
Santander Customer Satisfaction

Derek van den Elsen

2580100

October 30, 2017

Research Paper Business Analytics

Dr. Mark Hoogendoorn (supervisor)

Contents

1 Introduction 1

2 Related Work 1

3 Data Exploration 2
3.1 Feature Groups . 3
3.2 Individual Features . 3

3.2.1 var3 (Nationality) . 4
3.2.2 var15 (Age) . 4
3.2.3 var21 . 5
3.2.4 var36 . 6
3.2.5 var38 (Mortgage Value) . 6
3.2.6 num_var4 (Number of Bank Products) 7

4 Preprocessing 8
4.1 Data Cleaning . 8
4.2 Correlation . 10
4.3 Feature Engineering . 13

5 Modeling 13
5.1 Performance Measure . 13
5.2 Solution Methods . 14

5.2.1 Logistic Regression . 15
5.2.2 Decision Tree . 15
5.2.3 Random Forest . 16
5.2.4 XGBoost . 16

6 Results 17
6.1 Tuning RF . 17
6.2 Tuning XGBoost . 19
6.3 Results . 20

7 Conclusion 21

A Appendix Feature Sets 22

2

1 Introduction

Having adequate customer relations is paramount to success in any service industry. Identifying
and analyzing your customer’s contentment to improve customer retention can yield many bene-
fits. The longer a client stays with an organisation, the more value he creates. There are higher
costs attached to introducing and attracting new customers. The clients also have a better un-
derstanding of the organisation and can give positive word-of-mouth promotion. (Colgate et al.,
1996) Datamining is essential in this process and this practice is widely applied across industries
for instance FMCG retailers (Buckinx and van den Poel, 2005), telecommunications (Mozer et al.,
2000) and banking (Clemes et al., 2010) and (Xie et al., 2009).

This paper focuses on Santander Bank, a large corporation focusing principally on the market in
the northeast United States. Through means of a Kaggle competition (Santander, 2015), it is the
objective to find an appropriate model to predict whether a client will be dissatisfied in the future
based on certain characteristics. Having this model in place can ensure that Santander can take
proactive steps to improve a customer’s happiness before they would take their business elsewhere.

First the paper will discuss related work done on this, by now concluded, Kaggle case. Secondly
it delves into the data we work with, analyzing groups of variables and individual features to give
us insight in what is relevant. Thirdly several cleaning procedures that were employed to lead to
better results are outlined. Fourthly we explain the performance measure of this competition and
the three models: Logistic Regression, Random Forest and XGBoost that we utilize to tackle the
problem. Lastly the tuning process and results are discussed. We reach an AUC score of 0.823152.

2 Related Work

This section looks into the work of various Kaggle competitors in different sections of the leader-
board. The private leaderboard score is mentioned first after which a small description details the
work done. For reference the top position had a score of: 0.829072

0.828530: Silva et al. (2016) all seemingly independently do their own preprocessing, feature
engineering and model selection and then combine all predictions of the models together in an
ensemble using the R package optim. Preprocessing steps taken are for instance: replacing certain
values by NA, dropping sparse, constant and duplicated features, normalization, log transforming
features and one-hot encoding categorical features. Sophisticated feature engineering methods
employed include t-Distributed Stochastic Neighbour Embedding, Principal Component Analy-
sis and K-means. Models explored are: Follow the Proximally Regularized Leader, Regularized
Greedy Forest, Adaboost, XGBoost, Neural Networks, Least Absolute Shrinkage and Selection
Operator, Support Vector Machine, Random Forest and an Extra Trees Classifier.

0.826826: Yooyen and Ma (2016) are one of the few that find and handle some duplicated obser-
vations in the train set. Furthermore they do standard preprocessing steps like removing duplicated
and constant features, normalizing, rescaling and handling missing values. They select features
based on Pearson’s Correlation Coefficient with the target and crossvalidation. Attempts at specif-

1

ically handling the class imbalance and principal component analysis were fruitless. With success
they added heuristic rules like var15 < 23 means the target is 0. Their main models are based on
decision trees.

0.8249: Wang (2016) applies hardly any preprocessing as he intends to use only decision trees
that are relatively insensitive to this. He does extensively select features with the importance in
the Gradient Boosting Classifier as criterion. After which he adds percentile change from feature
to feature, and he applies selection again. Parameters are trained iteratively one at a time with a
coarse to fine approach. Adaboost, Bagging Classifier, Extra Trees Classifier, Gradient Boosting,
Random Forest and XGBoost are ensembled to lead to the final scores.

0.824332: Kumar (2015) tries linear regression with the top ten features, a support vector machine
in combination with principal component analysis with limited success as a start. Neural Net-
works, tuned Random Forest and XGBoost yield him better results. XGBoost is seen as obvious
best candidate and it is used with the top N features, which makes it apparent that anything beyond
5 features only adds very minor improvements to the crossvalidation score.

3 Data Exploration

The train set consists of 76020 observations and 370 features plus 1 binary target. The test set has
a roughly equal amount of 75818 observations with the same features. There is a large imbalance
with 96.04% being 0, meaning the customer was not dissatisfied and 3.96% being 1, signifying
that the customer was dissatisfied. This is in line with the expectation of the customer satisfaction
of a successful bank. There are no missing values in the train or test set, but some values might
encode ’missing’. There are only numeric or possibly categorical features. No features seem to
have substantial outliers.

The dataset is semi-anonymized, so it is unclear what a feature represents. The only clue we
have is a header with a name for each feature that is clearly not randomly determined. For illus-
trative purposes, the first seven names are given in order from left to right: ID, var3, var15,
imp_ent_var16_ult1, imp_op_var39_comer_ult1, imp_op_var39_comer_ult3
and imp_op_var40_comer_ult1. Some of these words appear to be abbreviations for Span-
ish words like ’imp’ for importe or amount. A non-comprehensive dictionary is discussed on the
Kaggle forum (Andreu, 2015). On first glance, one can also infer that imp_op_var39_comer_ult1
and imp_op_var39_comer_ult3 are probably related and they are likely not related to
var3. Looking at the distribution of the data can confirm these suspicions. We first distinguish
some groups based on their name and broadly research each group in turn. Then we look into
individual features that do not fit into a group in more depth. Aside from the clearly irrelevant
ID variable, this comprises all the features. This is more practical than discussing all 370 features
thoroughly.

2

3.1 Feature Groups

The sheer number of features in this dataset makes it hard to individually analyze and discuss each
feature, so instead similar groups have been identified in the dataset, assisted by their correspond-
ing names. In Table 1 it is visible on which substrings has been filtered. There is certain overlap
between the groups as all ’Meses’ features are also ’Num’ features for example and all ’Delta’
features are also either ’Imp’ or ’Num’ features.

Table 1: Variable Groupings
Substring Example Number (Raw)

’Num’ num_var37_med_ult2 87 (155)
’Ind’ ind_var13_0 46 (75)

’Saldo’ saldo_medio_var5_hace3 43 (71)
’Imp’ imp_op_var39_comer_ult1 21 (63)

’Delta’ delta_imp_amort_var18_1y3 3 (26)
’Meses’ num_meses_var5_ult3 8 (11)

The substring ’Num’ likely stands for numeric variables. Typically, excluding the ’Delta’ and
’Meses’ subsets, these have values 0, 3, 6, 9 and further multiples of 3 as most common obser-
vations. These could indicate quarters for example. 0 and 3 tend to be most common and the
distribution is usually unbalanced. The substring ’Ind’ likely stands for indicator variables as all
of them are 0 or 1. The distribution is usually unbalanced, but not consistently towards 1 or 0.

The substring ’Saldo’ suggest the current actual amount on balance for certain financial products.
A lot of these variables have an overwhelming amount of zero’s, possibly being finished financial
products or products that are not utilized in the first place. Other values are typically numeric and
are of large scale like 6119500. Some values are also negative further providing evidence that this
is a ’balance’ type variable. Very similarly, ’Imp’ can stand for Importe (Spanish for amount) and
the distributions match this conjecture. Notable is that the scale tends to be smaller, so perhaps
’Saldo’ is a sum of consecutive periods.

The substring ’Delta’ signifies a difference of some kind, but the variable’s distributions match
ratio’s, so it is possibly the ratio of an amount between a certain time period. Also here there is a
massive imbalance towards the value 0. All ’Meses’ variables are ’Num’ variables, but are specif-
ically taken as a subgroup, because they have a wildly different distribution. ’Meses’ is Spanish
for months and in the data these variables only take values 0, 1, 2 and 3. Some of the ’Meses’
variables are even fairly balanced, which is fairly unique within this dataset.

3.2 Individual Features

These features all have a very short name and could be considered a group of their own. However
upon closer inspection of at minimum two of them, it becomes apparent that they are clearly not
related in the same manner as the previous groups of features. This individuality also means we
need to consider each feature separately.

3

3.2.1 var3 (Nationality)

Table 2: var3
Maximum Value 238
Minimum Value -999999

Unique Observation Count 208
Most common (count) 2 (74165)

2nd most common (count) 8 (138)
3rd most common (count) -999999 (116)
4th most common (count) 9 (110)
5th most common (count) 3 (108)

Suspected Category Categorical

var3 is suspected to be nationality or country of residence. 208 Unique countries sounds like a
plausible number that the bank can supply. 74165 observations are 2, which probably stand for the
United States, the main market for this particular bank. A binary feature var3_most_common
is made to put emphasis on this, which is 1 if var3 is equal to 2 and 0 otherwise. -999999 likely
encodes for missing values and another binary feature var3_missing accounts for this. After
this feature is made the -999999 values are replaced by the most commonly occurring value 2.

3.2.2 var15 (Age)

Table 3: var15
Maximum Value 105
Minimum Value 5

Mean 33.212865
Unique Observation Count 100

Most common (count) 23 (20170)
2nd most common (count) 24 (6232)
3rd most common (count) 25 (4217)
4th most common (count) 26 (3270)
5th most common (count) 27 (2861)

Suspected Category Numeric

var15 is suspected to represents age as the minimum and maximum values are respectively 5
and 105, but the majority of the data is over 21. This data seems very biased to younger people
and perhaps 23 is filled in if the age is unknown. For this reason we make another binary feature
var15_most_common, which is 1 if var15 is equal to 23 and 0 otherwise.

4

0 20 40 60 80 100
Value

0

5000

10000

15000

20000

25000

C
ou

nt

var15

All
Target: 1

Figure 1: Histogram Age

3.2.3 var21

Table 4: var21
Maximum Value 30000
Minimum Value 0

Unique Observation Count 25
Most common (count) 0 (75152)

2nd most common (count) 900 (236)
3rd most common (count) 1800 (206)
4th most common (count) 4500 (96)
5th most common (count) 3000 (84)

Suspected Category Numeric

Not all variables have an easy interpretation in this anonymized dataset and var21 is a prime
example. It is highly imbalanced and the non-zero values do not give off a likely meaning. Never-
theless it could still possibly be important, as it is clearly distinct from other variables.

5

3.2.4 var36

Table 5: var36
Unique Observation Count 5

Most common (count) 99 (30064)
2nd most common (count) 3 (22177)
3rd most common (count) 1 (14664)
4th most common (count) 2 (8704)
5th most common (count) 0 (411)

Suspected Category Categorical

There is not much to be said about this particular variable, except that it is very likely categorical.
One-hot encoding is applied such that it can be better understood by our classifiers. In the same
vein, 99, which likely stands for missing values, is encoded properly.

