
VRIJE UNIVERSITEIT AMSTERDAM

RESEARCH PAPER

Recommendation System for Netflix

Author:
Leidy Esperanza MOLINA
FERNÁNDEZ

Supervisor:
Prof. Dr. Sandjai BHULAI

Faculty of Science
Business Analytics

January 29, 2018

https://www.vu.nl/en
https://www.linkedin.com/in/leidy-esperanza-molina-3ba72a131/
https://www.linkedin.com/in/leidy-esperanza-molina-3ba72a131/
http://www.math.vu.nl/~sbhulai/
https://science.vu.nl/en/index.aspx
https://masters.vu.nl/en/programmes/business-analytics/index.aspx

iii

VRIJE UNIVERSITEIT AMSTERDAM

Abstract
Faculty of Science
Business Analytics

Master of Science Business Analytics

Recommendation System for Netflix

by Leidy Esperanza MOLINA FERNÁNDEZ

Providing a useful suggestion of products to online users to increase their consump-
tion on websites is the goal of many companies nowadays. People usually select or
purchase a new product based on some friend’s recommendations, comparison of
similar products or feedbacks from other users. In order to do all these tasks auto-
matically, a recommender system must be implemented. The recommender systems
are tools that provide suggestions that best suit the client’s needs, even when they
are not aware of it. That offers of personalized content are based on past behavior
and it hooks the customer to keep coming back to the website. In this paper, a movie
recommendation mechanism within Netflix will be built. The dataset that was used
here consists of over 17K movies and 500K+ customers. The main types of recom-
mender algorithm are Popularity, Collaborative Filtering, Content-based Filtering
and Hybrid Approaches. All of them will be introduced in this paper. We will select
the algorithms that best fit to the data and we will implement and compare them.

HTTPS://WWW.VU.NL/EN
https://science.vu.nl/en/index.aspx
https://masters.vu.nl/en/programmes/business-analytics/index.aspx

v

Contents

Abstract iii

1 Introduction 1

2 Background & literature research 3
2.1 Popularity . 3
2.2 Collaborative filtering . 3

2.2.1 Memory-based techniques . 4
User-based Collaborative filtering 4
Item-based Collaborative filtering 5

2.2.2 Model-based techniques . 6
Principal Component Analysis (PCA) 6
Probabilistic Matrix Factorization (PMF) 7
SVD . 7

2.2.3 Discussion . 8
2.3 Content-based filtering . 8

2.3.1 Term-Frequency - Inverse Document Frequency (TF - IDF) . . . 9
2.3.2 Probabilistic methods . 10
2.3.3 Discussion . 10

2.4 Hybrid filtering . 10
2.5 Evaluation of the system . 11

3 Data Analysis 13
3.1 Data exploration . 13
3.2 Data preparation . 15
3.3 Final Discussion . 16

4 Implementation 19
4.1 Popularity . 19
4.2 Evaluating the ratings . 20
4.3 Evaluating the recommendations . 22

5 Conclusion and Discussion 25

Bibliography 27

1

1 Introduction

Netflix is a company that handles a big collection of television programs and movies,
by streaming it at any time via online (computers or TV). This firm is profitable be-
cause the users do a monthly payment to get access to the platform. However, the
clients can cancel their subscriptions at any time (Amatriain, 2013). Therefore, it is
vital for the business to keep the users hooked to the platform and not to lose their
interest. This is where recommendation systems start to play an important role, it is
pivotal to provide valuable suggestions to users (Ricci et al., 2010). The recommen-
dation systems are increasing their popularity among the service providers, because
they help to increase the number of items sold, offer a diverse selection of items,
the user satisfaction increases, as well as the user fidelity to the company, and they
are quite helpful to have a better understanding of what the user wants (Ricci et al.,
2010). Then, it is easier to lead the user to make better decisions from a wide variety
of cinematographic products.

The recommender systems take into account not only information about the
users but also about the items they consume; comparison with other products, and
so on and so forth (Hahsler, 2014). Nevertheless, there are many algorithms avail-
able to perform a recommendation system. For instance, (i) Popularity, where only
the most popular items are recommended (ii) Collaborative Filtering, which looks
for patterns in the user activity to produce user-specific recommendations (Breese,
Heckerman, and Kadie, 1998); (iii) Content-based Filtering, the recommendation of
items with similar information the user has liked or used in the past (description,
topic, among others) (Aggarwal, 2016) ; (iv) Hybrid Approaches, combines the two
algorithms mentioned above (Adomavicius and Tuzhilin, 2005).

Selecting the algorithm that fits better the analysis is not an easy task, and neither
expands the user’s taste into neighboring areas by improving the obvious. There-
fore, the main types of recommender algorithms will be introduced in this paper,
the pros and cons of each algorithm will be described to give a deeper understand-
ing of how they work. Thus, in the end, several algorithms will be tested in order to
find out which is the one that works better for the Netflix’s users.

This study is conducted on real data from the Netflix users and the ratings they
have given to the movies they have seen. The information contains 17,770 files, one
per movie, where each movie has the rating from the customers, the ratings are on a
five-star scale from 1 to 5. Furthermore, the movies file includes the year of release
and the title of the movie as well.

3

2 Background & literature research

This chapter describes the most used recommendation techniques.

2.1 Popularity

Basically, the idea is to recommend the most popular movies to the users. They
could be the more watched ones, or also the ones with the highest ratings. The
popularity recommendations can be created based on usage data and item content.
Surprisingly, such approach usually has a powerful effect on the user’s behavior
(Bressan et al., 2016). For instance, in news portals where there are sections like
"Popular news" and then is subdivided into sections.

This approach is relatively easy to implement, e.g., there are several and good
baseline algorithms. It is especially useful when the user is new in the system and
has not watched or rated any movie, in other words, when we do not count on
information about the client. However, by recommending the most popular items
we end up with few opportunities to learn, that is to say, the system will not rec-
ommend new items and will not learn from the past suggestions. In addition, the
recommendation list may remain the same. Some more elaborated methodologies
are Collaborative filtering (Section 2.2) or Content Based filtering (Section 2.3).

2.2 Collaborative filtering

The Collaborative Filtering (CF) algorithms are based on the idea that if two clients
have similar rating history then they will behave similarly in the future (Breese,
Heckerman, and Kadie, 1998). If, for example, there are two very likely users and
one of them watches a movie and rates it with a good score, then it is a good indica-
tion that the second user will have a similar pattern. This is a useful methodology be-
cause it is not based on additional information about the items (e.g., actors, director,
genres) or the user (e.g., demographic information) to produce recommendations.
The suggestions generated by this methodology can be a specific recommendation
or a prediction (Isinkaye, Folajimi, and Ojokoh, 2015).

