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1 Introduction

We call each time a person enters a website a page view. Many programs exist that keep track
of the number of page views. The resulting data give statistics such as the origin of the views
or the total number of page views on a given time epoch. Programs like Nedstat have these
features. More interesting is a prediction of the total number of page views at the end of a
day. This could be done on the day before, but it would be useful to also use the information
gathered on the day itself.

In this paper we discuss models which can estimate the number of page views on a day
and use the number of page views that have already occurred on that day. We will first
discuss the model described in [1] and derive that estimator mathematically. Then we will
construct two different models which we will compare with the first one. Contrary to the
models described in [1], these models use information about the number of page views which
already have occurred on a day and information gathered in the past.

The statistical problem of predicting the number of occurrences over the whole day described
above also applies to other areas. Take for instance a call center. A call center delivers ser-
vices by telephone. In order to do so, agents are hired to give this service. An important
problem is how many agents are needed to give an acceptable level of service. This needs to
be known for the long term but also for each day or even each half an hour. Here it also plays
an important role to have a good prediction on the number of incoming telephone calls on a
day. The better the prediction the better the call center can plan their agents. If we could
use information of the first few hours of the day in our prediction for the rest of the day, this
may result in better service or lower costs for the call center by planning more or less agents.

For software companies it is also an issue. When software companies produce new prod-
ucts they will receive reports of faults in the software. The companies need employees to deal
with these. In order to schedule them efficiently a good prediction is needed on the amount
of reports. In [2] such a model is described in which only information of previous releases is
used for prediction.

The paper is constructed in the following way. In chapter 2 we describe the mathemati-
cal assumptions we will use. Based on these assumptions the paper discusses a number of
prediction methods in chapter 3. Chapter 4 describes the model which we will use to compare
the estimators. Chapter 5 applies the estimators to a data set and compares the models to
each other using the model of chapter 4. Chapter 6 concludes the paper with some final
remarks.

2 Mathematical assumptions

We look at a single day of 24 hours and split the day in m time epochs, for instance half hours.
Denote the number of page views per time epoch by the random vector

−→
N = (N1, N2, ..., Nm).

We model the occurrence of page views as an inhomogeneous Poisson process, which means
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that within each time epoch the number of page views is Poisson distributed with parameter
λi(i ∈ m) and for disjunct time epochs these numbers are stochastically independent of each
other. This means that

P(Ni = ni) =
λni

i

ni!
e−λi ni = 0, 1, 2, ...

The parameter vector
−→
λ = (λ1, λ2, ..., λm) is unknown. We want to estimate this, at least

for future time epochs. We assume that there is information on the relation between these
parameters. There is some positive constant τ and a probability vector −→p = (p1, p2, ..., pm)
such that −→

λ = τ−→p

We assume this probability vector is known. This probability vector could be derived from
the data from the past. We assume to have a data set −→x = (x1, x2, ..., xj) with j the number
of data points from the past. This could for instance be 3 weeks of data where each data
point is the number of page views in a half an hour.

The total number of page views T during the day has a Poisson distribution with parameter
τ .

P(T = t) =
τ t

t!
e−τ t = 0, 1, 2, ...

We also have data for the first i (i < m) time epochs of the day (n1, n2, ..., ni). Finding an
estimate for

−→
λ is equivalent of finding an estimate for τ .

In the introduction we discussed that we wanted to predict T , the number of page views
on a day. We see here however that estimating τ also results in a prediction of T . This is true
because the squared error between the true value and the estimator is minimized by taking
as estimator the expectation of the true value. In this case T is Poisson distributed which has
an expectation of τ .

2.1 Probability vector

Is it realistic to assume there exist a probability vector which determines the course of the
day? It is not strange to think there is a certain relation between the number of page views
for the half hours. In the night we would expect lower amounts than during the day-time
with peaks round 7 or 8 in the Netherlands. This vector should perhaps be different for the
week and weekends. This probably would hold also for special days and holidays.