3.2.5 var38 (Mortgage Value)

Table 6: var38
Maximum Value 22034740
Minimum Value 5163.75

Mean 117235
Unique Observation Count 57736

Most common (count) 117310.979016494 (14868)
2nd most common (count) 451931.22 (16)
3rd most common (count) 463625.16 (12)
4th most common (count) 288997.44 (11)
5th most common (count) 104563.80 (11)

Suspected Category Numeric

This distribution ranges from high to low positive numbers with a very large number of the same
value 117310. It is our conjecture that this represents the mortgage value of a customer or at
least some kind of value indicating variable. If it is unknown for whatever reason the country
average is instead filled in. For this reason we create a dummy variable var38_most_common
that remembers this information. It is 1 if var38 is 117310 and 0 otherwise. We visualize the
distribution of the known values by making a histogram, excluding 117310 and cutting of the
range at 350000, which excludes 1559 more observations, in Figure 2.

6

0 50000 100000 150000 200000 250000 300000 350000
Value

0

500

1000

1500

2000

2500

3000

3500

4000

C
ou

nt
var38

All
Target: 1

Figure 2: Histogram Mortgage

3.2.6 num_var4 (Number of Bank Products)

Table 7: num_var4
Maximum Value 7
Minimum Value 0

Unique Observation Count 8
Most common (count) 1 (38147)

2nd most common (count) 0 (19528)
3rd most common (count) 2 (12692)
4th most common (count) 3 (4377)
5th most common (count) 4 (1031)

Suspected Category Numeric

According to dmi3kno (2015) this variable represents the number of bank products this client
currently has with the bank. The distribution suggests that fewer people have multiple products
with the bank and those tend to not be dissatisfied, giving this explanatory value. This is also
intuitive, as clients investing multiple times probably have a good relationship with the bank and
conversely the bank has more information to satisfy their client appropriately.

7

0 1 2 3 4 5 6 7
Value

0

5000

10000

15000

20000

25000

30000

35000

40000

C
ou

nt

num_var4

All
Target: 1

Figure 3: Histogram Bank Products

4 Preprocessing

4.1 Data Cleaning

On first glance the data is fairly clean, however there are definite problems for running certain
features and observations through a machine learning algorithm. Figure 4 demonstrates the order
that the cleaning steps were taken in. The left number represents the number of observations and
the right the number of features.

8

76020 | 371

76020 | 337

76020 | 308

76020 | 204

76020 | 203

71108 | 203

71108 | 200

71108 | 171

Removed Constant Features

Removed Duplicated Features

Removed Uninformative Features

Removed Index

Removed Duplicated Observations

Removed Delta Features

Removed Correlated Features

Figure 4: Cleaning Process

There are 34 features that are one constant value (zero for all checked cases). These features that
do not vary at all cannot teach our classifier anything meaningful, so all features that have a stan-
dard deviation of zero are omitted. 29 features are exact duplicates of one another as well. We
remove the redundancy by removing all but the first feature of a duplicate group. Note that the
order of these cleaning procedures influences the number of removed features.

Some features have as little as 2 non-zero values. We categorize features that have very few non-
zero values as uninformative for our classifier. We remove 104 features from the data by arbitrarily
drawing a line at 100, effectively removing all features that have less than 100 observations that
are not zero. Several of these were checked by eye and having a non-zero value was not very
discriminatory regarding the Target value. For contextual purposes we show in Figure 5 what dif-
ferent choices would have meant for the dimension of the feature set. Finally we remove the index
and in doing so assume the training data does appear randomly to us and not in a particular order.

9

0 100 200 300 400 500
Information Parameter

160

180

200

220

240

260

280

300

Fe
at

ur
es

 D
im

en
sio

n

Features Dimension vs Information Parameter

Figure 5: Information Parameter Range

There are also 4912 exact duplicates in features of the 76020 observations in the training data.
Even worse, 109 of those duplicates have a differing target, which can only possibly ’confuse’
a classifier. Although it can also be said that it will simply attach less confidence towards the
importance of these observations, but to avoid the issue altogether these are all excluded from the
dataset. The first of the duplicates that have the same target is kept around and 71108 observations
remain after this procedure.

The three ’Delta’ variables that are leftover are still relatively uninformative. They also do not
appear as having great predictive power in any related literature studied. For these reasons they
are also removed. They are the only variable group for which this is deemed appropriate.

4.2 Correlation

Correlation can be a powerful tool in machine learning. One of a pair of heavily correlated pre-
dictors can be removed without harming the predictive power of a model. Also very high absolute
correlation with the target can indicate that this is an important variable. We apply the former
and we look at the top features in the sense of being correlated with the target. We first apply

10

normalization, where appropriate, to scale all variables between 0 and 1. We note that several of
the features are hugely imbalanced and this type of scaling does not damage that. A feature X will
become normalized feature Z with the following formula:

zi =
xi −min(X)

max(X)−min(X)
∀ i = 1, ..., length(X)

After applying this to var15, var38, ’Num’s, ’Imp’s and ’Saldo’s, we plot the following Corre-
lation matrix in Figure 6 and zoom in in Figure 7

Figure 6: Correlation Matrix

va
r3

va
r1

5
im

p_
en

t_
va

r1
6_

ul
t1

im
p_

op
_v

ar
39

_c
om

er
_u

lt1
im

p_
op

_v
ar

39
_c

om
er

_u
lt3

im
p_

op
_v

ar
40

_c
om

er
_u

lt1
im

p_
op

_v
ar

40
_c

om
er

_u
lt3

im
p_

op
_v

ar
40

_u
lt1

im
p_

op
_v

ar
41

_c
om

er
_u

lt1
im

p_
op

_v
ar

41
_c

om
er

_u
lt3

im
p_

op
_v

ar
41

_e
fe

ct
_u

lt1
im

p_
op

_v
ar

41
_e

fe
ct

_u
lt3

im
p_

op
_v

ar
41

_u
lt1

im
p_

op
_v

ar
39

_e
fe

ct
_u

lt1
im

p_
op

_v
ar

39
_e

fe
ct

_u
lt3

im
p_

op
_v

ar
39

_u
lt1

in
d_

va
r1

_0

var3
var15

imp_ent_var16_ult1
imp_op_var39_comer_ult1
imp_op_var39_comer_ult3
imp_op_var40_comer_ult1
imp_op_var40_comer_ult3

imp_op_var40_ult1
imp_op_var41_comer_ult1
imp_op_var41_comer_ult3

imp_op_var41_efect_ult1
imp_op_var41_efect_ult3

imp_op_var41_ult1
imp_op_var39_efect_ult1
imp_op_var39_efect_ult3

imp_op_var39_ult1
ind_var1_0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 7: Correlation Matrix Zoom in

11

Here it is clearly visible that for instance imp_op_var39_comer_ult1 is heavily correlated
with imp_op_var39_comer_ult3, further confirming that similar variable names are related,
justifying the grouping of variables done earlier. Some features even have a correlation extremely
close to 1 with each other like num_var1_0 and ind_var1_0 with 0.9988. All variable pairs
that have higher absolute correlation than a conservative 0.99 are filtered out and the first of the
pairs is deleted. An extension of this could delete one of the pair based on lower absolute correla-
tion with the target. This removes 29 features and brings the cleaned dataset to 171 features total.
It is visualized in Figure 8 what different correlation thresholds would mean for the dimensions of
the feature set. We have been relatively conservative as the tree-based algorithms we use are adept
at handling correlated features and the dataset is already comparatively small.

0.700.750.800.850.900.951.00
Correlation Threshold

80

100

120

140

160

180

200

Fe
at

ur
es

 D
im

en
sio

n

Features Dimension vs Correlation Threshold

Figure 8: Correlation Thresholds

Furthermore some of the top correlations are showcased in Table 8. It is likely that these will be
the important predictors later on.

Table 8: Top Correlations with Target
Negative Positive

ind_var30 (-0.149756) var36 (0.102401)
num_meses_var5_ult3 (-0.147362) var15 (0.097341)

num_var30 (-0.137623) ind_var8_0 (0.048493)
num_var42 (-0.134246) imp_op_var41_efect_ult1 (0.030599)
ind_var5 (-0.133128) ind_var8 (0.029038)

12

4.3 Feature Engineering

This dataset mostly lent itself for decoding what the existing data meant and making sure it is an
appropriate format for machine learning algorithms. Nevertheless this led to the creation of some
features, that were mentioned before, to accommodate expected oddities in the data. For instance
the feature var38_most_common was created to ensure that the algorithm can recognize that
this is likely a unique value outside of the numerical order that var38 has. Outside of the ones
mentioned before, the ’Meses’ group was completely one-hot encoded, because they were small
enough to warrant such an approach and seemed on first glance categorical.

Furthermore it is noticeable that the data contains a lot of zero’s. This usually stands for a lack of
information or interaction and precisely that lack of knowing thy customer could hold predictive
value for determining if the customer will possibly be dissatisfied in the future. For this reason
n0 was created, which simply sums the number of zero’s that appear in the row. (dmi3kno, 2015)
Special care is taken to not include the Target variable as this is a form of information leakage
which disturbs the learning process of the models. Conversely a n1 was created that should
signify that the bank does know their customer and has a lot of interaction with them. This would
be different, and not redundant in that way, than creating a variable that simply sums all spots in
the row that are not zero. This brings the total dimensions of our training set to 71108 observations
and 215 features to start the modeling process.

5 Modeling

5.1 Performance Measure

The performance measure of this Kaggle competition is the area under the receiver operating
characteristic curve, AUROC or AUC for short. This metric deals well with the imbalance that
is typical in churn prediction. (Burez and van den Poel, 2009) We build up to this concept by
considering some simpler notions first. (Dernoncourt, 2015) If we consider a binary classifier we
have four possible outcomes when we use it make a binary prediction and we call the collection
of this a confusion matrix and an example is shown in Figure 9.

True negative: We predict 0 and the class is actually 0.
False negative: We predict 0 and the class is actually 1.
True positive: We predict 1 and the class is actually 1.
False positive: We predict 1 and the class is actually 1.

Figure 9: Confusion Matrix Example

13

We define the following ratio’s. The True Positive Rate corresponds to the proportion of positive
data points that are correctly considered as positive, with respect to all positive data points. The
higher the better, all else equal. The False Positive Rate corresponds to the proportion of negative
data points that are incorrectly classified as positive, with respect to all negative data points. The
lower the better all else equal.

True Positive Rate (TPR):
TP

TP + FN
False Positive Rate (FPR):

FP
FP + TN

Binary classifiers usually predict with what probability they expect 1 to occur. The threshold
where a high probability leading to predicting a 1 lies is an arbitrary decision. It is possible to
consider every single possible threshold and plot the corresponding pair of TPR and FPR’s of the
resulting predictions in a ROC curve plot. An example is given in Figure 10. To obtain a single
performance metric we can take the area under the ROC curve and effectively take into account
both TPR and FPR. The baseline for this metric lies at 0.5, where we predict completely randomly.
Anything performing worse can simply be inverted to do better.

Figure 10: AUC Example

5.2 Solution Methods

We use 3 different methods to come to a solution: Logistic Regression, Random Forest from
Scikit Learn (Pedregosa et al., 2011) and XGBoost (Chen and Guestrin, 2016). We apply 10-fold
stratified crossvalidation on the train set to compare models internally, consequently fit the best
model on the entirety of the train data and then predict labels for the test set and validate these

14

on the Kaggle site for the final score. Stratification in this context refers to ensuring that each
fold of the crossvalidation has a roughly equal distribution of classes as the original whole data
set. Stratification tends to improve the accuracy of the crossvalidation as means of testing when
dealing with imbalanced data. (Kohavi, 1995)

5.2.1 Logistic Regression

Logistic regression is a relatively ’simple’ machine learning algorithm and we expect fast, but not
great results. It tries to attach the best constant values to how features interact with the target,
based on the train set, minimizing an error term. It then applies this same formula to the test data
set. It is pursued here as a baseline in order to compare to more sophisticated models. For more
details see (Bishop, 2006).