Let us assume a collection of user ui, and a collection of products in our case
movies pj, where i = 1, . . . , n and j = 1, . . . , m. The data set must be organized as a
n×m user-item matrix V, of ratings vi,j, with vi,j empty if the user ui did not rate the
movie pj. In other words, the users are represented by the rows and the movies by
the columns, the entries of the matrix V are the ratings, from a scale of one to five.

4 Chapter 2. Background & literature research

V =

p1 p2 pj pm

v11 v12 . . . v1j . . . v1m u1
v21 u2

. . .
... vij

... ui
. . .

vn1 . . . vnm un

Given that the collaborative filtering is based on information about similar users
or similar items, the CF could be classified into two different approaches: Memory-
based techniques (Section 2.2.1) and Model-based techniques (Section 2.2.2).

2.2.1 Memory-based techniques

The Memory-Based Collaborative Filtering approaches can be divided into two main
sections: User-based Collaborative filtering and Item-based Collaborative filtering
(Liang et al. (2016)). Where User-based looks for similar users to the user ui based
on similarity of ratings, and recommend products liked by those users. On the other
hand, Item-based filters by the item pj, and looks for users who liked that item, then
find different items that have been liked for those users, then the recommendations
are done using those items (Liang et al. (2016)).

User-based Collaborative filtering

The main idea of the User-based CF is to identify users that have similar rating val-
ues and suggest them a top-rated of new items based on their preferences (Hahsler,
2014). There is a wide variety of metrics to compare similarity between vectors or to
find the closest neighbor (in our case users). The most popular are Cosine Similarity
or Pearson Correlation (Amatriain et al., 2011, Breese, Heckerman, and Kadie, 1998).

The Cosine Similarity (Equation 2.1) computes the cosine of the angle between
these two users vectors.

cos(ui, uk) =

m
∑

j=1
vijvkj√

m
∑

j=1
v2

ij

m
∑

j=1
v2

kj

(2.1)

Pearson correlation (Equation 2.2), which measures the strength of a linear asso-
ciation between two vectors (Melville, Mooney, and Nagarajan, 2002).

S(i, k) =
∑
j
(vij − v̄i)(vkj − v̄k)√

∑
j
(vij − v̄i)2 ∑

j
(vkj − v̄k)2

(2.2)

From the above equation, S(i, k) calculates the similarity between two users ui
and uk, where vij is the rating that the user ui gave to the movie pj, v̄i is the mean
rating given by the user ui.

2.2. Collaborative filtering 5

With this similarity score we can compare each user among the rest of n− 1 users.
The higher the similarity between vectors, the higher the similarity between users.
As a result we obtain a symmetric matrix n × n with the similarity score of all the
users, defined as similarity matrix S.

S =

u1 u2 ui un

1 S(1, 2) . . . S(1, i) . . . S(1, n) u1
S(2, n) u2

. . .

1
... ui

. . .
1 un

Firstly, it is necessary to identify the most similar set of users to the active user
(ui), that is performed by selecting the top k users (k-nearest neighbors) who have
the largest similarity score with the user ui. The next step is to identify the products
these similar users liked, then remove the movies ui he has already seen, weigh the
movies that the most similar users have watched using the similarities as weights,
and add the values. The final result is a prediction of the rates that the user ui would
give to each one of these movies. The final step is to pick the top N of movies based
on the predicted rating.

Then the prediction of a recommendation is based on the weighted combination
of the selected neighbor’s rating, this is the weighted deviation from the neighbor’s
mean (Equation 2.3) (Isinkaye, Folajimi, and Ojokoh, 2015).

p(i, k) = v̄i +

n
∑

i=1
(vij − v̄k)× S(i, k)

n
∑

i=1
S(i, k)

(2.3)

Item-based Collaborative filtering

In the section above, the algorithm was based on users and the steps to identify
recommendations were first to identify which users are similar in terms of having
purchased the same items, then recommend to a new user the items that other users
have acquired. Now, the approach is the opposite. We start to look for similar users
based on the purchases and preferences, in other words, we are trying to find out
how similar is a movie to another movie.

The main idea is to compute the similarity between two items pj and pl , by sepa-
rating the users who already have watched and rated the two movies, and then use
one of the techniques to calculate the similarity between items, for instance, cosine-
based similarity, correlation-based similarity or adjusted cosine similarity (Sarwar
et al., 2001).

In the Cosine-based Similarity (Equation 2.1), the two items are thought as two
vectors in the n dimensional user-space where the difference in rating scale between
users is not taken into account.

For the Correlation-based Similarity (Equation 2.4), the Pearson- r correlation is
calculated, but it is important to isolate the cases where users rated both j and l,
where U represents the users who have rated both movies (Sarwar et al. (2001)).

6 Chapter 2. Background & literature research

S(j, l) = corrjl =

∑
i∈U

(vij − v̄j)(vil − v̄l)√
∑

i∈U
(vij − v̄j)2

√
∑

i∈U
(vil − v̄l)2

(2.4)

Here vij indicates the rating of the user ui in U on the movie pj, and v̄j denotes the
average rating of the j-th film.

In case that ratings from the users have different scale we can use the adjusted
cosine similarity (Equation 2.5), where the user rated average is subtracted from each
co-rated pair (Sarwar et al., 2001) .

S(j, l) =
∑

i∈U
(vij − v̄i)(vil − v̄i)√

∑
i∈U

(vij − v̄i)2
√

∑
i∈U

(vil − v̄i)2
(2.5)

Here v̄i is the average of the i-th user’s ratings in U.
Analogous to the User-based CF, we end up with a similarity matrix but in this

case the dimension is m×m, which reflects how similar all movies are to each other,
and from these scores we can generate recommendations for users. Then, the items
that users have previously rated are selected, the movies that are the most similar to
them are selected and weighed, and finally we obtain a recommendation of movies
that the user has not yet seen.

2.2.2 Model-based techniques

The ratings are used to implement a model that will improve the results of the col-
laborative filtering in order to find patterns in the data. To build a model some data
mining or machine learning algorithms can be applied. These kinds of models are
pretty useful to recommend a set of movies, in the fastest way and show similar
results to the Memory-based models. Model-based techniques are based on Matrix
factorization (MF), which is very popular because it is an unsupervised learning
method for dimensionality reduction. Basically, MF learns the latent preferences of
users and items from the ratings in order to make a prediction of the missing rat-
ings, using the dot product of the latent features of users and items (Girase and
Mukhopadhyay, 2015).

Some of the techniques that might be applied are based on Dimensionality Re-
duction techniques, for instance, Principal Component Analysis (PCA), Singular
Value Decomposition (SVD), Probabilistic Matrix Factorization (PMF), Matrix com-
pletion Technique, Latent Semantic methods, and Regression and Clustering (Isinkaye,
Folajimi, and Ojokoh, 2015). Below we described 3 of the most popular techniques:

Principal Component Analysis (PCA)

This is a powerful technique to reduce the dimensions of the data set, this is con-
sidered a realization of the MF (Ricci, Rokach, and Shapira, 2011). The principal
component analysis is known by using an orthogonal transformation, since it makes
use of the eigenvectors of the covariance matrix. The idea is to transform a set of
variables that might be correlated, into a set of new uncorrelated vectors.These new
vectors are named the principal components.