It would be interesting to assess the validity of the assumption that this probability vector
exists. In this paper we will not address this issue however. Since we are only interested in
comparing the models we do not look at differences of the vector between different weekdays
either. We look only at data for one given day and compare the models based on those data.
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3 Estimation models

In this chapter we discuss three models to predict the total number of page views at the end
of the day. The first model is the one used by Nedstat. Then we discuss two other models we
have constructed.

3.1 Model 1: Maximum likelihood estimator

The first model is based on the maximum likelihood estimator. We predict the total number
of page views by finding an estimator for its expectation τ . Since we know the amount of
page views for the first i epochs we can use the function li(τ) = Pτ (Nj = nj , 1 < j < i) as
likelihood function. Since we are only interested in the value of τ and not the value of the
maximum we can take the logarithm of the function, since that does not change the location
of the maximum. After differentiating and setting the derivative equal to zero, we find the
maximum likelihood estimator for τ .

3.1.1 Calculations

li(τ) = Pτ (Nj = nj , 1 < j < i) =
i∏

j=1

Pτ (Nj = nj)

log li(τ) = log
i∏

j=1

Pτ (Nj = nj)

=
i∑

j=1

log Pτ (Nj = nj) =
i∑

j=1

log
(τpj)nj

nj !
e−τpj

=
i∑

j=1

(nj log τpj − log nj !− τpj)

=
i∑

j=1

(nj log τ + nj log pj − log nj !− τpj)
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Now we try to find the value of τ which maximizes this function. Here we use the fact that
we can forget terms that do not relate to τ .

∂

∂τ
(

i∑
j=1

(nj log τ − τpj)) = 0

∑i
j=1 nj

τ
−

i∑
j=1

pj = 0

∑i
j=1 nj

τ
=

i∑
j=1

pj

τ =

∑i
j=1 nj∑i
j=1 pj

Here we have found a maximum likelihood estimator for τ . This means that if we know the
amount of page views which occurred during the first i time epochs we can predict the total
number of page views we will get by

τ̂ =

∑i
j=1 nj∑i
j=1 pj

(1)

This estimator is also described in [1].

3.2 Model 2: Gamma prior

In the second model we assume τ has some prior distribution G. We can now use the Bayes
procedure to find an estimator for τ . From Bayes theory we know that if the conditional
probability density of g given τ = t is g(x|t), then the posterior probability density function
of τ when X = x is g(t|x) ∝ g(x|t)g(t), where ∝ means up to some additive or positive
multiplicative constant independent of the values of the parameters.

The question remains which prior distribution to choose. Each choice of a prior distribution
would result in a different posterior. As [4] points out this choice is rather arbitrary. We choose
a distribution only for mathematical convenience. The advantage is of course that due to the
statistical properties we can find an estimator which is relatively easy to deal with.

For this purpose we assume in this case the prior distribution to be a Gamma distribution.
We choose this distribution because it is a conjugate prior. That means if the likelihood of the
data (= g(x|t)) is Poisson and the prior distribution is Gamma, that the resulting posterior
distribution is again Gamma. So we take

fα,β(t) =
( t

β )α−1

βΓ(α− 1)
e
− t

β t > 0
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The parameters α > 0 and β > 0 could be estimated using the historical data. One way would
be to estimate this α and β using the maximum likelihood estimator. In our data analysis we
will use this method. Other methods however could also be applied.

3.2.1 Calculations

The posterior distribution we get from the Bayes procedure

P(Ni = ni|t) =
(tpi)ni

ni!
e−tpi

fα,β(t|N1 = n1, . . . , Ni = ni) ∝ P(N1 = n1, . . . , Ni = ni|t)fα,β(t)

∝
i∏

j=1

P(Ni = ni|t)fα,β(t)

∝
i∏

j=1

(tpj)nj

nj !
e−(tpj)fα,β(t)

Rewriting this formula so that all factors depending on t are grouped gives:

fα,β(t|N1 = n1, . . . , Ni = ni) ∝
i∏

j=1

(tpj)nj

nj !
e−(tpj)fα,β(t)