5.2.2 Decision Tree

The following two algorithms rely on multiple decision trees. This section roughly describes what
a decision tree is. See (Breiman et al., 1984) for more details. To illustrate the concept of a
decision tree we run a basic tree classifier implementation on our data and obtain Figure 11.

var15 <= 0.215
gini = 0.5

samples = 100.0%
value = [0.5, 0.5]

class = y[0]

n1 <= 4.5
gini = 0.327

samples = 44.6%
value = [0.794, 0.206]

class = y[0]

True

saldo_var30 <= 0.001
gini = 0.471

samples = 55.4%
value = [0.38, 0.62]

class = y[1]

False

gini = 0.467
samples = 10.5%

value = [0.628, 0.372]
class = y[0]

gini = 0.236
samples = 34.1%

value = [0.863, 0.137]
class = y[0]

gini = 0.382
samples = 27.0%

value = [0.257, 0.743]
class = y[1]

gini = 0.453
samples = 28.4%

value = [0.653, 0.347]
class = y[0]

Figure 11: Decision Tree Example

The concept is fairly simple. If a prediction needs to be made, go from the top of the tree to the
bottom. Go left at the top if var15 is lower than 0.215, right otherwise. Repeat this process
for all nodes until a leaf is reached and the prediction made corresponds to the class label of that
leaf. This tree is constructed by at each depth level greedily finding the best feature to split on,
maximizing information gain via the Gini impurity. Let p0 be the proportion of observations that
belong to class 0 and let p1 be the proportion of observations that belong to class 1 out of all
observations.

Gini = 1− (p20 + p21)

15

This metric is an example of how to measure how pure a split is. It is more pure the lower it is with
minimum 0 and maximum 0.5. A split is purer if in the branches the ratio of positive to negative
examples is close to 0 or 1 or in other words the split is highly discriminatory. The maximum
depth of this tree is set at 2 to keep it tractable and this effectively also keeps it from overfitting.
A decision tree can otherwise perfectly match a training set, which does not generalize well.

5.2.3 Random Forest

The Random Forest model generates multiple decision trees. (Breiman, 2001) Only a subset of
predictive features is now considered during each split that is randomly selected. The decision
trees lead to one single prediction together by averaging all the predictions they give individually.

The parameters of a Random Forest model are really important and need to be tuned appropri-
ately. N_ESTIMATORS determines the number of trees in the forest. MAX_FEATURES controls
the maximum random amount of features to consider when determining a best split during the
algorithm. MAX_DEPTH limits the depth of a tree in the random forest. MIN_SAMPLES_SPLIT

determines the minimum amount of observations that need to be in a node for it to be considered
for splits. MIN_SAMPLES_LEAF constrains that leaf nodes have at least this number of obser-
vations. N_JOBS controls the number of processors. Trees in a random forest can be made in
parallel, so the more cores working, the less computation time needed. CLASS_WEIGHT can be
set to ’balanced’ to deal with imbalanced datasets.

5.2.4 XGBoost

XGBoost is a method where the outcome is formed by an combination of multiple trees. The trees
are build iteratively. Every time a new tree is built it focuses on parts where the previous ones
make mistakes, by assigning higher weights to these instances. This stands in contrast to Random
Forest, where trees are made independently from each other.

The parameters are again of grave importance and there are even more. N_ESTIMATORS and
MAX_DEPTH are the same as with the Random Forest model. LEARNING_RATE is a parameter
that controls the speed and preciseness of the model. The lower it is, the more accurate your model
becomes, but the more rounds it needs to converge. It represents a constant times how much the
next tree built affects current predictions. SUBSAMPLE stands for the fraction of observations to
be sampled randomly. COLSAMPLE_BYTREE denotes the fraction of features to take into consid-
eration during the random sampling for each tree. MIN_CHILD_WEIGHT defines the minimum
sum of weights of all observations required in a child. SCALE_POS_WEIGHT is a parameter to
combat imbalancedness. XGBoost directly avoids overfitting by promoting simplicity of models
in the objective via regularization, unlike Random Forest that only limits the way trees can grow
by imposing restraints. (Chen, 2014)

min Obj(Ω) = Training Loss Function + Regularization

min Obj(Ω) =
n∑

i=1

l(yi, ŷi) + α
k∑

i=1

|wi|+ λ
k∑

i=1

w2
i + γT

16

REG_ALPHA is a parameter for l1 regularization. LAMBDA is a parameter for l2 regularization.
GAMMA is a regularization parameter that multiplies itself with the number of leaves. This regular-
ization is in place to penalize the objective for building overtly complex trees to avoid overfitting.

6 Results

6.1 Tuning RF

It is difficult to determine what set of parameters is optimal for a specific problem. We utilize the
GridSearchCV() (Buitinck et al., 2013) function with 5-fold stratified crossvalidation and scoring
option area under the ROC curve to come to an answer. This basically boils down to trying all
possible combinations of a set of predetermined parameter spaces. The parameter spaces and
results of the grid search are shown in Table 9. These parameter spaces were seen as the optimal
tradeoff between computation time and accurately tuning the model.

Table 9: GridSearchCV()
Parameter Range Best Value Combination

N_ESTIMATORS [100, 500, 1000, 2000, 3000] 2000
MAX_FEATURES [’sqrt’, ’log2’] ’sqrt’

MAX_DEPTH [None, 5, 20] 20
MIN_SAMPLES_LEAF [10, 30, 50, 100] 50

With the aforementioned best parameter set we fit the model on the training data and make a
plot of how relevant a specific feature is in Figure 12. These importances represent the total
Gini impurity decrease weighted by the probability of reaching a node containing this feature,
averaged over all trees. We can be pleased to see that several of the features we created like
var15_most_common seem to be significant.

va
r1

5
va

r1
5_

m
os

t_
co

m
m

on n1
sa

ld
o_

va
r3

0
sa

ld
o_

m
ed

io
_v

ar
5_

ul
t3

va
r3

8 n0
sa

ld
o_

m
ed

io
_v

ar
5_

ul
t1

sa
ld

o_
va

r5
in

d_
va

r3
0

sa
ld

o_
va

r4
2

nu
m

_v
ar

35
sa

ld
o_

m
ed

io
_v

ar
5_

ha
ce

2
nu

m
_m

es
es

_v
ar

5_
ul

t3
nu

m
_v

ar
30

nu
m

_v
ar

4
nu

m
_m

es
es

_v
ar

5_
ul

t3
_0

in
d_

va
r5

nu
m

_m
es

es
_v

ar
5_

ul
t3

_3
sa

ld
o_

m
ed

io
_v

ar
5_

ha
ce

3
nu

m
_v

ar
22

_u
lt3

nu
m

_v
ar

42
im

p_
op

_v
ar

41
_e

fe
ct

_u
lt3

va
r3

6
nu

m
_v

ar
45

_h
ac

e3
nu

m
_m

ed
_v

ar
45

_u
lt3

im
p_

op
_v

ar
41

_u
lt1

nu
m

_v
ar

45
_h

ac
e2

im
p_

op
_v

ar
41

_e
fe

ct
_u

lt1
nu

m
_v

ar
22

_h
ac

e2

Features

0.05

0.00

0.05

0.10

0.15

0.20

0.25

F
sc

or
e

Feature Importances

Figure 12: Feature Importance

17

We also plot one of the many trees the forest model creates in Figure 13, namely the very first one
and we can see it is considerable in size.

saldo_var5 <= 0.005
gini = 0.5

samples = 100.0%
value = [0.49, 0.51]

class = y[1]

saldo_var13 <= 0.0
gini = 0.488

samples = 64.5%
value = [0.421, 0.579]

class = y[1]

True

ind_var10_ult1 <= 0.5
gini = 0.429

samples = 35.5%
value = [0.688, 0.312]

class = y[0]

False

ind_var24_0 <= 0.5
gini = 0.483

samples = 61.0%
value = [0.408, 0.592]

class = y[1]

var36_3 <= 0.5
gini = 0.135

samples = 3.5%
value = [0.927, 0.073]

class = y[0]

num_op_var41_efect_ult3 <= 0.01
gini = 0.479

samples = 58.3%
value = [0.399, 0.601]

class = y[1]

saldo_medio_var5_ult1 <= 0.002
gini = 0.336

samples = 2.7%
value = [0.786, 0.214]

class = y[0]

saldo_medio_var5_ult1 <= 0.002
gini = 0.484

samples = 54.3%
value = [0.411, 0.589]

class = y[1]

saldo_medio_var8_ult1 <= 0.023
gini = 0.4

samples = 4.0%
value = [0.277, 0.723]

class = y[1]

ind_var30 <= 0.5
gini = 0.409

samples = 25.6%
value = [0.287, 0.713]

class = y[1]

num_ent_var16_ult1 <= 0.025
gini = 0.456

samples = 28.7%
value = [0.648, 0.352]

class = y[0]

num_var30_0 <= 0.013
gini = 0.403

samples = 23.7%
value = [0.28, 0.72]

class = y[1]

var38 <= 0.01
gini = 0.479

samples = 2.0%
value = [0.399, 0.601]

class = y[1]

ind_var41_0 <= 0.5
gini = 0.263

samples = 0.4%
value = [0.844, 0.156]

class = y[0]

num_var45_hace3 <= 0.004
gini = 0.4

samples = 23.3%
value = [0.277, 0.723]

class = y[1]

gini = 0.0
samples = 0.2%
value = [1.0, 0.0]

class = y[0]

gini = 0.409
samples = 0.2%

value = [0.713, 0.287]
class = y[0]

num_meses_var5_ult3 <= 0.5
gini = 0.422

samples = 19.9%
value = [0.302, 0.698]

class = y[1]

gini = 0.3
samples = 3.4%

value = [0.183, 0.817]
class = y[1]

gini = 0.421
samples = 19.7%

value = [0.301, 0.699]
class = y[1]

gini = 0.499
samples = 0.2%

value = [0.526, 0.474]
class = y[0]

num_meses_var12_ult3 <= 1.5
gini = 0.472

samples = 1.8%
value = [0.382, 0.618]

class = y[1]

gini = 0.0
samples = 0.1%
value = [1.0, 0.0]

class = y[0]

num_var4 <= 0.214
gini = 0.455

samples = 1.6%
value = [0.35, 0.65]

class = y[1]

gini = 0.0
samples = 0.2%
value = [1.0, 0.0]

class = y[0]

var36_1 <= 0.5
gini = 0.428

samples = 0.7%
value = [0.31, 0.69]

class = y[1]

num_op_var39_comer_ult3 <= 0.007
gini = 0.478

samples = 0.9%
value = [0.395, 0.605]

class = y[1]

n1 <= 6.5
gini = 0.474

samples = 0.5%
value = [0.386, 0.614]

class = y[1]

gini = 0.328
samples = 0.2%

value = [0.207, 0.793]
class = y[1]

gini = 0.497
samples = 0.1%

value = [0.538, 0.462]
class = y[0]

gini = 0.458
samples = 0.4%

value = [0.356, 0.644]
class = y[1]

var15 <= 0.245
gini = 0.498

samples = 0.6%
value = [0.468, 0.532]

class = y[1]

saldo_var26 <= 0.001
gini = 0.413

samples = 0.3%
value = [0.291, 0.709]

