between x and y increases, the circles narrow until you 
see the straight line of the perfect (r =1.0) correlation. 

 

3.5.1 Pitfalls of correlation 

Correlation is a reasonable measure of dependence when random variables are distributed 
as multivariate normal, but when this is not the case correlation gets into trouble. The 
following pitfalls occur: 

− Possible values of correlation depend on the marginal distribution of the risks. 
Not all values between –1 and 1 are not necessarily attainable. 

− Perfect positively dependent risks do not necessarily have a correlation of 1; 
perfect negatively dependent risks do not necessarily have a correlation of –1. 

− A correlation of zero does not indicate independence of risks. 

Correlation is not invariant under strictly increasing transformations of the risks. For 
example, log(X) and log(Y) generally do not have the same correlation as X and Y. Hence, 
transformations of our data can affect our correlation estimates. 

Correlation is a scalar measure of dependence; it cannot tell us everything we would like 
to know about the dependence structure of risks. 

Correlation is only defined when the variances of the risks are finite. In Equation (4) you 
can see that the denominator is determined by the product of the variances, which (see 
Equation (4)). It is not an appropriate dependence measure for very heavy-tailed risks 
where variances tend to infinity. 
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Chapter 4 The basic stuff  
 
 
 
 

4.1 Introduction 

In the last chapter we discussed the pitfalls of correlation as a dependence measure in 
FRM.  In this chapter we will discuss a dependence model that deals with most of the 
shortcomings of correlation, namely the copula. But before we will give a definition of 
copula functions, one has to be familiar with the following properties and definitions:  

- Grounded 

Suppose xa  is the smallest element of xS  and ya  is the smallest element of yS . We say 

a function H from xS  x yS  into R is grounded if ( ) ( )yaHaxH xy ,0, == , for all (x,y) 

in xS  x yS . 

- 2-increasing 

A function H is 2-increasing if the H-volume of B is greater than or equal to 0, where B = 
[ 1x , 2x ] x [ 1y , 2y ] is a rectangle whose vertices are in the domain of H for every 
( 1x , 2x ),( 1y , 2y ) in [0,1] 2 with 1x ≤ 2x and 1y  ≤ 2y . The H-volume of B is computed by: 

( ) ( ) ( ) ( ) ( )11211222 ,,,, yxHyxHyxHyxHBVH +−−= .   (5) 

- Distribution function  

A distribution function is a function F with domain R such that: 

- F is non-decreasing; 

- ( ) 0=∞−F and ( ) 1=∞+F . 

- Joint distribution function 

A joint distribution function is a function H with domain 2R  such that: 

- H is grounded  → ( ) ( ) 0,, =∞−=−∞ yHxH ,  

- H is 2-increasing  →  H-volume is ≥ 0. 

H has as marginals the functions F and G given by ),()( ∞= xHxF and ),()( yHyG ∞=  

[4].  

- Domain of H = xS  x yS  = 2I .  



Modeling dependencies in financial risk management 17 

If xS and yS  are non-empty subsets that contain all possible values of x and y, 

respectively, then xS  x yS  = 2I  means that all the possible values of x and y lie within 

the unit square 2I , where I =  [0,1]. 

- Marginals of H 

Suppose xb  is the greatest element of xS  and yb  is the greatest element of yS . If the 

above mentioned properties hold for H(x,y), then H has as marginals the functions F and 
G given by: 

),()( 2bxHxF = for all x in xS , 

),()( 1 ybHyG = for all y in yS . 

After explaining how a copula works, we will cover Sklar’s Theorem, how a copula 
function can be constructed and two copula families. 

4.2 What is a copula? 

The term originates from Latin, and means “a link, tie, bond” and is used to refer to 
joining together or connecting words. In this thesis we will refer to the mathematical 
meaning of the term copula, namely the copula function.  

DEFINITION 

A copula function links n univariate marginal distributions to a full multivariate 
distribution resulting in a joint distribution function of n standard uniform random 
variables.  