∝ t
∑i

j=1 nje−(t
∑i

j=1 pj)fα,β(t)

∝ t
∑i

j=1 nje−(t
∑i

j=1 pj)
( t

β )α−1

βΓ(α− 1)
e
− t

β

∝ t
∑i

j=1 nje−(t
∑i

j=1 pj)tα−1
( 1

β )α−1

βΓ(α− 1)
e
− t

β

∝ tα−1+
∑i

j=1 nje
−t( 1

β
+

∑i
j=1 pj)

Up to some factor not depending on t this is again a Gamma distribution with parameters

αi = α +
∑i

j=1 nj and 1
βi

=
1+β

∑i
j=1 pj

β , βi = β

1+β
∑i

j=1 pj
. We find the posterior probability

density of τ to be Gamma(αi, βi).
As described in [5] we can extract a proper estimator from the posterior by looking at the

squared error loss function, which is a function of the difference between the estimator and
the real value of τ . As explained on page 228 we can find the minimum of this function when
τ̂ = E(τ |N1 = n1, . . . , Ni = ni). This is the expectation of the posterior distribution we found
to be Gamma. Thus

τ̂ = αiβi =
(α +

∑i
j=1 nj)β

1 + β
∑i

j=1 pj

(2)
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If β is big and αβ is small we get the same predictor as method 1.

3.3 Model 3: Conditional expectation of T

Instead of looking for an estimator for τ we now want to find a predictor for T directly.
Let us assume T has some discrete distribution G. gk = PG(T = k). We can now find an
estimator by looking at EG(T |N1 = n1, . . . , Nj = nj). We will see that the resulting estimator
needs to be calculated numerically. Each choice of G gives us a different estimator using this
method. The choice of G however is somewhat arbitrary. Based on the available data a
suitable distribution could be found and used. In our data analysis we will use the empirical
distribution of T. We get this by using the days of which we know the total number of page
views that occurred that day.

3.3.1 Calculations

EG(T |N1 = n1, . . . , Nj = nj) =
∞∑

k=1

kP(T = k|N1 = n1, . . . , Nj = nj)

P(T = k|N1 = n1, . . . , Nj = nj) =
P(T = k, N1 = n1, . . . , Nj = nj)

P(N1 = n1, . . . , Nj = nj)

=
P(N1 = n1, . . . , Nj = nj |T = k)PG(T = k)∑∞
l=0 P(N1 = n1, . . . , Nj = nj |T = l)PG(T = l)

k ≥
i∑

j=1

nj

We know that the vector N given T has a multinomial distribution with parameters (T, p1, . . . , pm).
From [6] we know that a subset of the remaining time epochs of this vector is again multino-
mially distributed. This yields:

P(N1 = n1, . . . , Nj = nj |T = k) =
k!

(k −
∑i

j=1 nj)!
∏i

j=1 ni!
(1−

i∑
j=1

pj)k−
∑i

j=1 nj

i∏
j=1

p
nj

j

P(T = k|N1 = n1, . . . , Nj = nj) =

k!gk

(k−
∑i

j=1 nj)!
∏i

j=1 ni!
(1−

∑i
j=1 pj)k−

∑i
j=1 nj

∏i
j=1 p

nj

j∑∞
l=

∑i
j=1 nj

l!gl

(l−
∑i

j=1 nj)!
∏i

j=1 ni!
(1−

∑i
j=1 pj)l−

∑i
j=1 nj )