class = y[1]

gini = 0.0
samples = 0.2%
value = [1.0, 0.0]

class = y[0]

num_meses_var5_ult3_0 <= 0.5
gini = 0.476

samples = 0.4%
value = [0.39, 0.61]

class = y[1]

n0 <= 152.5
gini = 0.455

samples = 0.3%
value = [0.35, 0.65]

class = y[1]

gini = 0.497
samples = 0.1%

value = [0.541, 0.459]
class = y[0]

gini = 0.341
samples = 0.1%

value = [0.218, 0.782]
class = y[1]

gini = 0.419
samples = 0.2%

value = [0.701, 0.299]
class = y[0]

gini = 0.334
samples = 0.1%

value = [0.212, 0.788]
class = y[1]

gini = 0.492
samples = 0.1%

value = [0.439, 0.561]
class = y[1]

num_var22_hace2 <= 0.012
gini = 0.451

samples = 28.2%
value = [0.656, 0.344]

class = y[0]

num_op_var41_ult1 <= 0.01
gini = 0.458

samples = 0.5%
value = [0.356, 0.644]

class = y[1]

num_var45_hace3 <= 0.013
gini = 0.429

samples = 25.9%
value = [0.688, 0.312]

class = y[0]

num_var45_ult1 <= 0.003
gini = 0.488

samples = 2.3%
value = [0.421, 0.579]

class = y[1]

num_var35 <= 0.042
gini = 0.413

samples = 24.3%
value = [0.709, 0.291]

class = y[0]

num_var45_hace2 <= 0.031
gini = 0.499

samples = 1.6%
value = [0.476, 0.524]

class = y[1]

gini = 0.459
samples = 0.1%

value = [0.357, 0.643]
class = y[1]

saldo_medio_var5_ult3 <= 0.001
gini = 0.41

samples = 24.2%
value = [0.712, 0.288]

class = y[0]

var38 <= 0.005
gini = 0.413

samples = 23.9%
value = [0.709, 0.291]

class = y[0]

gini = 0.0
samples = 0.3%
value = [1.0, 0.0]

class = y[0]

num_var22_ult1 <= 0.016
gini = 0.39

samples = 15.6%
value = [0.734, 0.266]

class = y[0]

num_var45_hace3 <= 0.004
gini = 0.445

samples = 8.3%
value = [0.666, 0.334]

class = y[0]

ind_var39_0 <= 0.5
gini = 0.385

samples = 15.3%
value = [0.74, 0.26]

class = y[0]

gini = 0.499
samples = 0.3%

value = [0.519, 0.481]
class = y[0]

gini = 0.451
samples = 1.8%

value = [0.657, 0.343]
class = y[0]

var15_most_common <= 0.5
gini = 0.372

samples = 13.5%
value = [0.753, 0.247]

class = y[0]

var36 <= 51.0
gini = 0.45

samples = 8.4%
value = [0.659, 0.341]

class = y[0]

gini = 0.051
samples = 5.1%

value = [0.974, 0.026]
class = y[0]

num_var22_hace3 <= 0.014
gini = 0.47

samples = 6.0%
value = [0.622, 0.378]

class = y[0]

num_meses_var5_ult3_3 <= 0.5
gini = 0.346

samples = 2.3%
value = [0.777, 0.223]

class = y[0]

saldo_var30 <= 0.001
gini = 0.472

samples = 5.9%
value = [0.618, 0.382]

class = y[0]

gini = 0.309
samples = 0.2%

value = [0.809, 0.191]
class = y[0]

gini = 0.478
samples = 5.5%

value = [0.606, 0.394]
class = y[0]

gini = 0.162
samples = 0.4%

value = [0.911, 0.089]
class = y[0]

gini = 0.5
samples = 0.2%

value = [0.493, 0.507]
class = y[1]

gini = 0.291
samples = 2.1%

value = [0.823, 0.177]
class = y[0]gini = 0.44

samples = 7.4%
value = [0.673, 0.327]

class = y[0]

gini = 0.476
samples = 0.8%

value = [0.609, 0.391]
class = y[0]

saldo_var5 <= 0.005
gini = 0.494

samples = 1.4%
value = [0.447, 0.553]

class = y[1]

gini = 0.355
samples = 0.2%

value = [0.769, 0.231]
class = y[0]

var36 <= 51.0
gini = 0.481

samples = 0.9%
value = [0.599, 0.401]

class = y[0]

gini = 0.416
samples = 0.5%

value = [0.296, 0.704]
class = y[1]

gini = 0.485
samples = 0.7%

value = [0.587, 0.413]
class = y[0]

gini = 0.465
samples = 0.2%

value = [0.632, 0.368]
class = y[0]

num_var35 <= 0.125
gini = 0.5

samples = 1.4%
value = [0.497, 0.503]

class = y[1]

var38_most_common <= 0.5
gini = 0.448

samples = 0.9%
value = [0.338, 0.662]

class = y[1]

num_meses_var5_ult3_2 <= 0.5
gini = 0.499

samples = 1.2%
value = [0.524, 0.476]

class = y[0]

gini = 0.46
samples = 0.2%

value = [0.359, 0.641]
class = y[1]

num_var22_hace3 <= 0.014
gini = 0.482

samples = 0.9%
value = [0.595, 0.405]

class = y[0]

var38 <= 0.004
gini = 0.466

samples = 0.3%
value = [0.371, 0.629]

class = y[1]

var15_most_common <= 0.5
gini = 0.473

samples = 0.7%
value = [0.617, 0.383]

class = y[0]

gini = 0.499
samples = 0.2%

value = [0.524, 0.476]
class = y[0]

gini = 0.499
samples = 0.5%

value = [0.518, 0.482]
class = y[0]

gini = -0.0
samples = 0.2%
value = [1.0, 0.0]

class = y[0]

gini = 0.495
samples = 0.1%

value = [0.448, 0.552]
class = y[1]

gini = 0.441
samples = 0.2%

value = [0.328, 0.672]
class = y[1]

num_var22_hace2 <= 0.061
gini = 0.457

samples = 0.7%
value = [0.353, 0.647]

class = y[1]

gini = 0.412
samples = 0.2%

value = [0.29, 0.71]
class = y[1]

num_op_var39_comer_ult3 <= 0.007
gini = 0.483

samples = 0.6%
value = [0.409, 0.591]

class = y[1]

gini = 0.355
samples = 0.2%

value = [0.231, 0.769]
class = y[1]

saldo_medio_var5_hace2 <= 0.0
gini = 0.496

samples = 0.4%
value = [0.455, 0.545]

class = y[1]

gini = 0.425
samples = 0.1%

value = [0.307, 0.693]
class = y[1]

gini = 0.474
samples = 0.3%

value = [0.386, 0.614]
class = y[1]

gini = 0.439
samples = 0.1%

value = [0.675, 0.325]
class = y[0]

saldo_var30 <= 0.001
gini = 0.41

samples = 0.3%
value = [0.288, 0.712]

class = y[1]

gini = 0.443
samples = 0.1%

value = [0.668, 0.332]
class = y[0]

gini = 0.482
samples = 0.2%

value = [0.404, 0.596]
class = y[1]

gini = 0.347
samples = 0.2%

value = [0.224, 0.776]
class = y[1]

saldo_medio_var5_ult3 <= 0.001
gini = 0.377

samples = 3.3%
value = [0.252, 0.748]

class = y[1]

saldo_var25 <= 0.06
gini = 0.496

samples = 0.7%
value = [0.544, 0.456]

class = y[0]

saldo_var42 <= 0.002
gini = 0.322

samples = 1.6%
value = [0.202, 0.798]

class = y[1]

imp_op_var41_comer_ult1 <= 0.001
gini = 0.436

samples = 1.7%
value = [0.321, 0.679]

class = y[1]

var15 <= 0.215
gini = 0.288

samples = 1.3%
value = [0.175, 0.825]

class = y[1]

saldo_var30 <= 0.002
gini = 0.497

samples = 0.3%
value = [0.539, 0.461]

class = y[0]

num_op_var41_ult3 <= 0.016
gini = 0.404

samples = 0.3%
value = [0.719, 0.281]

class = y[0]

num_var35 <= 0.125
gini = 0.244

samples = 1.0%
value = [0.142, 0.858]

class = y[1]

gini = 0.0
samples = 0.2%
value = [1.0, 0.0]

class = y[0]

gini = 0.5
samples = 0.1%

value = [0.51, 0.49]
class = y[0]

gini = 0.329
samples = 0.2%

value = [0.208, 0.792]
class = y[1]

imp_op_var41_efect_ult1 <= 0.037
gini = 0.229

samples = 0.8%
value = [0.132, 0.868]

class = y[1]

saldo_var8 <= 0.02
gini = 0.275

samples = 0.7%
value = [0.165, 0.835]

class = y[1]

gini = 0.114
samples = 0.1%

value = [0.061, 0.939]
class = y[1]

num_op_var39_ult1 <= 0.022
gini = 0.157

samples = 0.3%
value = [0.086, 0.914]

class = y[1]

saldo_medio_var8_hace2 <= 0.001
gini = 0.479

samples = 0.4%
value = [0.398, 0.602]

class = y[1]

gini = 0.136
samples = 0.2%

value = [0.073, 0.927]
class = y[1]

gini = 0.205
samples = 0.1%

value = [0.116, 0.884]
class = y[1]

gini = -0.0
samples = 0.2%
value = [1.0, 0.0]

class = y[0]

gini = 0.365
samples = 0.2%

value = [0.24, 0.76]
class = y[1]

gini = 0.29
samples = 0.2%

value = [0.824, 0.176]
class = y[0]

gini = 0.465
samples = 0.1%

value = [0.368, 0.632]
class = y[1]

imp_op_var41_efect_ult1 <= 0.0
gini = 0.391

samples = 0.7%
value = [0.267, 0.733]

class = y[1]

num_op_var41_comer_ult3 <= 0.01
gini = 0.47

samples = 1.0%
value = [0.377, 0.623]

class = y[1]

num_op_var39_comer_ult3 <= 0.007
gini = 0.346

samples = 0.3%
value = [0.223, 0.777]

class = y[1]

num_var45_hace2 <= 0.031
gini = 0.43

samples = 0.4%
value = [0.312, 0.688]

class = y[1]

gini = 0.303
samples = 0.2%

value = [0.186, 0.814]
class = y[1]

gini = 0.435
samples = 0.1%

value = [0.32, 0.68]
class = y[1]

var15 <= 0.205
gini = 0.483

samples = 0.3%
value = [0.407, 0.593]

class = y[1]

gini = 0.313
samples = 0.1%

value = [0.194, 0.806]
class = y[1]

gini = 0.0
samples = 0.1%
value = [1.0, 0.0]

class = y[0]

gini = 0.403
samples = 0.2%

value = [0.279, 0.721]
class = y[1]

gini = 0.0
samples = 0.1%
value = [1.0, 0.0]

class = y[0]

imp_op_var41_efect_ult3 <= 0.002
gini = 0.448

samples = 0.8%
value = [0.338, 0.662]

class = y[1]

imp_op_var41_comer_ult3 <= 0.009
gini = 0.451

samples = 0.3%
value = [0.656, 0.344]

class = y[0]

saldo_var30 <= 0.001
gini = 0.377

samples = 0.5%
value = [0.252, 0.748]

class = y[1]

gini = 0.499
samples = 0.1%

value = [0.523, 0.477]
class = y[0]

gini = 0.367
samples = 0.2%

value = [0.758, 0.242]
class = y[0]

gini = 0.256
samples = 0.2%

value = [0.151, 0.849]
class = y[1]