In some sense, the copula still has a connection to the Latin meaning of the word, because 
the copula actually ‘couples’ the marginal distributions together to form a joint 
distribution. Assume that you have two random variables (X, Y). Then the standard 
formulation is: 

H (x,y) = C(F (x), G (y)),       (6) 

where C(u,v) is the copula, F and G are marginal distribution functions, and H is the joint 
cumulative distribution function. The information of the marginal distributions are 
retained in F(x) and G(y), and the dependence information is summarized by C(u,v). The 
dependence relationship is entirely determined by the copula, while the scaling and the 
shape (e.g., the mean, the standard deviation, the skewness, and the kurtosis) are entirely 
determined by the marginals. 
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A bivariate function C is a copula function if it satisfies the following properties [4]: 

1. Domain of C = 2
21 ISS =× , where 1S and 2S  are non-empty subsets of I; 

2. C  is a function that is grounded and 2-increasing; 

3. for every u in 1S and every v in 2S , ( ) uuC =1, and ( ) vvC =,1 . 

Note that for every (u,v) in Dom C, 0 ≤ ( )vuC ,  ≤ 1, so that Rang C is a subset of I.  

 

EXAMPLE 3.1 We will show that the bivariate function H(x,y) = xy is in fact a copula 
on the range [ ]1,0, ∈yx  . 

Solution  

- Domain of H = xS  x yS  = 2I . 

- ( )yH ,0  = 0 and ( )0,xH  = 0    → H is grounded. 

- For  B = [ 1x , 2x ] x [ 1y , 2y ] → ( ) 0≥BVH   → H is 2-increasing. 

This has to hold for every [ ]1,0,,, 2121 ∈yyxx  with 1x ≤ 2x and 1y  ≤ 2y . 

Define xxx Δ+= 12 and yyy Δ+= 12 . Fill this in in ( ).BVH : 

( ) ( ) ( ) ( ) ( ) 0,,,, 11111111 ≥+Δ+−Δ+−Δ+Δ+= yxHyxHyxHyxHBV yxyxH  

( ) ( )( ) ( ) ( ) ( ) 011111111 ≥+Δ+−Δ+−Δ+Δ+= yxyxyxyxBV yxyxH  

( ) 0111111111111 ≥+Δ−−Δ−−ΔΔ+Δ+Δ+= yxxyxyyxyxyxBV yxyxxyH  

( ) 0≥ΔΔ= yxH BV  

And this holds for all [ ]1,0,,, 2121 ∈yyxx  with 1x ≤ 2x and 1y  ≤ 2y . 

- ( ) xxH =1, and ( ) yyH =,1  

The function that is used in Example 3.1 is also called the product copula ( ) uvvu =∏ , . 

Other important copula functions are the Fréchet-Hoeffding upper and lower bound given 
by ( ) ( )vuvuM ,min, =  and ( ) ( )0,1max, −+= vuvuW , respectively. 
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THEOREM 3.3 

For every copula ( )nuuC ,...,1 we have the bounds 

( )n

n

i
i uuCnu ,..,min)(0,1max 1

1
≤≤⎟

⎠

⎞
⎜
⎝

⎛
−+∑

=

u .  

4.3 Sklar’s Theorem 

In 1959 Abe Sklar was the first who used the term copula in a mathematical sense. In 
Sklar’s Theorem he describes how the copula function works and proves that the copula 
C is unique for a given distribution F if the marginals are continuous. The theorem states 
that any joint cumulative distribution function can be written in terms of a copula and 
marginal cumulative distribution functions.  

A copula function shows that it is possible to separately specify the dependence between 
variables and the marginal densities of each variable. That is why Sklar’s Theorem is said 
to be the most important theorem about copula functions.   