∏i
j=1 p

nj

j

EG(T |N1 = n1, . . . , Nj = nj) =

∑∞
k=

∑i
j=1 nj

k·k!gk

(k−
∑i

j=1 nj)!
∏i

j=1 ni!
(1−

∑i
j=1 pj)k−

∑i
j=1 nj

∏i
j=1 p

nj

j∑∞
l=

∑i
j=1 nj

l!gl

(l−
∑i

j=1 nj)!
∏i

j=1 ni!
(1−

∑i
j=1 pj)l−

∑i
j=1 nj

∏i
j=1 p

nj

j

From this last formula we can remove the terms
∏i

j=1 ni!,
∏i

j=1 p
nj

j , (1 −
∑i

j=1 pj)−
∑i

j=1 nj

and (1 −
∑i

j=1 pj)−
∑i

j=1 nj since they do not depend on either k or l and occur in both the
numerator and denominator. Rearranging the formula gives:

EG(T |N1 = n1, . . . , Nj = nj) =

∑∞
k=s k · k!gk

(k−s)!(1−
∑i

j=1 pj)k∑∞
l=s

l!gl
(l−s)!(1−

∑i
j=1 pj)l

(3)
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with s =
∑i

j=1 nj .
We can verify this function by taking G to be the Poisson(τ) distribution. If T has a

Poisson distribution the expectation of T given the first time epochs would be
∑i

j=1 nj +
τ(1−

∑i
j=1 pj). It can be seen that 3 gives the same expectation. Appendix: Check of model

3 shows this.

4 Model comparison

In the previous chapter we have discussed three different ways to estimate the total number of
page views we expect to occur at the end of the day. In this chapter we describe the method
we use to compare the second and third model to the first one.

Let T
(k)
ij be the estimation of the number of page views on day i of time epoch j of model

k. Let Ti be the actually observed number of page views on day i. Now let

e
(k)
ij = (T (k)

ij − Ti)2

e
(k)
ij is the difference of the estimated number of page views and the real number of page views

on a day. Looking at the values e
(k)
ij we would like to find out whether the location of the

distribution of e
(1)
ij differs from the location of the distribution of e

(2)
ij or e

(3)
ij . We hope to find

that one of these locations is in fact smaller then the one of model 1. This would mean that
the estimators of model 2 and 3 can predict the number of page views at the end of the day
better then model 1.

We can test this using the Wilcoxon Rank-Sum Test. Let us call the distribution of e
(1)
ij

A and of e
(2)
ij or e

(3)
ij B. We then get the hypothesis test

H0 := A . B

H1 := A > B

5 Data analysis

In this chapter we apply the models we discussed in chapter 3 to the data. Then we will
compare the models as described in the previous chapter.

5.1 Website data

In this section we analyze the models using data gathered from the site ’www.cs.vu.nl’. For
one and a half month we collected the number of page views that occurred at each half hour
per day. We restrict attention to the data obtained on Thursdays because of reasons discussed
in chapter 2. This data consists of 6 days with each m = 48 time epochs. In the table below
a sample of the data is shown along with the total number of page views on these Thursdays.
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half hour 23-09-2004 30-09-2004
12:30-13:00 14 9
13:00-13:30 15 14
13:30-14:00 13 12
14:00-14:30 16 11
.... .... ....
day total 403 390

With this data we constructed the probability vector p by taking the sum of the page views
for each half hour over these 6 days and divide it by the sum of all half hours. Since we only
took Thursdays we do not have to take into account possible differences of the probability
vector between days. We also ignore possible trends within our data. We can do this since
we are only interested in comparing the estimators. If the model is applied in practice it is
advisable to pay more attention to the choice of the probability vector.

In appendix Models programmed in R the functions for calculating the estimators can be
found written in the statistical package R. For the second model we used the maximum like-
lihood estimator to estimate α and β. For our third model we used the empirical distribution
for gk. Note that we have only few data points in this model. For this reason we modified gk

so that each data point ±5 has a probability mass. This way gk consists of 66 points instead
of 6. In the next chapter we will look at a larger set of data.