num_var45_hace3 <= 0.013
gini = 0.453

samples = 0.3%
value = [0.347, 0.653]

class = y[1]

gini = 0.492
samples = 0.2%

value = [0.564, 0.436]
class = y[0]

gini = 0.362
samples = 0.2%

value = [0.238, 0.762]
class = y[1]

imp_op_var39_comer_ult1 <= 0.037
gini = 0.494

samples = 0.4%
value = [0.445, 0.555]

class = y[1]

gini = -0.0
samples = 0.2%
value = [1.0, 0.0]

class = y[0]

gini = 0.398
samples = 0.2%

value = [0.726, 0.274]
class = y[0]

num_op_var41_comer_ult3 <= 0.099
gini = 0.449

samples = 0.3%
value = [0.34, 0.66]

class = y[1]

gini = 0.415
samples = 0.1%

value = [0.294, 0.706]
class = y[1]

gini = 0.481
samples = 0.1%

value = [0.403, 0.597]
class = y[1]

saldo_var30 <= 0.025
gini = 0.224

samples = 2.1%
value = [0.872, 0.128]

class = y[0]

saldo_medio_var12_ult1 <= 0.012
gini = 0.49

samples = 0.6%
value = [0.571, 0.429]

class = y[0]

saldo_medio_var12_ult1 <= 0.021
gini = 0.397

samples = 0.7%
value = [0.727, 0.273]

class = y[0]

saldo_medio_var12_hace2 <= 0.099
gini = 0.048

samples = 1.4%
value = [0.975, 0.025]

class = y[0]

saldo_medio_var5_hace2 <= 0.0
gini = 0.336

samples = 0.6%
value = [0.787, 0.213]

class = y[0]

gini = 0.5
samples = 0.1%

value = [0.493, 0.507]
class = y[1]

saldo_var30 <= 0.007
gini = 0.442

samples = 0.3%
value = [0.671, 0.329]

class = y[0]

saldo_medio_var5_hace3 <= 0.0
gini = 0.162

samples = 0.4%
value = [0.911, 0.089]

class = y[0]

gini = 0.5
samples = 0.1%

value = [0.497, 0.503]
class = y[1]

gini = 0.271
samples = 0.2%

value = [0.838, 0.162]
class = y[0]

gini = 0.0
samples = 0.2%
value = [1.0, 0.0]

class = y[0]

gini = 0.365
samples = 0.1%

value = [0.76, 0.24]
class = y[0]

gini = -0.0
samples = 1.2%
value = [1.0, 0.0]

class = y[0]

gini = 0.244
samples = 0.2%

value = [0.858, 0.142]
class = y[0]

gini = 0.458
samples = 0.2%

value = [0.355, 0.645]
class = y[1]

num_var45_hace2 <= 0.013
gini = 0.166

samples = 0.3%
value = [0.908, 0.092]

class = y[0]

gini = 0.344
samples = 0.1%

value = [0.78, 0.22]
class = y[0]

gini = -0.0
samples = 0.2%
value = [1.0, 0.0]

class = y[0]

saldo_medio_var5_ult1 <= 0.002
gini = 0.199

samples = 2.2%
value = [0.888, 0.112]

class = y[0]

gini = 0.0
samples = 1.3%
value = [1.0, 0.0]

class = y[0]

num_var45_hace2 <= 0.004
gini = 0.254

samples = 1.6%
value = [0.85, 0.15]

class = y[0]

gini = 0.0
samples = 0.6%
value = [1.0, 0.0]

class = y[0]

gini = 0.455
samples = 0.2%

value = [0.649, 0.351]
class = y[0]

saldo_var13_corto <= 0.497
gini = 0.198

samples = 1.4%
value = [0.889, 0.111]

class = y[0]

num_var45_hace2 <= 0.048
gini = 0.147

samples = 1.2%
value = [0.92, 0.08]

class = y[0]

gini = 0.393
samples = 0.2%

value = [0.731, 0.269]
class = y[0]

gini = 0.0
samples = 0.7%
value = [1.0, 0.0]

class = y[0]

num_var45_hace3 <= 0.04
gini = 0.294

samples = 0.5%
value = [0.821, 0.179]

class = y[0]

saldo_var13 <= 0.058
gini = 0.185

samples = 0.3%
value = [0.897, 0.103]

class = y[0]

gini = 0.406
samples = 0.2%

value = [0.717, 0.283]
class = y[0]

gini = -0.0
samples = 0.2%
value = [1.0, 0.0]

class = y[0]

gini = 0.326
samples = 0.1%

value = [0.795, 0.205]
class = y[0]

saldo_medio_var13_corto_hace2 <= 0.0
gini = 0.407

samples = 29.9%
value = [0.715, 0.285]

class = y[0]

saldo_var5 <= 0.007
gini = 0.49

samples = 5.7%
value = [0.572, 0.428]

class = y[0]

num_op_var41_ult3 <= 0.061
gini = 0.413

samples = 28.6%
value = [0.709, 0.291]

class = y[0]

saldo_medio_var13_corto_hace2 <= 0.465
gini = 0.209

samples = 1.3%
value = [0.882, 0.118]

class = y[0]

var15_most_common <= 0.5
gini = 0.394

samples = 26.5%
value = [0.731, 0.269]

class = y[0]

saldo_var5 <= 0.005
gini = 0.5

samples = 2.0%
value = [0.51, 0.49]

class = y[0]

var15 <= 0.225
gini = 0.44

samples = 19.5%
value = [0.673, 0.327]

class = y[0]

num_meses_var5_ult3 <= 2.5
gini = 0.081

samples = 7.0%
value = [0.958, 0.042]

class = y[0]

var36 <= 51.0
gini = 0.173

samples = 5.2%
value = [0.905, 0.095]

class = y[0]

num_var42 <= 0.25
gini = 0.474

samples = 14.4%
value = [0.615, 0.385]

class = y[0]

num_med_var45_ult3 <= 0.062
gini = 0.091

samples = 4.0%
value = [0.952, 0.048]

class = y[0]

num_var45_hace2 <= 0.013
gini = 0.362

samples = 1.1%
value = [0.762, 0.238]

class = y[0]

num_var45_ult1 <= 0.003
gini = 0.064

samples = 3.9%
value = [0.967, 0.033]

class = y[0]

gini = 0.46
samples = 0.1%

value = [0.642, 0.358]
class = y[0]

num_var22_ult3 <= 0.019
gini = 0.089

samples = 2.7%
value = [0.953, 0.047]

class = y[0]

gini = 0.0
samples = 1.2%
value = [1.0, 0.0]

class = y[0]

saldo_medio_var5_ult3 <= 0.001
gini = 0.052

samples = 2.4%
value = [0.974, 0.026]

class = y[0]

gini = 0.319
samples = 0.3%
value = [0.8, 0.2]

class = y[0]

saldo_medio_var5_hace2 <= 0.0
gini = 0.124

samples = 0.9%
value = [0.934, 0.066]

class = y[0]

gini = 0.0
samples = 1.5%
value = [1.0, 0.0]

class = y[0]

gini = 0.0
samples = 0.3%
value = [1.0, 0.0]

class = y[0]

n1 <= 6.5
gini = 0.181

samples = 0.6%
value = [0.899, 0.101]

class = y[0]

saldo_medio_var5_ult3 <= 0.001
gini = 0.171

samples = 0.3%
value = [0.906, 0.094]

class = y[0]

gini = 0.192
samples = 0.3%

value = [0.893, 0.107]
class = y[0]

gini = 0.298
samples = 0.2%

value = [0.818, 0.182]
class = y[0]

gini = -0.0
samples = 0.2%
value = [1.0, 0.0]

class = y[0]

saldo_medio_var5_hace3 <= 0.0
gini = 0.22

samples = 1.0%
value = [0.874, 0.126]

class = y[0]

gini = 0.487
samples = 0.2%

value = [0.421, 0.579]
class = y[1]

gini = 0.458
samples = 0.1%

value = [0.644, 0.356]
class = y[0]

gini = 0.141
samples = 0.8%

value = [0.923, 0.077]
class = y[0]

num_meses_var5_ult3 <= 2.5
gini = 0.479

samples = 13.3%
value = [0.602, 0.398]

class = y[0]

num_var39_0 <= 0.136
gini = 0.272

samples = 1.1%
value = [0.838, 0.162]

class = y[0]

ind_var43_recib_ult1 <= 0.5
gini = 0.5

samples = 3.9%
value = [0.51, 0.49]

class = y[0]

saldo_var5 <= 0.007
gini = 0.454

samples = 9.4%
value = [0.652, 0.348]

class = y[0]

var15 <= 0.315
gini = 0.499

samples = 2.6%
value = [0.478, 0.522]

class = y[1]

ind_var43_emit_ult1 <= 0.5
gini = 0.484

samples = 1.3%
value = [0.588, 0.412]

class = y[0]

num_meses_var39_vig_ult3_1 <= 0.5
gini = 0.476

samples = 0.9%
value = [0.61, 0.39]

class = y[0]

num_op_var39_ult3 <= 0.003
gini = 0.488

samples = 1.7%
value = [0.423, 0.577]

class = y[1]

var15 <= 0.295
gini = 0.495

samples = 0.7%
value = [0.551, 0.449]

class = y[0]

gini = 0.308
samples = 0.3%

value = [0.81, 0.19]
class = y[0]

gini = 0.5
samples = 0.5%

value = [0.492, 0.508]
class = y[1]

gini = 0.274
samples = 0.2%

value = [0.836, 0.164]
class = y[0]

n1 <= 7.5
gini = 0.495

samples = 1.4%
value = [0.451, 0.549]

class = y[1]

gini = 0.434
samples = 0.3%

value = [0.319, 0.681]
class = y[1]

num_var45_ult1 <= 0.003
gini = 0.477

samples = 0.8%
value = [0.392, 0.608]

class = y[1]

var38 <= 0.004
gini = 0.496

samples = 0.7%
value = [0.547, 0.453]

class = y[0]

var36_2 <= 0.5
gini = 0.447

samples = 0.4%
value = [0.337, 0.663]

class = y[1]

saldo_medio_var5_hace2 <= 0.0
gini = 0.5

samples = 0.3%
value = [0.503, 0.497]

class = y[0]

gini = 0.498
samples = 0.1%

value = [0.532, 0.468]
class = y[0]

var15 <= 0.455
gini = 0.416

samples = 0.3%
value = [0.295, 0.705]

class = y[1]

gini = 0.335
samples = 0.2%

value = [0.213, 0.787]
class = y[1]

gini = 0.457
samples = 0.1%

value = [0.647, 0.353]
class = y[0]gini = 0.419

samples = 0.1%
value = [0.299, 0.701]

class = y[1]

gini = 0.255
samples = 0.2%

value = [0.85, 0.15]
class = y[0]

num_var22_ult3 <= 0.019
gini = 0.485

samples = 0.3%
value = [0.413, 0.587]

class = y[1]

num_var22_hace2 <= 0.012
gini = 0.361

samples = 0.3%
value = [0.763, 0.237]

class = y[0]

gini = 0.496
samples = 0.1%

value = [0.454, 0.546]
class = y[1]

gini = 0.471
samples = 0.2%

value = [0.379, 0.621]
class = y[1]

gini = 0.412
samples = 0.2%

value = [0.71, 0.29]
class = y[0]

gini = 0.286
samples = 0.2%

value = [0.827, 0.173]
class = y[0]

imp_op_var41_efect_ult3 <= 0.0
gini = 0.456

samples = 1.1%
value = [0.649, 0.351]