THEOREM 3.1 Sklar’s Theorem 

Let H be a joint distribution function with marginals F and G. Then there exists a copula 
function C such that for all x,y in R,  

( ) ( ) ( )( ).,, yGxFCyxH =        (7)  

If the marginals F and G are continuous, then C is unique. Otherwise C is uniquely 
determined on Range F x Range G. Conversely, if C is a copula and F and G are 
distribution functions, then the function H defined by (7) is a joint distribution function 
with marginals F and G [4]. 

Theorem 3.1 is presented form the point of view of the joint distribution, but what if we 
were to turn this around and look at it from the direction of the copula function. The 
theorem can be inverted to express copulas in terms of a joint distribution function and 
the inverses of the marginals, but only if the marginals are strictly increasing.  

PROPOSITION 3.7 

Let ( )xF  and ( )yF 1−  be two functions. If ( )( ) yxFF =−1  and ( )( ) xyFF =−1  then 
1−F  is the inverse of F and vice versa. The notation for the inverse of F  is 1−F . 

Equation (7) can then be written as 

( ) ( ) ( )( )vGuFHvuC 11 ,, −−= ,       (8)  
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because when ( ) uxF =  and ( ) vyG = , the inverse functions are ( ) xuF =−1 and 
( ) yvG =−1 . After substitution you obtain Equation (8). A graphical representation can 

be seen in Figure 3.1. 

 

So a copula is actually a joint cumulative distribution function with uniform marginals. It  
maps points on the unit square (u,v E [0,1]x[0,1]) to values between zero and one. 

PROPOSITION 3.8 

Let ( )nXX ,..,.1  be a random vector with continuous marginals and copula C and let 

nTT ,..,.1  be strictly increasing functions. Then ( ) ( )( )nn XTXT ,..,.11  also has copula C. 

Proposition 3.8 shows the invariance property of the copula under strictly increasing 
transformations of the marginals.  

4.4 Copula families 

Copulas can be distinguished in the Elliptical and Archimedean family. Elliptical copulas 
are the copulas with elliptical distributions, which have a elliptical form and therefore 
symmetry in the tails. Important copulas in this family are the Gaussian and the student’s 
copula. The Gaussian copula is often used because of his simple form as can be seen in 
Example 3.2.  

EXAMPLE 3.2 Gaussian copula 

Assume there are two random variables X and Y where both variables are standard normal 
distributed, X ~ N(0,1) and Y ~ N(0,1) and let the correlation between X and Y be denoted 
by ( ) ρρ =YX , .  

Then the joint distribution can be written as the following copula: 

( ) ( ) ( ) ( )( )yxCyxyxH ΦΦ=Φ= ,,, ρρ ,     (9) 

 
 
 
 
 
 
 
 
 
 
Figure 3.1: The marginal distribution functions FX and FY. 
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where Φ denotes the standard univariate and ρΦ  the standard bivariate normal 

distribution function. (9) can be written as: 

( ) ( ) ( )( )
( )

( )
( )

( )( )

dxdyevuvuC
u v xyyx

∫ ∫
− −Φ

∞−

Φ

∞−

−
−+−

−−

−
=ΦΦΦ=

1 1 22

12
2

11

12
1,, ρ

ρ

ρρ ρπ
. (10) 

Archimedean copulas are widely applied, because they are not difficult to construct. In 
comparison to Elliptical copulas, Archimedean copulas have only one dependency 
parameter (instead of a dependency matrix) and have many different forms. In Table 3.1 
you can see three often used Archimedean copulas. 

Copula ( )vuC ,θ  ( )tθϕ  Parameter 

Gumbel ( ) ( )( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−− θθθ

1

lnlnexp vu  
( )θtln−  θ ≥ 1 

Clayton ( ) θθθ
1

1 −−− −+ vu  ( )11
−−θ

θ
t  θ ≥ -1 

Frank ( )( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−−−−
+−

1)exp(
1)exp(1)exp(1ln1

θ
θθ

θ
vu

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

− −

−

1
1ln θ

θ

e
e t

 
θ ∈  R 

Table 3.1: Summary of three Archimedean copulas.  