Given that the main purpose is to reduce dimensions, the set of original vari-
ables is greater than the final number of principal components. However, when

2.2. Collaborative filtering 7

we reduce dimensions, we also lose some information, but the construction of this
methodology allows the retain the maximal variance and the least squared errors are
minimized (Girase and Mukhopadhyay, 2015). Each component retains a percent-
age of the variance, being the first component the one that retains the most, and the
percentage retained starts to decrease in each component. Then the dimensions can
be reduced by deciding the amount of variance we want to keep.

Probabilistic Matrix Factorization (PMF)

This methodology is a probabilistic method with Gaussian observation noise (Girase
and Mukhopadhyay, 2015). In this case, the user item matrix (V) is represented as
the product of two low rank matrices, one for users and the other for the items. Let
us recall our variables, we have n users, m movies, vi,j is the rating from the user ui to
the movie pj. Now, let us assume Ui and Pj represent the d-dimensional user-specific
and movie-specific latent feature vectors, respectively.

Then the conditional distributions in the space of the observed ratings V ∈ Rn×m,
the prior distribution over the users U ∈ Rd×n , and movies P ∈ Rd×m , are given by
Bokde, Girase, and Mukhopadhyay, 2015:

p(V|U, V, σ2) =
n

∏
i=1

m

∏
j=1

[η(Vij|UT
i Pjσ

2)]Iij

p(U|σ2) =
n

∏
i=1

η(Ui|0, σ2
U I)

p(P|σ2) =
m

∏
j=1

η(Vj|0, σ2
P I)

where, η(x|µ, σ2) indicates the Gaussian distribution with mean µ and variance
σ2, and Iij is the indicator variable that is equal to 1 if the user ui has rated the movie
pj and 0 otherwise .

SVD

The most popular approach is Singular value decomposition (SVD). The general
equation can be expressed as X = U × S × Vt. Given an n × m matrix X, then U
is an r× r diagonal matrix with non-negative real numbers on the diagonal, and Vt

is an r × n orthogonal matrix. The elements on the diagonal S are known as the
singular values of X (Kalman, 1996).

Then the user-item matrix defined here as X (before we named it V) can be ex-
pressed as a composition of U, S and V. Where U is representing the feature vectors
corresponding to the users in the hidden feature space and V is representing the
feature vectors corresponding to the items in the hidden feature space. (Schafer,
Konstan, and Riedl, 1999).

Xn×m = Un×r × Sr×r ×Vt
r×m

x11 x12 . . . x1m
x21

...
. . .

...
xn1 . . . xnm

 =

u11 u12 . . . u1r
u21

...
. . .

...
un1 . . . unr

s11 0 . . . 0
s21

...
. . .

...
0 . . . srr

v11 v12 . . . v1m
v21

...
. . .

...
vr1 . . . vrm

8 Chapter 2. Background & literature research

Now we can make a prediction by multiplying the matrices U, S and Vt. That is
to say, ˆX =U × S×Vt.

2.2.3 Discussion

Based on the theory described above the Memory-based techniques (User-based and
Item-based CF) look very alike, but the output generated for both can be totally
different, even when the input is exactly the same. This kind of algorithms is very
useful, because they are simple to apply and the results are efficient enough, since
they produce good results in most of the cases. However, there are several challenges
or limitations for the similarity computation with these methodologies such as:

• Sparsity: Usually, the recommendation systems are implemented in large data
sets, implying a wide variety of items. But in some cases, when the movies
are not too popular or are just released, then the items will have few ratings
or will not have at all. Therefore, for an algorithm to find the nearest neighbor
and create a recommendation for a user will be extremely difficult, and the
accuracy of the output will be really low (Sarwar et al., 2001) .

• Scalability: The nearest neighbor requires computation that grows with both
the number of users and the number of items (Sarwar et al., 2001).

However, the model-based techniques are based on Matrix factorization and can
deal better with scalability and sparsity than Memory-based CF. These techniques
try to find a relation between the items in the user item matrix using the latent pref-
erences, and then make a comparison in the top-N recommendations. Per contra
the MF is highly prone to over-fitting and their approaches can be very slow and
computationally expensive.

There are other limitations for collaborative filtering, for instance, this kind of al-
gorithms usually ends up recommending the most popular movies, which does not
add an extra value to all the users. This kind of problems is known as the popularity
based, which can be solved by content-based-filtering methods (Section 2.3).

On the other hand, the CF is based on similarity between users or items, but what
happens with a new user, who does not have any or very little history information,
then it is impossible for the system to generate a recommendation. This problem
is named "the cold start problem", it can be solved by suggesting the most popular
items or even better via Hybrid approaches (Section 2.4). For the Hybrid approach,
several combinations can be implemented. Those methodologies will be discussed
in the next sections.

2.3 Content-based filtering

The Content-based filtering (CB) aims to recommend items or movies that are alike
to movies the user has liked before. The main difference between this approach and
the CF is that CB offers the recommendation based not only in similarity by rating,
but it is more about the information from the products (Aggarwal, 2016), i.e., the
movie title, the year, the actors, the genre. In order to implement this methodol-
ogy, it is necessary to possess information describing each item, and some sort of
user profile describing what the user likes is also desirable. The task is to learn the
user preferences, and then locate or recommend items that are "similar" to the user
preferences (Adomavicius and Tuzhilin (2005)).

2.3. Content-based filtering 9

Generally, the CB recommendation techniques are applied to suggest text docu-
ments, for example, web pages or newsgroup messages. However, the most impor-
tant is that the content of items is represented as text documents, including textual
descriptions. The data must be structured, where each item is described by the same
set of attributes in the form of a feature vector y. The core of this approach is to
create a model of the user’s preferences based on those feature vectors.

There are several techniques that can be implemented to develop a recommen-
dation model, based on the recommendations that can be suggested. For instance,
applications of information retrieval such as Term Frequency (TF) or Inverse Doc-
ument Frequency (IDF) (Salton, 1989), and some machine learning techniques, in-
cluding Naive Bayes, support vector machine, decision trees, among others. In the
following section, a description will be given for each approach.

2.3.1 Term-Frequency - Inverse Document Frequency (TF - IDF)

Fields like text mining and information retrieval usually make use of the tf-idf weights
(Baeza-Yates and Ribeiro-Neto, 1999), which is a statistical weight used to determine
the importance of a word in a text or a document in a corpus. The importance is
highly correlated to the popularity of the word in the text, but it decreases its value
with the presence of the word in the corpus. For instance, the word love is a com-
mon word in movies titles, then the number of times it will appear is considerable,
but love is a popular word among the corpus of movie titles, so it will not be that
important.