To get an impression of the estimators we depict below the estimations per half hour for
one Thursday (see next page). The straight line depicts the real amount of page views on
that day. As we can see in the graph, the first model has difficulty getting close to the real
number of page views at the beginning of the day. As the day progresses the estimation of
this model gets better and better. Model 2 and 3 however seem, also at the beginning of the
day, able to estimate the total number of page views accurately.
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5.1.1 Model comparison

In order to compare the models we calculate the values of e
(k)
ij . We chose to combine 4 time

epochs of a half an hour for the e
(k)
ij giving j = 1, .., 12. For each Wilcoxon test we now have

4 ∗ 6 = 24 data points. To given an idea of the values of the differences we show box plots for
the epochs j = 2, 6, 11.
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Again we see that the estimations of model 2 and 3 are closer to the real number of page
views in the beginning of the day. Around noon they still have less difference from the real
value than the first model, but it is less distinct. At the end of the day it is more difficult
to tell the difference between the models. It does however seem that at the end of the day
model 3 performs the best.

If we preform the Wilcoxon test we get the following p-values.
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Model 1 vs Model 1 vs
Model 2 Model 3

half hour p-value p-value
0:00-2:00 0.0000 0.0000
2:00-4:00 0.0000 0.0000
4:00-6:00 0.0000 0.0000
6:00-8:00 0.0000 0.0000
8:00-10:00 0.0000 0.0000
10:00-12:00 0.0000 0.0000
12:00-14:00 0.0103 0.0000
14:00-16:00 0.3914 0.1034
16:00-18:00 0.2466 0.0039
18:00-20:00 0.4553 0.1504
20:00-22:00 0.9089 0.1430
22:00-24:00 0.9909 0.2664

If we take a rejection value of 0.05 (α = 5%) we see that we may reject our hypothesis
till 14.00 for model 2. This means that till 14.00 the estimation of model 2 is closer to the
real value than the estimation of model 1. After 14.00 however we cannot reject the null
hypothesis anymore. From that point on, we can no longer state that model 2 preforms any
better than model 1.

For model 3 we see the same thing as with model 2. Up till 14.00 we can reject the
null hypothesis. After that the estimations of model 3 and model 1 can not be said to be
any different. We see the results from the Wilcoxon test also in the graphs. Till 14.00 the
estimation of model 1 is further from the real value then the other two models. After 14.00
it gets harder to distinguish the difference between the models.

5.2 Call center data

In this section we analyze the models using data acquired from [7]. The data describes
telephone calls recorded over 12 months from 1 January 1999 to 31 December 1999 at a call
center of a bank in Israel. (For more information about the data see [7]). Again we looked
only at the data from the Thursdays. This data consists of 52 days. We summed the data
to get a data set with m = 48 time epochs with the number of calls that occurred during
that time epoch. In the table below a sample of that data set is shown along with the total
number of page views on these Thursdays.

half hour 07-01-1999 14-01-2004
12:30-13:00 41 59
13:00-13:30 63 53
13:30-14:00 33 54
14:00-14:30 42 42
.... .... ....
day total 1655 1657
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With this data we constructed the probability vector p by taking the sum of the calls for
each half hour over these 52 days and divide it by the sum of all half hours. We use the
same functions as we did with the website data. To get an impression of the estimators we
depict below the estimations per half hour for one Thursday. The straight line depicts the
real amount of page views on that day.

As we can see in this graph the model 1 has difficulty getting close to the real number of
page views at the beginning of the day. As the day progresses the estimation of this model
gets somewhat closer to the real value. Model 2 and 3 estimate the real value at the beginning
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of the day more accurately. At the end of the day however we cannot see much difference in
this graph.

5.2.1 Model comparison

In order to compare the models we again calculate the values of e
(k)
ij . We chose to combine 4

time epochs of a half an hour for the e
(k)
ij giving j = 1, .., 12. For each Wilcoxon test we now

have 4 ∗ 52 = 208 data points. If we perform the test we get the following p-values.