The copulas in Table 3.1 are of the form: ( ) ( )( )vuvuC ϕϕϕ += −1),( , 

where ϕ  is a decreasing function from [0,1] to [0, ∞], satisfying ( )0ϕ = ∞, ( )1ϕ = 0. 

Archimedean copulas enjoy their popularity due to the following reasons: 

- Many copula families belong to this class, 

- they can be easily constructed, 

- they posses nice properties (i.e. ),(),( uvCvuC = ). 

4.5 Correlation vs. Copula 

Now that we have covered the basics of copula we will compare this method with 
correlation.  

As we have seen in the last chapter correlation comes in trouble when the random 
variables are not Normal distributed. In market risk this is not so much of a problem, but 
credit and operational risk are approximated with more skewed distributions because of 
occasional, extreme losses. In those cases copula is preferred over correlation. 

Copula is in comparison to correlation invariant under transformations of the risks. For 
example, log(X) and log(Y) generally do not have the same correlation as X and Y. Hence, 
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transformations of our data can affect our correlation estimates. Proposition 3.1 shows 
that if you transform a random variable X, which has a copula function C, with a strictly 
increasing function T, then T(X) also has copula C. 

Correlation is a scalar measure of dependence; it cannot tell us everything we would like 
to know about the dependence structure of risks. Copula on the other hand works by 
joining together the marginal distributions to form a joint distribution. In this way the 
dependence relationship is entirely determined by the copula, while the scaling and the 
shape are entirely determined by the marginals. 

Correlation is only defined when the variances of the risks are finite (see Equation (1)). It 
is not an appropriate dependence measure for very heavy-tailed risks where variances 
appear infinite.  
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Chapter 5 Application 
 
 
 
 

5.1 Introduction 

A copula model that has become a standard market model for valuating collateralized 
debt obligations (CDOs) is the Gaussian copula model. In this chapter we will show how 
CDO’s can be modeled by a copula. In paragraph 4.2 we will go into the basics of Credit 
Derivatives and CDO’s and in paragraph 4.3 we will show how an one-factor copula 
model can be applied to prize CDO tranches.  

5.2 Credit Derivatives & CDO’s 

Before we discuss the copula model, some knowledge about Credit Derivates and CDO’s 
is required. The purpose of these instruments is to allow market participants to trade the 
credit risk associated with certain debt instruments. 

Credit derivatives can be seen as financial contracts between two parties. One party  
wants to gain protection against credit risk exposure (the protection buyer) and the other 
party wants to invest by selling protection (protection seller) in exchange for the cash 
flows of their investments (premium). In other words, credit derivatives allow one party 
to transfer credit risk to another in exchange for a fee.  

CDO’s are categorized as credit derivatives and generally secure a portfolio of bonds and 
loans by transferring the asset risk to capital market investors in return for the cash flows 
that are generated from the asset portfolio. This is done by dividing the portfolio into 
packages named securities, which are sold to investors. Not all securities carry the same 
risk.  

 
 
 
 
 
 
 
 
 
Figure 4.1: Establishment of a (Cash) CDO. 
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The risk on the portfolio is distributed over several tranches, where each tranche 
represents a group of investors with different risk degrees. The assets that have the 
highest risk of default are classified in the lowest tranche and vice versa. So the higher 
the tranche the lower the risk that the corresponding assets will default. To determine the 
price of the tranches of a CDO the following are needed: default probability, default 
severity (or recovery) and default correlation.  

The default correlation is the likelihood that the default of one asset causes the default of 
another and is much higher between credits within the same industrial sector. For 
example, the default of an US airline will have a high default correlation associated with 
other US airlines. There could even be a correlation associated with airlines in Europe, 
because they are exposed to many of the same influences. On the other hand the default 
correlation of the US airline associated with a telecom company in Europe would be low 
or even zero. 