Let us assume N the total number of documents that can be recommended, in
our case movie titles, ki is the keyword that is present in ni of the titles. Now, the
number of times the keyword ki is in the document dj is defined as fij. Then,

TFi,j =
fi,j

maxz fz,j
(2.6)

Where TFi,j is the term frequency or normalized frequency of the keyword ki in
document dj, and the maximum is calculated over the frequencies fz,j of all key-
words kz that appear in the document dj (Adomavicius and Tuzhilin, 2005).

Nevertheless, the more popular words do not give us extra information, and are
not useful if they appear in all documents, then recognizing a relevant document
between others will not be possible. This is when the measure of the inverse docu-
ment frequency (IDFi) is combined with the term frequency (TDi,j), then the inverse
document frequency for keyword ki is defined as

IDFi = log
N
ni

(2.7)

where the TF-IDF weight for keyword ki in the document dj is as Equation 2.8,
and the content of the document dj is Content(dj) = (w1j, . . . , wkj) (Adomavicius
and Tuzhilin, 2005).

wi,j = TFi,j × IDFi (2.8)

For instance, consider the description of a movie containing 100 words where the
word love appears 3 times. The TF for love is then 3

100 = 0, 03. Now, assume we have
10 million of movie descriptions and the word love appears in one thousand of these.
Then, the IDF is log 10000000

1000 = 4. Thus, the Tf-idf weight is 0.12.

10 Chapter 2. Background & literature research

2.3.2 Probabilistic methods

The basic idea behind the probabilistic methods is to determine the probability that
the user ui will be interested in the movie pj, in which the estimation of the prob-
ability is based on the user-item rating matrix S. Then the recommendation will
be done depending on the probability. Some of the probabilistic methods, that can
be used to model the relationship between different documents within a corpus are
Bayes Classifier, Decision Trees or Neural Networks (Isinkaye, Folajimi, and Ojokoh,
2015).

The recommendations made by these techniques do not need the profile of the
user given that their information is not used in the models. When we make use
of learning algorithms the main objective of the recommendation systems changes
from a perspective of recommending "what to consume" to "when consume" a prod-
uct. There are other algorithms that can help to fulfill this need: Association rule,
Clustering, Decision Tree, Artificial Neural network, among others (Isinkaye, Fola-
jimi, and Ojokoh, 2015). However they are out of the scope of this paper.

2.3.3 Discussion

The Content-based filtering solves some of the problems discussed in Collabora-
tive Filtering. For instance, the "the cold start problem", because the system will
be able to recommend new movies even though the user has not rated any of the
items. In other words, these models are capable of creating effective recommenda-
tions when the data base does not include user preferences (Isinkaye, Folajimi, and
Ojokoh, 2015).

The CB is capable of learning, then, it creates new recommendations in short
time. The "popularity bias problem" is also solved, because it recommends items
with rare features, the users with unique tastes will receive effective recommenda-
tions. In addition, the users have no need of sharing their profile, because this tech-
nique just makes use of items information. It is possible to know which features are
responsible for the recommendations.

Nonetheless, this technique is not perfect and suffers from several issues. The
Content-based implementations depend on item meta data (e.g., title, description
year), this indicates that a rich description of the movies is necessary, then the user
will receive recommendations that are just associated with the popular vocabulary,
limiting the chance to explore new content. This problem is known as "Limited con-
tent analysis" and it implies that the recommendations depend on the descriptive
data (Adomavicius and Tuzhilin, 2005). Another known problem is "content over-
specialization", where the users will receive recommendations related to the same
type of items (Zhang and Iyengar, 2002), for example, the user will get recommen-
dations of all Lord the rings movies.

2.4 Hybrid filtering

The hybrid methods are characterized by combining CF and CB techniques, and
deal with the limitations described in Section 2.2.3 and Section 2.3.3. There are
different kind of combinations for the hybrid method and can be classified into 4
groups. (i) Combining separate recommenders, which implements both methods
separately and then merges their predictions; (ii) Adding content-based characteris-
tics to collaborative models, where the CF techniques is applied but the profiles for

2.5. Evaluation of the system 11

each user are taken into account;(iii) Adding collaborative characteristics to content-
based models; for instance applying MF in a profile of users created by CB; (iv)
Developing a single unifying recommendation model, which incorporates the char-
acteristics from both models CF and CB (Adomavicius and Tuzhilin, 2005).

2.5 Evaluation of the system

After applying any of the methodologies described before, the result from the sys-
tem will be a set of predicted ratings. Then, the accuracy of those predictions must
be evaluated. To do so, it is necessary to divide the data set into train and test. For
recommendation systems, some of the ratings will be part of the test, and the re-
maining ratings will we used to predict the hidden values. Then for every user that
belongs to the test set, some ratings will be deleted and the recommendation systems
will be build based on the other ratings (Hahsler, 2014).

3 ? ? 2
? ? 4 ?
4 5 ? 3
2 ? 5 3

 =

? ? ? 2
? ? 4 ?
4 ? ? 3
2 ? ? 3

We can evaluate the model by comparing the estimated ratings with the real ones

(Hahsler, 2014). One of the most famous evaluation metric to calculate the accuracy
of predicted ratings is Root Mean Squared Error (RMSE) (Gunawardana and Shani,
2009).

RMSE =

√
1
N ∑(xi − x̂i)2 (2.9)

Another popular metric is the Means Absolute Error (MAE), which calculates the
average of the errors, without taking into account their direction (Gunawardana and
Shani, 2009).

MAE =
1
n

n

∑
j=1
|yj − ŷj| (2.10)

Both metrics average the error of the predictions, and they are negatively-oriented
scores, this implies that the lower the result the better are the predictions. The RMSE
aims to impose a penalty over the larger errors, and the MAE does not. Then the
RMSE increases when the errors magnitudes increase, while the MAE is steady.
These measures are very helpful to compare the performance of different models
on the same data (Hahsler, 2014).

Another way to measure the accuracy is evaluating the predictions by comparing
the recommendations withe the purchases having a positive rating (Hahsler, 2014).
First, a threshold for positive ratings should be defined, as well as, the number of
items to recommend to each user. Thus, the precision and recall for each user can be
calculated as follow :

Precision =
|{Recommended items that are relevant}|

|{Recommended items}| (2.11)

Recall =
|{Recommended items that are relevant}|

|{Relevant items}| (2.12)

12 Chapter 2. Background & literature research

where an item will be relevant if its real rating rui is greater than a given thresh-
old, for instance, the relevant items for the user 1 will be the ones with a rating larger
than 4. Likewise, an item will be recommended to the user if the predicted rating
r̂ui is greater than the specified value, and it belongs to the k highest predicted rat-
ings. Based on the same example, we will recommend to the user the items with
predicted rate larger than 4 and that belong to the 10 highest predicted ratings. At
the end, prediction and recall can be averaged over all users.