class = y[0]

num_var43_recib_ult1 <= 0.017
gini = 0.486

samples = 0.2%
value = [0.417, 0.583]

class = y[1]

num_var45_ult1 <= 0.026
gini = 0.43

samples = 0.9%
value = [0.687, 0.313]

class = y[0]

gini = 0.5
samples = 0.2%

value = [0.505, 0.495]
class = y[0]

gini = 0.354
samples = 0.7%

value = [0.77, 0.23]
class = y[0]

gini = 0.5
samples = 0.2%

value = [0.509, 0.491]
class = y[0]

gini = 0.5
samples = 0.1%

value = [0.486, 0.514]
class = y[1]

gini = 0.461
samples = 0.1%

value = [0.36, 0.64]
class = y[1]

imp_op_var41_comer_ult3 <= 0.0
gini = 0.476

samples = 6.7%
value = [0.609, 0.391]

class = y[0]

var36 <= 1.5
gini = 0.331

samples = 2.7%
value = [0.79, 0.21]

class = y[0]

var15 <= 0.265
gini = 0.49

samples = 5.0%
value = [0.571, 0.429]

class = y[0]

saldo_var42 <= 0.002
gini = 0.355

samples = 1.7%
value = [0.769, 0.231]

class = y[0]

saldo_medio_var5_hace3 <= 0.0
gini = 0.417

samples = 1.1%
value = [0.704, 0.296]

class = y[0]

imp_var43_emit_ult1 <= 0.0
gini = 0.496

samples = 3.9%
value = [0.542, 0.458]

class = y[0]

gini = 0.477
samples = 0.7%

value = [0.607, 0.393]
class = y[0]

gini = 0.138
samples = 0.4%

value = [0.925, 0.075]
class = y[0]

saldo_medio_var5_hace3 <= 0.0
gini = 0.498

samples = 3.7%
value = [0.528, 0.472]

class = y[0]

num_var45_hace3 <= 0.022
gini = 0.212

samples = 0.3%
value = [0.879, 0.121]

class = y[0]

num_meses_var39_vig_ult3_2 <= 0.5
gini = 0.48

samples = 0.7%
value = [0.401, 0.599]

class = y[1]

num_var43_recib_ult1 <= 0.006
gini = 0.49

samples = 3.0%
value = [0.569, 0.431]

class = y[0]

gini = 0.45
samples = 0.3%

value = [0.343, 0.657]
class = y[1]

num_var45_ult1 <= 0.003
gini = 0.495

samples = 0.4%
value = [0.452, 0.548]

class = y[1]

gini = 0.476
samples = 0.2%

value = [0.391, 0.609]
class = y[1]

gini = 0.492
samples = 0.2%

value = [0.563, 0.437]
class = y[0]

var38 <= 0.007
gini = 0.484

samples = 2.6%
value = [0.59, 0.41]

class = y[0]

saldo_medio_var5_ult3 <= 0.001
gini = 0.495

samples = 0.4%
value = [0.448, 0.552]

class = y[1]

var15 <= 0.345
gini = 0.471

samples = 2.3%
value = [0.621, 0.379]

class = y[0]

gini = 0.49
samples = 0.3%

value = [0.429, 0.571]
class = y[1]

num_med_var22_ult3 <= 0.019
gini = 0.403

samples = 0.9%
value = [0.72, 0.28]

class = y[0]

num_med_var45_ult3 <= 0.039
gini = 0.49

samples = 1.4%
value = [0.572, 0.428]

class = y[0]

saldo_medio_var5_hace2 <= 0.001
gini = 0.379

samples = 0.7%
value = [0.746, 0.254]

class = y[0]

gini = 0.463
samples = 0.2%

value = [0.635, 0.365]
class = y[0]

gini = 0.181
samples = 0.6%

value = [0.899, 0.101]
class = y[0]

gini = 0.454
samples = 0.1%

value = [0.348, 0.652]
class = y[1]

var36_2 <= 0.5
gini = 0.482

samples = 1.3%
value = [0.596, 0.404]

class = y[0]

gini = 0.469
samples = 0.1%

value = [0.375, 0.625]
class = y[1]

gini = 0.489
samples = 1.1%

value = [0.574, 0.426]
class = y[0]

gini = 0.293
samples = 0.2%

value = [0.822, 0.178]
class = y[0]

gini = 0.494
samples = 0.2%

value = [0.557, 0.443]
class = y[0]

gini = 0.467
samples = 0.2%

value = [0.372, 0.628]
class = y[1]

gini = 0.355
samples = 0.1%

value = [0.769, 0.231]
class = y[0]

gini = -0.0
samples = 0.1%
value = [1.0, 0.0]

class = y[0]

num_op_var41_comer_ult1 <= 0.024
gini = 0.453

samples = 0.8%
value = [0.653, 0.347]

class = y[0]

num_var22_ult3 <= 0.019
gini = 0.186

samples = 0.9%
value = [0.896, 0.104]

class = y[0]

imp_op_var41_comer_ult1 <= 0.007
gini = 0.43

samples = 0.6%
value = [0.688, 0.312]

class = y[0]

gini = 0.5
samples = 0.1%

value = [0.507, 0.493]
class = y[0]

num_op_var39_ult3 <= 0.01
gini = 0.481

samples = 0.4%
value = [0.599, 0.401]

class = y[0]

gini = -0.0
samples = 0.2%
value = [1.0, 0.0]

class = y[0]

gini = 0.0
samples = 0.2%
value = [1.0, 0.0]

class = y[0]

saldo_medio_var5_hace2 <= 0.0
gini = 0.492

samples = 0.2%
value = [0.439, 0.561]

class = y[1]

gini = 0.469
samples = 0.1%

value = [0.625, 0.375]
class = y[0]

gini = 0.44
samples = 0.1%

value = [0.327, 0.673]
class = y[1]

var15 <= 0.285
gini = 0.299

samples = 0.5%
value = [0.817, 0.183]

class = y[0]

gini = -0.0
samples = 0.4%
value = [1.0, 0.0]

class = y[0]

gini = 0.452
samples = 0.1%

value = [0.654, 0.346]
class = y[0]

imp_op_var41_comer_ult1 <= 0.002
gini = 0.17

samples = 0.4%
value = [0.906, 0.094]

class = y[0]

gini = 0.399
samples = 0.1%

value = [0.725, 0.275]
class = y[0]

gini = -0.0
samples = 0.2%
value = [1.0, 0.0]

class = y[0]

saldo_var42 <= 0.004
gini = 0.384

samples = 1.6%
value = [0.741, 0.259]

class = y[0]

num_op_var39_ult1 <= 0.01
gini = 0.209

samples = 1.0%
value = [0.881, 0.119]

class = y[0]

var15 <= 0.515
gini = 0.429

samples = 1.2%
value = [0.688, 0.312]

class = y[0]

num_med_var45_ult3 <= 0.017
gini = 0.136

samples = 0.4%
value = [0.927, 0.073]

class = y[0]

saldo_var42 <= 0.003
gini = 0.367

samples = 1.0%
value = [0.758, 0.242]

class = y[0]

gini = 0.494
samples = 0.2%

value = [0.447, 0.553]
class = y[1]

num_var35 <= 0.125
gini = 0.464

samples = 0.5%
value = [0.635, 0.365]

class = y[0]

num_op_var41_hace2 <= 0.006
gini = 0.122

samples = 0.5%
value = [0.935, 0.065]

class = y[0]

saldo_var5 <= 0.008
gini = 0.496

samples = 0.2%
value = [0.546, 0.454]

class = y[0]

imp_trans_var37_ult1 <= 0.0
gini = 0.399

samples = 0.3%
value = [0.725, 0.275]

class = y[0]

gini = 0.385
samples = 0.1%

value = [0.74, 0.26]
class = y[0]

gini = 0.493
samples = 0.1%

value = [0.442, 0.558]
class = y[1]

gini = 0.499
samples = 0.1%

value = [0.475, 0.525]
class = y[1]

gini = -0.0
samples = 0.2%
value = [1.0, 0.0]

class = y[0]

var15 <= 0.395
gini = 0.148

samples = 0.4%
value = [0.919, 0.081]

class = y[0]

gini = 0.0
samples = 0.1%
value = [1.0, 0.0]

class = y[0]

gini = -0.0
samples = 0.3%
value = [1.0, 0.0]

class = y[0]

gini = 0.36
samples = 0.1%

value = [0.765, 0.235]
class = y[0]

gini = 0.365
samples = 0.1%

value = [0.76, 0.24]
class = y[0]

gini = -0.0
samples = 0.3%
value = [1.0, 0.0]

class = y[0]

var15 <= 0.395
gini = 0.07

samples = 0.9%
value = [0.963, 0.037]

class = y[0]

gini = 0.499
samples = 0.1%

value = [0.526, 0.474]
class = y[0]

n0 <= 165.5
gini = 0.139

samples = 0.4%
value = [0.925, 0.075]

class = y[0]

gini = -0.0
samples = 0.5%
value = [1.0, 0.0]

class = y[0]

gini = 0.279
samples = 0.2%

value = [0.833, 0.167]
class = y[0]

gini = 0.0
samples = 0.3%
value = [1.0, 0.0]

class = y[0]

n0 <= 144.5
gini = 0.222

samples = 0.9%
value = [0.873, 0.127]

class = y[0]

gini = 0.458
samples = 0.1%

value = [0.644, 0.356]
class = y[0]

gini = 0.0
samples = 0.3%
value = [1.0, 0.0]

class = y[0]

saldo_var30 <= 0.029
gini = 0.308

samples = 0.6%
value = [0.81, 0.19]

class = y[0]

gini = 0.0
samples = 0.3%
value = [1.0, 0.0]

class = y[0]

gini = 0.418
samples = 0.3%

value = [0.702, 0.298]
class = y[0]

saldo_medio_var5_ult1 <= 0.002
gini = 0.174

samples = 1.0%
value = [0.904, 0.096]

class = y[0]

saldo_medio_var5_hace2 <= 0.0
gini = 0.064

samples = 6.0%
value = [0.967, 0.033]

class = y[0]

gini = 0.465
samples = 0.2%

value = [0.632, 0.368]
class = y[0]

gini = -0.0
samples = 0.8%
value = [1.0, 0.0]

class = y[0]

num_var4 <= 0.214
gini = 0.226

samples = 1.2%
value = [0.87, 0.13]

class = y[0]

num_op_var41_ult3 <= 0.022
gini = 0.014

samples = 4.8%
value = [0.993, 0.007]

class = y[0]

saldo_var42 <= 0.002
gini = 0.286

samples = 0.9%
value = [0.827, 0.173]

class = y[0]

gini = 0.0
samples = 0.3%
value = [1.0, 0.0]

class = y[0]

saldo_medio_var5_ult1 <= 0.002
gini = 0.219

samples = 0.8%
value = [0.875, 0.125]

class = y[0]

gini = 0.482
samples = 0.1%

value = [0.594, 0.406]
class = y[0]

var38 <= 0.003
gini = 0.29

samples = 0.5%
value = [0.824, 0.176]

class = y[0]

gini = -0.0
samples = 0.3%
value = [1.0, 0.0]

class = y[0]

gini = 0.5
samples = 0.1%

value = [0.49, 0.51]
class = y[1]

gini = -0.0
samples = 0.4%
value = [1.0, 0.0]

class = y[0]

gini = 0.0
samples = 4.5%
value = [1.0, 0.0]

class = y[0]

imp_op_var39_comer_ult3 <= 0.015
gini = 0.187

samples = 0.3%
value = [0.896, 0.104]