The structure of a general CDO can be seen in Figure 4.1. Under the CDO a special 
purpose vehicle (SPV) is created by a sponsoring organization (a bank or other financial 
institution). The SPV is a legal entity, with its own assets, liabilities and management, 
whose operations are limited to the acquisition and financing of specific assets. Often, the 
sponsoring organization acts as the manager of the SPV. The assets, which are generally 
bought from the sponsoring organization, serve as collateral for the securities that the 
SPV issued. The SPV funds these assets with the cash proceeds of the securities, which 
are sold in the capital market to investors.  

5.3 The one-factor copula model 

In the last paragraph we briefly discussed default correlations. In this section we will 
show how they can be modeled through the use of the one-factor copula model, see 
Equation (12).  

Suppose a CDO contains assets from n companies, then the default time of the ith 
company is denoted by iT . Its corresponding cumulative probability distribution that 

company i will default before time t is denoted by ( )tQi . It is assumed that the time to 
default iT  is related to a random variable iX , so that for any given t, there is a 

corresponding value x such that: 

( ) ( )tTPxXP ii <=< ,   i = 1,…,n.    (11) 

iX can be seen as a variable that indicates when an obligator will default: the lower the 

value of the variable, the earlier a default is likely to occur. 
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The default of the n companies can then be modeled by the following copula model:  

iiii ZaMaX 21−+=  where,       (12) 

iX  the default indictor variable for the ith company; 

ia  correlation of the ith company with the market, where ia  satisfies 11 ≤≤− ia ;  

M a market factor, which is the same for all iX ; 

iZ  individual component affecting only iX . 

The two stochastic components of iX , M and sZi ' , have independent probability 

distributions. In the case of the Gaussian copula model both components are Normal 
distributed. The correlation of the ith company with the market is denoted by ia , where 

ia  satisfies 11 ≤≤− ia . Because the correlation is with respect to the common market 
factor,  the correlation between two trigger levels for names i and j is given by ji aa . 

The one factor copula model maps iX to it  on a “percentile to percentile” basis, which 
means that the 5% point on the iX  distribution is mapped to the 5% point on the it  
distribution. In other words: when iX  is small, the time it  before default is also small. 

When the cumulative distribution of iX  is denoted by iF  and the cumulative distribution 
of iZ  (assuming that the iZ are identically distributed) by H, then, in general the point 

xX i =   is transformed to  tti =  where ( )( )tQFx ii
1−=   or ( )( )xFQt ii

1−=  . 

We can rewrite (12) into  
21 i

ii
i

a

MaX
Z

−

−
= . Since H is the cumulative distribution of 

iZ and given that the market variable mM = , it follows from Equation (12) that: 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

−
==<

21
)|(

i

i
i

a

max
HmMxZP ,       (13) 

and the conditional default probability is  

( )( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

−
==<

−

2

1

1
)|(

i

iii
i

a

matQF
HmMttP .     (14) 

The idea behind the copula model is that we do not define the correlation structure 
between the variables of interest directly ( it ), but we map the variables of interest into 
other more manageable variables ( iX ) and define a correlation structure between those 

variables. 
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Conclusion 
 
 
 
 
 

The main object of this thesis was what the advantages of using a copula over correlation 
were to model dependencies between variables in financial risk models.  

Pair wise correlation and the marginal distributions of a random vector is then not enough 
to determine its joint distribution. The copula works by joining together the marginal 
distributions to form a joint distribution. In this way the dependence relationship is 
entirely determined by the copula, while the scaling and the shape are entirely determined 
by the marginals.  

When we look at the distributions of financial risk we see that market risk is often 
approximated with a Normal distribution and therefore does not cause much of a problem. 
Credit and operational risk on the other hand are approximated with more skewed 
distributions because of occasional, extreme losses.  Correlation comes in trouble when 
the random variables are not elliptically distributed. The performance of the copula does 
not depend on the fact if you are dealing with elliptical distributions or not.  

Add the fact that copulas possess handy properties and the winner of the race is copula.  
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