13

3 Data Analysis

3.1 Data exploration

The data file was divided into 4 documents, each file contains the Movie ID, Cus-
tomer ID, Rating with values from 1 to 5, and the Date the users gave the ratings.
Then the 4 document were merged giving a total of 17,770 movies, 480,189 users
and a total of 100,498,277 rates. Which means that the users have not rated all the
movies. And the data is spread as it is shown in Figure 3.1 .

FIGURE 3.1: Rates distribution

From Figure 3.1 it is noticeable that just the 15% of the movie ratings are negative
(1 or 2) and the 75% remaining gives a relatively positive feedback. The reason why
this can happen may be that when a user is watching a movie that he does not like
then he will just leave without rating the movie. But this also means that low ratings
indicate the movie is not actually that good. We also can notice that the most popular
value is 4. Given that a rating equal to 0 represents a missing value, then it is not
displayed in the analysis.

We also acquired another data file with the movie information, it contains the
Movie Id, the name of the movie, year of release. However, the title information is
not complete, because when the title of the movie has more than 49 characters, the
title stops there. Then the movie information was used just for descriptive reasons,
because it was incomplete. This also means that any of the Content-based filtering
and hybrid filtering approaches can not be used, because we do not possess infor-
mation regarding the user’s profiles and the movie titles are insufficient.

14 Chapter 3. Data Analysis

Figure 3.2 shows the number of movies per year of the data set, which includes
17,770 movies. The movies included in this data set are from 1896 to 2005, where
almost 40% of the movies were released between the years 2000 and 2004.

FIGURE 3.2: Number of movies per year of release

We can go deeper into the rate distribution analysis and calculate the average
rating per movie. Figure 3.3 displays the distribution of the average movie rating.
The distribution reflects that the highest value is around 3, there is an small number
of movies with an average rate of 1 or 5. This data set is very large and has a lot
of values in zero, which means that there are several movies that have been rated a
few times or users that have rated a small number of movies, therefore those users
should not be taken into account.

FIGURE 3.3: Average Rates distribution

In addition, we can notice in Table 3.1a that 80% of the movies have been rated
less than 4,040 times, while the most watched movie counts with 232,944 ratings,
then those movies are not too popular. The average rate of the movies that have the
largest number of ratings is 4, while the less rated movies have an average of 3, the
most rated movie has an average rate of 5.

3.2. Data preparation 15

Table 3.1b displays the Distribution of the times of review per user, where we can
notice that there is a group of users who are relatively less active than the rest, for
instance the 80% of the users have review maximum 322 movies, which implies that
those users have rated less than 1% of the movies. Similar to the table above, the
average rating of the movies that have been rated for several users is around 4, and
the users who have rated less number of movies have an average rating between 3
and 4.

TABLE 3.1: Distribution of the times of review

(A) Per movie

Movies Times
of
review

average
rate

10% 117 3
20% 161 3
30% 228 3
40% 350 3
50% 561 3
60% 1006 3
70% 1948 4
80% 4040 4
90% 12304 4

100% 232944 5

(B) Per user

Users Times
of
review

average
rate

10% 19 3
20% 31 3
30% 46 3
40% 66 4
50% 96 4
60% 142 4
70% 211 4
80% 322 4
90% 541 4

100% 17653 5

3.2 Data preparation

In the last section, it was noticeable that there is a group of movies that have been
rated by a few users, this implies that their ratings might be biased. In addition,
there is a group of users that have rated few movies, then their ratings could be
biased as well. Given the lack of information in both cases it is necessary to leave
this information out of the analysis.

In order to prepare the data to be used in recommender models, and based on
the information described above. It is important to (i) Select the relevant data, which
means reducing the data volume by improving the data quality and (ii) Normalize
the data, eliminating some extreme values in the ratings per user.

Having above benchmark will help us to improve not only the quality of the data
but also the efficiency. Therefore, we decide to work with the movies that have been
rated more than 4,040 times and the users that have rated more than 322 movies.
Then after reducing the data, we end up with 56,222,526 ratings. It means that the
data set was reduced for almost the 50% of its size.

After removing the movies which number of views is below the threshold, we
can notice that the distribution of the average rate has changed (Figure 3.4), thus,
now most of the ranks are around 3,5 and 4. As we were anticipating, the extreme
values were removed, but the highest values remain almost the same. The number
of movies is reduced as well, in Figure 3.1 the count was from 0 to more than 4,000
and now goes from 1 to almost 1,000. We can also notice a big change in the distri-
bution of the times of review per movie and per user in Table 3.2a and Table 3.2b
respectively.

16 Chapter 3. Data Analysis

FIGURE 3.4: Average Rates distribution after data cleaning

TABLE 3.2: Distribution of the times of review after data cleaning

(A) Per movie

Movies Times
of
review

average
rate

10% 3636 3
20% 4451 3
30% 5516 3
40% 7057 3
50% 9202 4
60% 12478 4
70% 17243 4
80% 24885 4
90% 40801 4

100% 83640 5

(B) Per user

Users Times
of
review

average
rate

10% 325 3
20% 358 3
30% 396 3
40% 441 4
50% 494 4
60% 560 4
70% 645 4
80% 768 4
90% 974 4

100% 3534 5

The second step in this data preparation is normalizing the data, this step is also
important because there are some users who have given low or high values to the
movies and this might lead to bias in the results. This problem is easily solved by
normalizing the data in order to obtain and average rate of 0 per user. The final step
is to create the user-item matrix necessary to implement the recommender systems
approach. The dimensions of the matrix are 96,290 × 3,554 . Which indicates our
clean data set counts with 92290 users and 3554 movies.

3.3 Final Discussion

To summarize, in Chapter 2 we have discussed the theory behind Popularity, Col-
laborative Filtering, Content-Based Filtering and Hybrid filtering methodologies.
Moreover, the Netflix problem was explained as well. In this Chapter, we made

3.3. Final Discussion 17

an analysis through the data set, and the proper preparation of the data set was
executed. At the end we constructed matrix users- item of 96,290 × 3,554.

From here the recommendations methodologies can be applied. When choosing
between the implementation of Popularity, Collaborative Filtering, Content-based
filtering or Hybrid filtering, several criteria should be considered. For instance, the
available information, because we just count with a data set of ratings, and the de-
scription of the movies correspond just to the titles, thus it is not possible to apply
either Content-based filtering or Hybrid filtering for lack of information.

Now, for the Content-based filtering, both approaches could be implemented the
Memory-based techniques and the Model based-techniques. However, it is indis-
pensable to choose the approaches that best suit our needs and the dataset. Accord-
ing to Ricci et al., 2010 select whether apply User-based or Item-based recommender
system may depend on the Accuracy and the Computational Efficiency.