class = y[0]

gini = 0.0
samples = 0.2%
value = [1.0, 0.0]

class = y[0]

gini = 0.365
samples = 0.1%

value = [0.76, 0.24]
class = y[0]

gini = 0.294
samples = 0.1%

value = [0.179, 0.821]
class = y[1]

n0 <= 141.5
gini = 0.492

samples = 1.9%
value = [0.563, 0.437]

class = y[0]

num_var22_ult3 <= 0.045
gini = 0.498

samples = 1.0%
value = [0.466, 0.534]

class = y[1]

num_var43_recib_ult1 <= 0.017
gini = 0.408

samples = 0.9%
value = [0.715, 0.285]

class = y[0]

imp_var43_emit_ult1 <= 0.0
gini = 0.43

samples = 0.7%
value = [0.686, 0.314]

class = y[0]

saldo_var5 <= 0.006
gini = 0.388

samples = 0.3%
value = [0.263, 0.737]

class = y[1]

num_var45_ult1 <= 0.021
gini = 0.46

samples = 0.5%
value = [0.642, 0.358]

class = y[0]

gini = -0.0
samples = 0.1%
value = [1.0, 0.0]

class = y[0]

num_op_var41_efect_ult3 <= 0.087
gini = 0.499

samples = 0.3%
value = [0.526, 0.474]

class = y[0]

imp_op_var41_comer_ult1 <= 0.038
gini = 0.312

samples = 0.3%
value = [0.807, 0.193]

class = y[0]

gini = 0.333
samples = 0.1%

value = [0.789, 0.211]
class = y[0]

gini = 0.481
samples = 0.1%

value = [0.402, 0.598]
class = y[1]

gini = 0.472
samples = 0.1%

value = [0.619, 0.381]
class = y[0]

gini = -0.0
samples = 0.2%
value = [1.0, 0.0]

class = y[0]

gini = 0.5
samples = 0.2%

value = [0.486, 0.514]
class = y[1]

gini = 0.272
samples = 0.2%

value = [0.163, 0.837]
class = y[1]saldo_var30 <= 0.002

gini = 0.437
samples = 0.7%

value = [0.678, 0.322]
class = y[0]

gini = 0.231
samples = 0.2%

value = [0.867, 0.133]
class = y[0]

gini = 0.0
samples = 0.2%
value = [1.0, 0.0]

class = y[0]

num_op_var41_comer_ult3 <= 0.065
gini = 0.483

samples = 0.5%
value = [0.592, 0.408]

class = y[0]

gini = 0.0
samples = 0.1%
value = [1.0, 0.0]

class = y[0]

num_op_var39_comer_ult3 <= 0.078
gini = 0.5

samples = 0.3%
value = [0.512, 0.488]

class = y[0]

gini = 0.486
samples = 0.2%

value = [0.417, 0.583]
class = y[1]

gini = 0.416
samples = 0.1%

value = [0.705, 0.295]
class = y[0]

saldo_var30 <= 0.06
gini = 0.107

samples = 1.2%
value = [0.943, 0.057]

class = y[0]

gini = 0.488
samples = 0.1%

value = [0.578, 0.422]
class = y[0]

num_var43_recib_ult1 <= 0.006
gini = 0.063

samples = 1.0%
value = [0.967, 0.033]

class = y[0]

gini = 0.339
samples = 0.1%

value = [0.784, 0.216]
class = y[0]

gini = 0.0
samples = 0.8%
value = [1.0, 0.0]

class = y[0]

gini = 0.239
samples = 0.2%

value = [0.861, 0.139]
class = y[0]

saldo_medio_var5_hace2 <= 0.0
gini = 0.5

samples = 3.4%
value = [0.503, 0.497]

class = y[0]

saldo_var42 <= 0.006
gini = 0.412

samples = 2.3%
value = [0.709, 0.291]

class = y[0]

saldo_medio_var5_hace3 <= 0.0
gini = 0.442

samples = 0.6%
value = [0.329, 0.671]

class = y[1]

num_var43_recib_ult1 <= 0.051
gini = 0.492

samples = 2.8%
value = [0.564, 0.436]

class = y[0]

num_var45_ult1 <= 0.009
gini = 0.413

samples = 0.4%
value = [0.291, 0.709]

class = y[1]

gini = 0.499
samples = 0.2%

value = [0.48, 0.52]
class = y[1]

gini = 0.295
samples = 0.1%

value = [0.18, 0.82]
class = y[1]

num_var45_ult1 <= 0.032
gini = 0.478

samples = 0.3%
value = [0.394, 0.606]

class = y[1]

gini = 0.0
samples = 0.1%
value = [1.0, 0.0]

class = y[0]

gini = 0.399
samples = 0.2%

value = [0.276, 0.724]
class = y[1]

var15 <= 0.365
gini = 0.482

samples = 2.6%
value = [0.595, 0.405]

class = y[0]

gini = 0.404
samples = 0.2%

value = [0.281, 0.719]
class = y[1]

num_var22_hace3 <= 0.042
gini = 0.38

samples = 1.8%
value = [0.745, 0.255]

class = y[0]

imp_op_var39_comer_ult1 <= 0.042
gini = 0.487

samples = 0.9%
value = [0.419, 0.581]

class = y[1]

num_op_var39_ult3 <= 0.119
gini = 0.42

samples = 1.4%
value = [0.701, 0.299]

class = y[0]

n1 <= 14.5
gini = 0.139

samples = 0.4%
value = [0.925, 0.075]

class = y[0]

var38 <= 0.004
gini = 0.33

samples = 1.2%
value = [0.791, 0.209]

class = y[0]

gini = 0.437
samples = 0.1%

value = [0.323, 0.677]
class = y[1]

num_var45_ult1 <= 0.003
gini = 0.115

samples = 0.5%
value = [0.939, 0.061]

class = y[0]

imp_op_var41_comer_ult3 <= 0.029
gini = 0.419

samples = 0.7%
value = [0.702, 0.298]

class = y[0]

gini = 0.35
samples = 0.1%

value = [0.773, 0.227]
class = y[0]

gini = -0.0
samples = 0.4%
value = [1.0, 0.0]

class = y[0]

imp_op_var41_comer_ult1 <= 0.0
gini = 0.335

samples = 0.5%
value = [0.787, 0.213]

class = y[0]

gini = 0.5
samples = 0.1%

value = [0.502, 0.498]
class = y[0]

gini = 0.426
samples = 0.3%

value = [0.693, 0.307]
class = y[0]

gini = -0.0
samples = 0.2%
value = [1.0, 0.0]

class = y[0]saldo_medio_var5_ult3 <= 0.001
gini = 0.181

samples = 0.3%
value = [0.899, 0.101]

class = y[0]

gini = -0.0
samples = 0.1%
value = [1.0, 0.0]

class = y[0]

gini = 0.37
samples = 0.1%

value = [0.755, 0.245]
class = y[0]

gini = -0.0
samples = 0.2%
value = [1.0, 0.0]

class = y[0]

num_var22_hace2 <= 0.061
gini = 0.498

samples = 0.7%
value = [0.469, 0.531]

class = y[1]

gini = 0.384
samples = 0.1%

value = [0.259, 0.741]
class = y[1]

var36_1 <= 0.5
gini = 0.474

samples = 0.6%
value = [0.613, 0.387]

class = y[0]

gini = 0.312
samples = 0.1%

value = [0.194, 0.806]
class = y[1]

gini = 0.0
samples = 0.2%
value = [1.0, 0.0]

class = y[0]

gini = 0.499
samples = 0.4%

value = [0.518, 0.482]
class = y[0]

num_var37_0 <= 0.066
gini = 0.438

samples = 2.0%
value = [0.675, 0.325]

class = y[0]

gini = 0.0
samples = 0.3%
value = [1.0, 0.0]

class = y[0]

num_var22_hace2 <= 0.085
gini = 0.291

samples = 1.4%
value = [0.823, 0.177]

class = y[0]

saldo_var42 <= 0.002
gini = 0.494

samples = 0.5%
value = [0.444, 0.556]

class = y[1]

imp_op_var41_ult1 <= 0.038
gini = 0.234

samples = 1.3%
value = [0.865, 0.135]

class = y[0]

gini = 0.498
samples = 0.1%

value = [0.535, 0.465]
class = y[0]

num_op_var41_hace2 <= 0.03
gini = 0.056

samples = 1.1%
value = [0.971, 0.029]

class = y[0]

gini = 0.498
samples = 0.2%

value = [0.471, 0.529]
class = y[1]

gini = 0.0
samples = 0.9%
value = [1.0, 0.0]

class = y[0]

saldo_var30 <= 0.002
gini = 0.196

samples = 0.3%
value = [0.89, 0.11]

class = y[0]

gini = 0.37
samples = 0.1%

value = [0.755, 0.245]
class = y[0]

gini = 0.0
samples = 0.2%
value = [1.0, 0.0]

class = y[0]gini = 0.0
samples = 0.2%
value = [1.0, 0.0]

class = y[0]

saldo_var30 <= 0.002
gini = 0.448

samples = 0.4%
value = [0.339, 0.661]

class = y[1]

gini = 0.329
samples = 0.1%

value = [0.207, 0.793]
class = y[1]

num_op_var39_comer_ult1 <= 0.024
gini = 0.499

samples = 0.2%
value = [0.475, 0.525]

class = y[1]

gini = 0.479
samples = 0.1%

value = [0.604, 0.396]
class = y[0]

gini = 0.479
samples = 0.1%

value = [0.397, 0.603]
class = y[1]

Figure 13: Tree 1

18

6.2 Tuning XGBoost

The numerous parameters in XGBoost make it intractable to simply apply a grid search and in-
stead we utilize RandomizedSearchCV(). Instead of trying all possible combinations, this function
samples a predetermined amount of sets of parameters in the parameter spaces specified. Instead
of set values in the parameter space we typically have distributions. We run this once for 75 times
and using the results of the first try, narrow the parameter spaces and run it again for 50 times.
We first apply 5-fold stratified crossvalidation to compare and the second time we make it more
precise by using 8-fold stratified crossvalidation. The results are shown in Table 10. We have
chosen these starting ranges as broad ranges around recommended starting parameters in related
work and here. (Jain, 2016)

Table 10: RandomizedSearchCV()
Parameter Range 1 Best Value 1 Range 2 Best Value 2

N_ESTIMATORS [100, 2000] 245 [100, 1000] 917
MAX_DEPTH [3, 9] 6 [4, 6] 5

LEARNING_RATE [0.01, 0.21] 0.04864 [0.001, 0.076] 0.01632
SUBSAMPLE [0.6, 0.9] 0.85635 [0.75, 0.85] 0.75183

COLSAMPLE_BYTREE [0.6, 0.9] 0.79057 [0.75, 0.85] 0.82017
MIN_CHILD_WEIGHT [1,5] 1 1 1

REG_ALPHA [0,0.1] 0.02276 [0,0.05] 0.04970
GAMMA [0,0.2] 0.10552 [0,0.15] 0.038668

With the aforementioned best parameter set we fit the model on the training data and make a plot
of how relevant a specific feature is in Figure 14. Like the Random Forest model we can see some
made features are relevant. There is also a significant overlap between what is important, which is
encouraging.