Model 1 vs Model 1 vs
Model 2 Model 3

half hour p-value p-value
0:00-2:00 0.0000 0.0000
2:00-4:00 0.0000 0.0000
4:00-6:00 0.0000 0.0000
6:00-8:00 0.0002 0.0000
8:00-10:00 0.1592 0.0054
10:00-12:00 0.3850 0.1020
12:00-14:00 0.3686 0.0996
14:00-16:00 0.4140 0.0726
16:00-18:00 0.4735 0.0660
18:00-20:00 0.4573 0.0094
20:00-22:00 0.4108 0.0000
22:00-24:00 0.4940 0.0000

The comparison between model 1 and model 2 shows the same results as we had with the data
from the website. At the beginning of the day model 2 estimates the real number of incoming
calls more accurately than model 1. After in this case 8.00 we no longer can be certain the
estimation of model 2 is better, we cannot reject our null hypothesis from that point onward.

The comparison between model 1 and model 3 however shows a different picture. Only
between 10 : 00 and 18 : 00 we can not reject our null hypothesis. For all other time epoch we
know that the location of the distribution of e

(3)
ij is smaller then the location of the distribution

of e
(1)
ij .

6 Conclusions

In this paper we have discussed different estimators to estimate the total number of page
views at the end of a day T . For these estimations we used the number of page views Ni that
already have occurred till time i. We assume this T to be Poisson distributed with parameter
τ . We also assume there exists a probability vector p such that

−→
λ = τ−→p .

14
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Our first model used a maximum likelihood estimator for τ :

τ̂ =

∑i
j=1 nj∑i
j=1 pj

(4)

This is the estimator that is used by Nedstat. The second model used Bayes theory and a
Gamma prior to find the estimator:

τ̂ = αiβi =
(α +

∑i
j=1 nj)β

1 + β
∑i

j=1 pj

(5)

The last model used the expectation of T given the time units that have already passed to
find:

EG(T |N1 = n1, . . . , Nj = nj) =

∑∞
k=s k · k!gk

(k−s)!(1−
∑i

j=1 pj)k∑∞
l=s

l!gl
(l−s)!(1−

∑i
j=1 pj)l

(6)

This last model needs to be calculated numerically to find the estimation.

Data analysis was preformed on two data sets. One set was data gathered from the site
”www.cs.vu.nl”. For 1, 5 month the total number of page views per half hour per day was
collected. The second data set was data acquired from a call center of a bank in Israel. This
data set contained 12 months of data of incoming telephone calls.

To compare the models only the data from the Thursdays was used for both data sets. The
models were compared using a Wilcoxon test on the values

e
(k)
ij = (T (k)

ij − Ti)2

T
(k)
ij is the prediction of the number of page views (calls) on day i of time epoch j of model

k and Ti is the real number of page views (calls) on day i.
The comparison between the models showed that model 2 could estimate the real value

more accurately than model 1 only for the first half of the day for both the data from the
website as for the data from the call center. For the second half of the day, we could no longer
reject our null hypothesis that the location of the distributions was different.

The comparison between model 1 and 3 show some different results for each data set.
With both data sets model 3 performs better in the first half of the day. In the data from
the website we can not claim model 3 is better on the second half of the day, much like the
comparison between model 1 and 2. For the data from the call center however we see that
model 3 for the hours 18 : 00 to 24 : 00 does perform better than model 1.
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9 Appendix: Check of model 3

We want to check whether 3 is correct. We can do this by taking G to be the Poisson(τ)
distribution. This means that E(T |N1 = n1, . . . , Ni = ni) should be equal to

∑i
j=1 nj + τ(1−∑i

j=1 pj).

We can see that this expectation should be equal to
∑i

j=1 nj + τ(1 −
∑i

j=1 pj) using the
expectation of the multinomial distribution. We get E(T |N1 = n1, . . . , Ni = ni) =

∑i
j=1 nj +

E(Ni+1 = ni+1 + . . . + Nm = nm|N1 = n1, . . . , Ni = ni) =
∑i

j=1 nj + E(T )
∑m

j=i+1 pj =∑i
j=1 nj + E(T )(1−

∑i
j=1 pj). If T is Poisson(τ) distributed the E(T ) = τ .