The Accuracy is built by the ratio between the number of users and items in the
system. Given that the data was normalized in the previous section, we can make
use of the formulas in Table 3.3, where a uniform distribution of ratings is assumed
with average number of ratings per user p = |R|

|U| = 609 and average number of

ratings per item q = |R|
|I| = 15, 819. Then, for User-based the similarity among users

is calculated by comparing the ratings made by the users on the same items, the
average number of users available as potential neighbors 92,289. But, the average
number of common ratings is just 96. Contrarily, in the Item-based, the similarity
between two items is computed by comparing ratings made by the same user on
those items. So, the average number of potential neighbors is 3,553 and an average
number of ratings used to compute the similarities of 2,598.

TABLE 3.3: Calculation of the average number of neighbors and av-
erage number of ratings used in the computation of similarities for
used-based and item-based neighborhood methods (Ricci et al., 2010)

Avg. Neighbors Avg. Ratings

User- based (|U| − 1)(1− |I|−p
|I|

p
) = 92,289 p2

|I| = 96

Item-based (|I| − 1)(1− |U|−q
|U|

q
) = 3,553 q2

|U| = 2,598

In order to create more accurate recommendations, it is better to have a small
number of high confidence neighbors. Therefore, when the number of users is con-
siderably larger than the number of items, like our case, it is better to build the rec-
ommendations using Item-based CF (Mobasher et al., 2005). Similar to the Accuracy,
the computational Efficiency depends on the ratio between the number of users and
items. Then, Item-based recommendations require less memory and time to calcu-
late the similarity weights the User-based, because the number of users exceeds the
number of items (Ricci et al., 2010).

On the other hand, for Model-based techniques, just the SVD approach will be
executed, since SVD works better in the practice (Girase and Mukhopadhyay, 2015).
This special case of matrix factorization produces more accurate predictions than
the other collaborative filtering techniques (Ricci et al., 2010). In addition, is more
Computational efficient and therefore easier to train.

19

4 Implementation

The implementation of Memory-based techniques as was mentioned before is com-
putationally costly. Therefore, we will work with a sample by reducing the number
of users and the number of movies. Since the number of users may cause a problem
in the accuracy of the models, it is desirable to reduce the number of users in a big-
ger scale than the number of movies, so we made use of the 25% of the users and the
60% of the movies. Then the matrix of ratings now is 24,072 × 2,132, with a total of
9,272,642 ratings.

Based on the formulas from Table 3.3, and with the information from the sample,
we can calculate again the average number of neighbors and the average number of
rating. The results are displayed in Table 4.1, even though for the User-based CF,
now the average number of potential neighbors is 24,071, the number of potential
ratings still really small 69. Then, the accuracy that we may obtain from the User-
based CF will not be the best one and will continue being computationally costly in
comparison with Item-based CF.

TABLE 4.1: Calculation of the average number of neighbors and av-
erage number of ratings for the sample

Avg. Neighbors Avg. Ratings

User- based 24,071 69

Item-based 2,131 785

Consequently, for Memory-based, just Item-based CF will be implemented us-
ing as similarity measure the cosine and Pearson correlation. For Model-based tech-
niques, the SVD approach will be executed. The results from both techniques will
be compared.

Now, in order to identify the most suitable model, we are going to build, evaluate
and compare the following filtering:

• Popularity: Most popular items will be displayed.

• IBCF_cos: Item-based collaborative filtering, using the cosine as the distance
function.

• IBCF_cor: Item-based collaborative filtering, using the Pearson correlation as
the distance function.

• SVD: Singular Value Decomposition

• Random: Random recommendations in order to have a baseline.

4.1 Popularity

In Section 2.1 the popularity approach was explained, where we mention that we
can recommend the most viewed movies and the better-rated movies. The number

20 Chapter 4. Implementation

of users that have rated each movie is counted to obtain the top 10 most matched
movies, and the average rating of each movie is calculated for the top 10 better-rated
movies. Both results are displayed in Table 4.2 and Table 4.3 respectively. We can
notice that the top 10 for both approaches suggest different movies. As it was said
before is not the best solution, because it doesn’t offer any variety, but it is very
useful and easy to implement.

TABLE 4.2: Top most watched movies

position Movie_Id Name Year

1 5317 Miss Congeniality 2,000
2 15124 Independence Day 1,996
3 14313 The Patriot 2,000
4 15205 The Day After Tomorrow 2,004
5 1905 Pirates of the Caribbean: The Curse of the Bla... 2,003
6 6287 Pretty Woman 1,990
7 11283 Forrest Gump 1,994
8 16377 The Green Mile 1,999
9 16242 Con Air 1,997

10 12470 Twister 1,996

TABLE 4.3: Top better rated movies

position Movie_Id Name Year Rating

1 14961 Lord of the Rings: The Return of the King: Ext... 2,003 4.72
2 7230 The Lord of the Rings: The Fellowship of the R... 2,001 4.72
3 7057 Lord of the Rings: The Two Towers: Extended Ed... 2,002 4.70
4 3456 Lost: Season 1 2,004 4.67
5 9864 Battlestar Galactica: Season 1 2,004 4.64
6 15538 Fullmetal Alchemist 2,004 4.61
7 8964 Trailer Park Boys: Season 4 2,003 4.60
8 14791 Trailer Park Boys: Season 3 2,003 4.60
9 10464 Tenchi Muyo! Ryo Ohki 1,995 4.60

10 14550 The Shawshank Redemption: Special Edition 1,994 4.59

4.2 Evaluating the ratings

Now, the other 4 models will be evaluated. With regard to evaluating the models
properly, it is necessary to create the training and the test set, how was explained in
Section 2.5, where the ratings in the test set are the ones that are not in the train set,
but the user and the item are in both sets.

In Table 4.4 we can find the RMSE and MAE for each algorithm. Item-based CF
using Pearson correlation is the one that has a smaller standard deviation of the dif-
ference between the real and predicted ratings (RMSE), followed by the SVD. Nev-
ertheless, all the recommenders perform better than a Random suggestion, which
shows the goodness of implementing any of this methodologies. The same pattern
is showed for the mean of the squared difference between the real and predicted
ratings (MAE).

4.2. Evaluating the ratings 21

TABLE 4.4: Accuracy measures

RMSE MAE

IBCF_cor 0.6675 0.5163
SVD 0.7098 0.5526
IBCF_cos 0.8769 0.6831
Random 1.4259 1.144

From the results in Table 4.4 we noticed that ICBF_cor has a smaller RMSE and
MAE than SVD. Nevertheless, we desire to execute a more detailed inspection be-
tween the difference of the predictions for the algorithm SVD and the IBCF_cor. For
instance, in Table 4.5 are displayed some of the predictions from the IBCF_cor when
SVD has an error larger than 3.5, which shows that the IBCF_cor does not do it much
better.

TABLE 4.5: IBCF_cor predictions when the SVD has a huge error

Cust Id Movie Id Rating Estimated Rating Error

727242 3743 5 2.089 2.911
727242 6910 5 1.965 3.035
727242 11771 5 1.596 3.404
727242 14042 5 1.599 3.401
727242 16459 5 1.970 3.030
291503 3624 1 4.437 3.437

1452708 7767 1 4.419 3.419
873713 10928 1 3.718 2.718

2606799 9886 1 4.092 3.092
1697754 15296 1 3.857 2.857

In the Table, 4.6 are displayed the predictions of SVD on the worst predictions
for IBCF_cos, which also shows that have big errors in those users. From the last two
tables, we can notice that the algorithms have a hard time predicting extreme values,
and is there when the ratings are 1 or 5 that the algorithms have a larger error.

TABLE 4.6: SVD predictions when the IBCF_cor has a huge error

Cust Id Movie Id Rating Estimated Rating Error

438637 4353 1 3.716 2.716
1354943 17324 1 4.603 3.603
1300042 4978 1 4.671 3.671
2364551 17480 1 4.213 3.213
2205932 11064 1 4.176 3.176
1482568 16879 1 4.317 3.317
2139714 7230 1 4.664 3.664
632333 14103 1 4.795 3.795

2205932 6450 1 4.387 3.387
2176953 14103 1 4.906 3.906

In order to visualize how different are the predictions from both algorithms. The
number of predictions for each rating value was calculated, and its distribution is

22 Chapter 4. Implementation

displayed in Figure 4.1. As we were expecting, one of the drawbacks of the nearest
neighbors algorithms is that their predictions are usually concentrated around the
mean. On the other hand, we can notice that the SVD algorithm seems that is able
to predict more extreme rating values.

FIGURE 4.1: Number of predictions for each rating value

It is known that the predictions from this algorithms are not very accurate when
a user has rated only a small number of items. So, we calculated the mean error per
algorithm when the user had rated less than 100 movies, for the IBCF_cor was 0.48
and for the SVD was 0.52. The ICBF with Pearson correlation distance is still the top
model.

4.3 Evaluating the recommendations

On the other hand, we can measure the accuracies of the algorithms by comparing
the recommendations with the purchases, as was explained in Formulas 2.11 and
2.12. With a rating threshold of 4 for positive ratings, and a number k of the highest
predicted ratings k = (1, 5, 10, 20, 30, 50).

FIGURE 4.2: Precision Recall of all the models

4.3. Evaluating the recommendations 23

In Figure 4.2 the Precision and Recall are displayed, where we can see that for few
recommendations like 1 or 5, IBCF_cor and SVD have a high precision but really low
recall. Once the number of recommendations increases (k=50), the recall increases
as well, and the performance of ICBF with Pearson correlation distance has a small
decrease, however IBCF_cor stills the one with the highest precision. Having a large
precision implies over all items that have been recommended, the ones that the sys-
tem is recommending are relevant. But the low value of the recall indicates a low
proportion of all relevant items are being recommended. Depending on what we
want to achieve, we can set an appropriate number of items to recommend.

25

5 Conclusion and Discussion

In this paper, we have covered the theory of the most popular recommendation sys-
tem algorithms Popularity, Collaborative Filtering, Content-based Filtering and Hy-
brid Approaches. The aim of this research was to understand the pros and cons of all
the algorithms, and then be able to decide which one was the one that fits better the
dataset. Based on this discussion, just Popularity and Collaborative Filtering were
implemented, for CF both Memory-based CF and Model-based CF were used. The
problem with Popularity is that all the recommendations are the same for every sin-
gle user, thus we did not focus on this results. The Memory-based models are based
on the similarity between users or items. The User-based CF was not implemented,
because of the large ratio between the number of users and items in the system, then
the accuracy of the system will not be the best one and it was computationally inef-
ficient. Item-based collaborative filtering was implemented using the cosine and the
Pearson correlation as the distance function. In addition, Model-based CF is based
on matrix factorization, then we decided to made use of SVD.

From the results, we have seen that Item-Based CF using Pearson correlation
as similarity measure is the approach that showed the best results than any other
algorithm. With an RMSE of 0.6675, MAE of 0.5163, and with a precision and re-
call of 0.9959 and 0.006 respectively for 1 recommendation, 0.9649 and 0.2148 for 50
recommendations. Performing better than the SVD, especially when the number of
recommendations increases. Nonetheless, all the algorithms performed better than
the random recommendation, suggesting that we can make good recommendations
from a data set of ratings, making use of Collaborative filtering not only memory-
based (neighborhood models) but also Model-based (matrix factorization models).

Theoretically, SVD should have performed better than the Item-based approach,
because the Low-dimensional recommenders are trying to capture the taste and pref-
erences of the users, and it is known that if we want to provide recommendations
based on people’s preferences then SVD is a good approach. However, it is also
known that this methodology achieves better and more accurate results in large
datasets because of the approximation of SVD with the gradient descent. Since we
used just a sample of the data set, it may be the reason for its lower performance in
comparison to the Item-based. For further research will be interested to compare the
models without reducing the data set, it will be more computationally costly but we
may see different results.

Building a system that achieves good recommendations in new users or cold-
start scenario stills as a challenge. In order to create a model with acceptable results,
it may be necessary to count with more information, not only about the user’s profile
but also about the movies, this could allow us to implement other methodologies like
Content-based filtering and Hybrid filtering, and it may lead us to more significant
results.

27

Bibliography

Adomavicius, Gediminas and Alexander Tuzhilin (2005). “Toward the Next Gener-
ation of Recommender Systems: A Survey of the State-of-the-Art and Possible
Extensions”. In: IEEE Trans. on Knowl. and Data Eng. 17.6, pp. 734–749. ISSN: 1041-
4347. DOI: 10.1109/TKDE.2005.99. URL: https://doi.org/10.1109/TKDE.2005.
99.

Aggarwal, Charu C. (2016). Recommender Systems: The Textbook. 1st. Springer Pub-
lishing Company, Incorporated. ISBN: 3319296574, 9783319296579.

Amatriain, Xavier (2013). “Mining Large Streams of User Data for Personalized Rec-
ommendations”. In: SIGKDD Explor. Newsl. 14.2, pp. 37–48. ISSN: 1931-0145. DOI:
10.1145/2481244.2481250. URL: http://doi.acm.org/10.1145/2481244.
2481250.

Amatriain, Xavier et al. (2011). “Data Mining Methods for Recommender Systems”.
In: Recommender Systems Handbook. Ed. by Francesco Ricci et al. Boston, MA:
Springer US, pp. 39–71. ISBN: 978-0-387-85820-3. DOI: 10.1007/978- 0- 387-
85820-3_2. URL: https://doi.org/10.1007/978-0-387-85820-3_2.

Baeza-Yates, Ricardo, Berthier Ribeiro-Neto, et al. (1999). Modern information retrieval.
Vol. 463. ACM press New York.