We try to find the same result using 3

gk =
τk

k!
e−τ

EG(T |N1 = n1, . . . , Nj = nj) =

∑∞
k=

∑i
j=1 nj

k · k! τk

k! e
−τ (1−

∑i
j=1 pj)k

(k −
∑i

j=1 nj)!
∑∞

l=
∑i

j=1 nj

l! τl

l!
e−τ

(l−
∑i

j=1 nj)!
(1−

∑i
j=1 pj)l

EG(T |N1 = n1, . . . , Nj = nj) =

∑∞
k=

∑i
j=1 nj

kτk(1−
∑i

j=1 pj)k

(k −
∑i

j=1 nj)!
∑∞

l=
∑i

j=1 nj

τ l

(l−
∑i

j=1 nj)!
(1−

∑i
j=1 pj)l

=
Sk

Sl

In the following calculations we use the fact that:

∞∑
k=0

uk

k!
= eu

∞∑
k=1

kuk

k!
=

∞∑
k=1

uk

(k − 1)!
= u

∞∑
k=0

uk

k!
= ueu

17
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If we look at Sk and Sl more closely we see that:

Sl =
∞∑

l=
∑i

j=1 nj

τ l

(l −
∑i

j=1 nj)!
(1−

i∑
j=1

pj)l

=
∞∑

l=
∑i

j=1 nj

(τ − τ
∑i

j=1 pj)l

(l −
∑i

j=1 nj)!

=
∞∑
l=0

(τ − τ
∑i

j=1 pj)l

l!
· (τ − τ

i∑
j=1

pj)
∑i

j=1 nj

= e(τ−τ
∑i

j=1 pj) · (τ − τ

i∑
j=1

pj)
∑i

j=1 nj

Sk =
∞∑

k=
∑i

j=1 nj

kτk(1−
∑i

j=1 pj)k

(k −
∑i

j=1 nj)!

=
∞∑

k=0

(k +
∑i

j=1 nj)(τ − τ
∑i

j=1 pj)k

k!
· (τ − τ

i∑
j=1

pj)
∑i

j=1 nj

=
∞∑

k=1

k(τ − τ
∑i

j=1 pj)k

k!
· (τ − τ

i∑
j=1

pj)
∑i

j=1 nj + (
i∑

j=1

nj)
∞∑

k=0

(τ − τ
∑i

j=1 pj)k

k!
· (τ − τ

i∑
j=1

pj)
∑i

j=1 nj

=
∞∑

k=1

k(τ − τ
∑i

j=1 pj)k

k!
· (τ − τ

i∑
j=1

pj)
∑i

j=1 nj + (
i∑

j=1

nj)e(τ−τ
∑i

j=1 pj)(τ − τ

i∑
j=1

pj)
∑i

j=1 nj

= (τ − τ

i∑
j=1

pj)e(τ−τ
∑i

j=1 pj) · (τ − τ

i∑
j=1

pj)
∑i

j=1 nj + (
i∑

j=1

nj)e(τ−τ
∑i

j=1 pj)(τ − τ

i∑
j=1

pj)
∑i

j=1 nj

Plugging Sl and Sk in the formula gives:

EG =
Sk

Sl

=
(τ − τ

∑i
j=1 pj)e(τ−τ

∑i
j=1 pj) · (τ − τ

∑i
j=1 pj)

∑i
j=1 nj + (

∑i
j=1 nj)e(τ−τ

∑i
j=1 pj)(τ − τ

∑i
j=1 pj)

∑i
j=1 nj

e(τ−τ
∑i

j=1 pj) · (τ − τ
∑i

j=1 pj)
∑i

j=1 nj

= (τ − τ

i∑
j=1

pj) + (
i∑

j=1

nj)

= (
i∑

j=1

nj) + τ(1−
i∑

j=1

pj)
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So we see that if we take G to be Poisson we get the estimation we expected. This shows that
our estimator is in fact correct.