Bokde, Dheeraj, Sheetal Girase, and Debajyoti Mukhopadhyay (2015). “Matrix fac-
torization model in collaborative filtering algorithms: A survey”. In: Procedia
Computer Science 49, pp. 136–146.

Breese, John S., David Heckerman, and Carl Kadie (1998). “Empirical Analysis of
Predictive Algorithms for Collaborative Filtering”. In: Proceedings of the Four-
teenth Conference on Uncertainty in Artificial Intelligence. UAI’98. Madison, Wis-
consin: Morgan Kaufmann Publishers Inc., pp. 43–52. ISBN: 1-55860-555-X. URL:
http://dl.acm.org/citation.cfm?id=2074094.2074100.

Bressan, M. et al. (2016). “The Limits of Popularity-Based Recommendations, and
the Role of Social Ties”. In: ArXiv e-prints. arXiv: 1607.04263.

Girase, Sheetal, Debajyoti Mukhopadhyay, et al. (2015). “Role of Matrix Factoriza-
tion Model in Collaborative Filtering Algorithm: A Survey”. In: arXiv preprint
arXiv:1503.07475.

Gunawardana, Asela and Guy Shani (2009). “A survey of accuracy evaluation met-
rics of recommendation tasks”. In: Journal of Machine Learning Research 10.Dec,
pp. 2935–2962.

Hahsler, Michael (2014). recommenderlab: Lab for Developing and Testing Recommender
Algorithms. R package version 0.1-5. URL: http://CRAN.R-project.org/package=
recommenderlab.

Isinkaye, F.O., Y.O. Folajimi, and B.A. Ojokoh (2015). “Recommendation systems:
Principles, methods and evaluation”. In: Egyptian Informatics Journal 16.3, pp. 261
–273. ISSN: 1110-8665. DOI: https://doi.org/10.1016/j.eij.2015.06.005.
URL: http://www.sciencedirect.com/science/article/pii/S1110866515000341.

Kalman, Dan (1996). “A singularly valuable decomposition: the SVD of a matrix”.
In: The college mathematics journal 27.1, pp. 2–23.

http://dx.doi.org/10.1109/TKDE.2005.99
https://doi.org/10.1109/TKDE.2005.99
https://doi.org/10.1109/TKDE.2005.99
http://dx.doi.org/10.1145/2481244.2481250
http://doi.acm.org/10.1145/2481244.2481250
http://doi.acm.org/10.1145/2481244.2481250
http://dx.doi.org/10.1007/978-0-387-85820-3_2
http://dx.doi.org/10.1007/978-0-387-85820-3_2
https://doi.org/10.1007/978-0-387-85820-3_2
http://dl.acm.org/citation.cfm?id=2074094.2074100
http://arxiv.org/abs/1607.04263
http://CRAN.R- project.org/package=recommenderlab
http://CRAN.R- project.org/package=recommenderlab
http://dx.doi.org/https://doi.org/10.1016/j.eij.2015.06.005
http://www.sciencedirect.com/science/article/pii/S1110866515000341

28 BIBLIOGRAPHY

Liang, Xijun et al. (2016). “Measure prediction capability of data for collaborative fil-
tering”. English. In: Knowledge and Information Systems 49.3. Copyright - Springer-
Verlag London 2016; Last updated - 2016-11-03; CODEN - KISNCR, pp. 975–
1004. URL: https://search-proquest-com.vu-nl.idm.oclc.org/docview/
1828122760?accountid=10978.

Melville, Prem, Raymond J. Mooney, and Ramadass Nagarajan (2002). “Content-
Boosted Collaborative Filtering for Improved Recommendations”. In: Proceed-
ings of the Eighteenth National Conference on Artificial Intelligence (AAAI-02). Ed-
monton, Alberta, pp. 187–192. URL: http://www.cs.utexas.edu/users/ai-
lab/?melville:aaai02.

Mobasher, Bamshad et al. (2005). “Effective attack models for shilling item-based
collaborative filtering systems”. In: Proceedings of the 2005 WebKDD Workshop,
held in conjunction with ACM SIGKDD. Vol. 2005.

Ricci, Francesco, Lior Rokach, and Bracha Shapira (2011). “Introduction to recom-
mender systems handbook”. In: Recommender systems handbook. Springer, pp. 1–
35.

Ricci, Francesco et al. (2010). Recommender Systems Handbook. 1st. New York, NY,
USA: Springer-Verlag New York, Inc. ISBN: 0387858199, 9780387858197.

Salton, Gerard (1989). “Automatic text processing: The transformation, analysis, and
retrieval of”. In: Reading: Addison-Wesley.

Sarwar, Badrul et al. (2001). “Item-based Collaborative Filtering Recommendation
Algorithms”. In: Proceedings of the 10th International Conference on World Wide Web.
WWW ’01. Hong Kong, Hong Kong: ACM, pp. 285–295. ISBN: 1-58113-348-0. DOI:
10.1145/371920.372071. URL: http://doi.acm.org/10.1145/371920.372071.

Schafer, J. Ben, Joseph Konstan, and John Riedl (1999). “Recommender Systems in
e-Commerce”. In: Proceedings of the 1st ACM Conference on Electronic Commerce.
EC ’99. Denver, Colorado, USA: ACM, pp. 158–166. ISBN: 1-58113-176-3. DOI:
10.1145/336992.337035. URL: http://doi.acm.org/10.1145/336992.337035.

Zhang, Tong and Vijay S Iyengar (2002). “Recommender systems using linear classi-
fiers”. In: Journal of Machine Learning Research 2.Feb, pp. 313–334.

https://search-proquest-com.vu-nl.idm.oclc.org/docview/1828122760?accountid=10978
https://search-proquest-com.vu-nl.idm.oclc.org/docview/1828122760?accountid=10978
http://www.cs.utexas.edu/users/ai-lab/?melville:aaai02
http://www.cs.utexas.edu/users/ai-lab/?melville:aaai02
http://dx.doi.org/10.1145/371920.372071
http://doi.acm.org/10.1145/371920.372071
http://dx.doi.org/10.1145/336992.337035
http://doi.acm.org/10.1145/336992.337035

	Abstract
	Introduction
	Background & literature research
	Popularity
	Collaborative filtering
	Memory-based techniques
	User-based Collaborative filtering
	Item-based Collaborative filtering

	Model-based techniques
	Principal Component Analysis (PCA)
	Probabilistic Matrix Factorization (PMF)
	SVD

	Discussion

	Content-based filtering
	Term-Frequency - Inverse Document Frequency (TF - IDF)
	Probabilistic methods
	Discussion

	Hybrid filtering
	Evaluation of the system

	Data Analysis
	Data exploration
	Data preparation
	Final Discussion

	Implementation
	 Popularity
	Evaluating the ratings
	Evaluating the recommendations

	Conclusion and Discussion
	Bibliography