10 Appendix: Models programmed in R

10.1 Model 1

model1 = function(N,P){
if(sum(P)==0){

0
} else {

sum(N)/sum(P)
}

}

10.2 Model 2

model2 = function(N,P,alpha,beta){
(alpha+sum(N))*beta/(1+beta*sum(P))

}

10.3 Model 3

The goal was to solve 3 numerically. Implementing the formula directly however is not an
option, since most programs (including R) cannot store high values such as 300!. In order
to avoid this problem we define uk = k!gk

(k−s)!(1 −
∑i

j=1 pj). 3 now becomes
∑∞

k=s kuk∑∞
l=s ul

. We
then divide both the nominator and denominator by the maximum value of uk say uk0. This

gives
∑∞

k=s k
uk
uk0∑∞

l=s
ul

uk0

. Now these fractions in the nominator and denominator lie between 0 and

1. We could now also take the e power of the log of this fraction. Doing this gets rid of the
high valued factorials. Doing all this yields the following formula which can be implemented
directly: ∑∞

k=s ke
∑k

i=k−s log(i)−
∑k0

i=k0−s log(i)+log(gk)−log(gk0)+(k−k0)log(1−
∑i

j=0 pj)

e
∑l

i=l−s log(i)−
∑k0

i=k0−s log(i)+log(gl)−log(gk0
)+(l−k0)log(1−

∑i
j=0 pj)

(7)

model3 = function(N,P,gk=c("Poisson","Empirisch"), empVector, epsilon=1e-10){
sumN <- sum(N)
sumP <- sum(P)
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sumDenom <- 0
sumNom <- 0
#start from 1 if sumN=0 or else from sumN
k <- max(1,sumN)

#function to calculate log(u k)
logu = function(k){

if(k == sumN){
logu <- sum(log(1:k)) + log(g(k)) +k* log(1-sumP)

} else{
logu <- sum(log(1:k)) + log(g(k)) - sum(log((1:(k-sumN))))+k* log(1-sumP)

}
}

#function to find k0
findkmax = function(stopconditie){

maxlogu = -1e200;

#calculate log(u k) for all relevant k, ie the k values for which g k has value
repeat {

log = logu(k)
if(log > maxlogu){

maxlogu <- log
findkmax <- k

}

if(k >= stopconditie){
if(log - maxlogu < (-1e10)){

k <- max(1,sumN)
break

}
}
k <- k+1

}
findkmax

}

if(gk == "Poisson") {
tau = mean(empVector)
stopcondition <- tau
g =function(k){

dpois(k, tau)
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}
kmax <-findkmax(stopcondition)

}
if(gk == "Empirisch"){

stopcondition <- max(empVector)

g =function(k){
length(empVector[empVector==k])/length(empVector)

}
kmax <- findkmax(stopcondition)

}

repeat {
sumk = sum(log(1:k))
sumkmax = sum(log(1:kmax))
if(k-sumN==0) {

sumks =0
} else {

sumks = sum(log((1:(k-sumN))))
}
if(kmax-sumN<=0){

sumkmaxs = 0
} else {

sumkmaxs = sum(log(1:(kmax-sumN)))
}
lastterm <- exp(sumk - sumkmax - (sumks - sumkmaxs)
+ log(g(k)) - log(g(kmax))+(k-kmax)*log(1-sumP))

sumNom <- sumNom + k*lastterm
sumDenom <- sumDenom + lastterm
if(lastterm < epsilon)if(k>stopcondition) break
k <- k+1

}
output <- sumNom/sumDenom
output

}

21


	Introduction
	Mathematical assumptions
	Probability vector

	Estimation models
	Model 1: Maximum likelihood estimator
	Calculations

	Model 2: Gamma prior
	Calculations

	Model 3: Conditional expectation of T
	Calculations


	Model comparison
	Data analysis
	Website data
	Model comparison

	Call center data
	Model comparison


	Conclusions
	Acknowledgement
	References
	Appendix: Check of model 3
	Appendix: Models programmed in R
	Model 1
	Model 2
	Model 3