va
r1

5
va

r3
8

sa
ld

o_
va

r3
0

sa
ld

o_
m

ed
io

_v
ar

5_
ha

ce
3

sa
ld

o_
m

ed
io

_v
ar

5_
ul

t3
sa

ld
o_

m
ed

io
_v

ar
5_

ha
ce

2 n0 n1
nu

m
_v

ar
45

_h
ac

e3
nu

m
_v

ar
22

_u
lt3

nu
m

_v
ar

22
_u

lt1
sa

ld
o_

m
ed

io
_v

ar
5_

ul
t1

im
p_

op
_v

ar
41

_e
fe

ct
_u

lt3
im

p_
op

_v
ar

41
_u

lt1
nu

m
_v

ar
45

_h
ac

e2
va

r3
8_

m
os

t_
co

m
m

on
im

p_
op

_v
ar

41
_e

fe
ct

_u
lt1

sa
ld

o_
va

r4
2

nu
m

_m
ed

_v
ar

45
_u

lt3
nu

m
_v

ar
22

_h
ac

e3
va

r1
5_

m
os

t_
co

m
m

on
sa

ld
o_

va
r5

va
r3

_m
os

t_
co

m
m

on
sa

ld
o_

va
r3

7
im

p_
op

_v
ar

41
_c

om
er

_u
lt3

nu
m

_v
ar

45
_u

lt1
im

p_
en

t_
va

r1
6_

ul
t1

im
p_

op
_v

ar
39

_c
om

er
_u

lt1
va

r3
im

p_
tra

ns
_v

ar
37

_u
lt1

Features

0.00

0.02

0.04

0.06

0.08

0.10

0.12

F
sc

or
e

Feature Importances

Figure 14: Feature Importance

19

We also show one of the many trees the XGB model creates in Figure 15, namely a randomly
selected tree, which happens to be the 300th tree.

n1<5

var15_most_common<1

yes, missing

ind_var8_0<1

no

var38<0.00358573

yes, missing

leaf=-0.0128957

no

var15_most_common<1

yes, missing

saldo_var30<0.00154067

no

num_var45_hace3<0.00442478

yes, missing

var38_most_common<1

no

var38<0.00119249

yes, missing

num_med_var45_ult3<0.00561798

no

leaf=-0.00943261

yes, missing

num_var45_hace3<0.00442478

no

leaf=0.00173004

yes, missing

leaf=-0.00409691

no

leaf=0.00208477

yes, missing

leaf=-0.0017853

no

leaf=-0.000244793

yes, missing

leaf=-0.00453708

no

saldo_var30<0.00144865

yes, missing

leaf=-0.0153812

no

var38<0.0050588

yes, missing

leaf=-0.009992

no

num_med_var22_ult3<0.0192308

yes, missing

num_op_var39_comer_ult1<0.113014

no

leaf=-0.0117572

yes, missing

leaf=-0.00491872

no

leaf=-0.0138288

yes, missing

leaf=-0.0036878

no

saldo_medio_var5_hace3<5.95197e-06

yes, missing

leaf=-0.00282646

no

leaf=0.00668997

yes, missing

leaf=-0.000452203

no

Figure 15: Tree 300

6.3 Results

There are a number of different performance indicators. Our local stratified 10-fold crossvalida-
tion procedure was used to tune all parameters and select features. Note that a single fold takes
up to 10 minutes at most and several operations can be ran in parallel. Kaggle also has a private
and public leaderboard score. Approximately half of the submitted test set is used for the private
leaderboard score and the other for the public leaderboard score. Since the competition had al-
ready completed the difference in these scores is superfluous for us. Nevertheless the complete
results are showcased in Table 11.

Feature set 1 refers to only the top 30 features that have the highest importance scores according to
the XGBoost model that uses all features. Feature set 2 refers to feature set 1 except some variables
have been manually removed that seeemed obviously correlated like 'saldo_medio_var5_hace3'
and 'saldo_medio_var5_hace2'. The one that was deemed most important by the model
was kept. Feature set 3 refers to feature set 2 except adding some of the variables that were highly
correlated with the target as seen in section 4.2. For a complete list of all involved features see
Appendix A. Note that a single fold takes up to 10 minutes at most and several operations can be
ran in parallel.

20

Table 11: Results
Model Features Local Public Private

Logistic Regression All 0.80561 (+/- 0.02337) 0.804893 0.786949
Random Forest All 0.82739 (+/- 0.01672) 0.822562 0.803286

XGBoost All 0.84061 (+/- 0.01672) 0.837524 0.823152
XGBoost Set 1 0.84035 (+/- 0.01763) 0.836194 0.822334
XGBoost Set 2 0.83931 (+/- 0.01954) 0.836109 0.821644
XGBoost Set 3 0.83898 (+/- 0.02624) 0.836397 0.821777

It is very peculiar that the private leaderboard score is consistently lower. This indicates a leader-
board shakeup, where the train set is not representative enough of the test set. For reference the
top public leaderboard score is 0.845325 and the top private leaderboard score is 0.829072. Our
scores are in far reach of that, however we did not endeavor to be at the top of the leaderboard and
kept the test set like a secret until the end. All data exploration was done on solely the training
data and normalization for instance was done using just the observations in the training data. We
consider this more realistic as you can more truly validate your conclusions with completely new
data, as opposed to the information spillover that happens if we had not done so. In a business
sense a singular new client tends to appear, instead of an entire population that can for instance be
appropriately normalized.

7 Conclusion

This paper researched how to preemptively understand if customers of Santander will be dissatis-
fied using Machine Learning. A semi-anonymized dataset, to protect the privacy of the customers,
provided difficulties in asserting what could be relevant or not, especially in light of a huge feature
set. However a thorough data analysis discerned the meaning and interpretation of several fea-
tures. A Python implementation utilized the Logistic Regression, Random Forest and XGBoost
algorithms, carefully tuned, in order to lead to predictions. Further research could for example
employ different solution methods, apply more feature engineering or combine several models
instead of trying singular models. More specifically they can increase the computation time that
goes into tuning and for example make the correlation filtering dependent on the correlation with
the target.

21

A Appendix Feature Sets

Set 1: var15, var38, saldo_var30, saldo_medio_var5_hace3, saldo_medio_var5_ult3,
saldo_medio_var5_hace2, n0, n1, num_var45_hace3, num_var22_ult3, num_var22_ult1,
saldo_medio_var5_ult1, imp_op_var41_efect_ult3, imp_op_var41_ult1, num_var45_hace2,
var38_most_common, imp_op_var41_efect_ult1, saldo_var42, num_med_var45_ult3,
num_var22_hace3, var15_most_common, saldo_var5, var3_most_common, saldo_var37,
imp_op_var41_comer_ult3, num_var45_ult1, imp_ent_var16_ult1, imp_op_var39_comer_ult1,
var3 and imp_trans_var37_ult1

Set 2: var15, var38, saldo_var30, saldo_medio_var5_hace3, n0, n1, num_var45_hace3,
num_var22_ult3, imp_op_var41_efect_ult3, var38_most_common, saldo_var42,
num_med_var45_ult3, var15_most_common, saldo_var5, var3_most_common,
saldo_var37, imp_ent_var16_ult1, imp_op_var39_comer_ult1, var3, imp_trans_var37_ult1,
ind_var8_0, num_meses_var5_ult3, num_meses_var39_vig_ult3_1, num_var4
and var36

Set 3: var15, var38, saldo_var30, saldo_medio_var5_hace3, n0, n1, num_var45_hace3,
num_var22_ult3, imp_op_var41_efect_ult3, var38_most_common, saldo_var42,
num_med_var45_ult3, var15_most_common, saldo_var5, var3_most_common,
saldo_var37, imp_ent_var16_ult1, imp_op_var39_comer_ult1, var3, imp_trans_var37_ult1,
ind_var8_0, num_meses_var5_ult3, num_meses_var39_vig_ult3_1, num_var4,
var36, ind_var30, num_var42, and ind_var5

22

References

Andreu (2015). Predicting banking customer satisfaction. https://www.kaggle.com/c/
santander-customer-satisfaction/discussion/19291#110414. Accessed:
10-15-2017.

Bishop, C. (2006). Logistic regression. In M. Jordan, J. Kleinberg, and B. Scholkopf (Eds.),
Pattern Recognition and Machine Learning, pp. 205–207. Springer-Verlag New York.

Breiman, L. (2001). Random forests. Machine Learning 45(1), 5–32.

Breiman, L., J. Friedman, C. J. Stone, and R. Olshen (1984). Classification and Regression Trees.
Wadsworth International Group.

Buckinx, W. and D. van den Poel (2005). Customer base analysis: partial defection of be-
haviourally loyal clients in a non-contractual fmcg retail setting. European Journal of Oper-
ational Research 164(1), 252–268.

Buitinck, L., G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae, P. Pretten-
hofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt, and G. Varoquaux
(2013). API design for machine learning software: experiences from the scikit-learn project. In
ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pp. 108–122.

Burez, J. and D. van den Poel (2009). Handling class imbalance in customer churn prediction.
Expert Systems with Applications 36(3), 4626–4636.

Chen, T. (2014). Introduction to boosted trees. https://homes.cs.washington.edu/

~tqchen/pdf/BoostedTree.pdf. Accessed: 10-25-2017.

Chen, T. and C. Guestrin (2016). Xgboost: A scalable tree boosting system. arxiv: Cs.lg
1603.02754v3.

Clemes, M. D., C. Gan, and D. Zhang (2010). Customer switching behaviour in the chinese retail
banking industry. International Journal of Bank Marketing 28(7), 519–546.

Colgate, M., K. Stewart, and R. Kinsella (1996). Customer defection: a study of the student market
in ireland. International Journal of Bank Marketing 14(3), 23–29.

Dernoncourt, F. (2015). What does auc stand for and what is
it? https://stats.stackexchange.com/questions/132777/

what-does-auc-stand-for-and-what-is-it. Accessed: 10-15-2017.

dmi3kno (2015). Exploring features. https://www.kaggle.com/cast42/

exploring-features. Accessed: 10-15-2017.

Jain, A. (2016). Complete guide to parameter tuning in xg-
boost. https://www.analyticsvidhya.com/blog/2016/03/

complete-guide-parameter-tuning-xgboost-with-codes-python/.
Accessed: 10-25-2017.

Kohavi, R. (1995). A study of crossvalidation and bootstrap for accuracy estimation and model
selection. In Proceedings of IJCAI 1995.

23

https://www.kaggle.com/c/santander-customer-satisfaction/discussion/19291#110414
https://www.kaggle.com/c/santander-customer-satisfaction/discussion/19291#110414
https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf
https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf
https://stats.stackexchange.com/questions/132777/what-does-auc-stand-for-and-what-is-it
https://stats.stackexchange.com/questions/132777/what-does-auc-stand-for-and-what-is-it
https://www.kaggle.com/cast42/exploring-features
https://www.kaggle.com/cast42/exploring-features
https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/
https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/

Kumar, A. (2015). Boosting customer satisfaction with gradient boosting. https://cseweb.
ucsd.edu/classes/wi17/cse258-a/reports/a079.pdf. Accessed: 10-16-2017.

Mozer, M., R. Wolniewicz, D. Grimes, E. Johnson, and H. Kaushansky (2000). Predicting sub-
scriber dissatisfaction and improving retention in the wireless telecommunications industry.
IEEE Transactions on Neural Networks 11(3), 690 – 696.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Per-
rot, and E. Duchesnay (2011). Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research 12, 2825–2830.

Santander (2015). Santander customer satisfaction. https://www.kaggle.com/c/

santander-customer-satisfaction. Accessed: 10-15-2017.

Silva, L., G. Titericz, D. Efimov, I. Tanaka, D. Barusauskas, M. Michailidis, M. Muller, D. Polat,
S. Semenov, and D. Altukhov (2016). Solution for santander customer satisfaction competition,
3rd place. https://github.com/diefimov/santander_2016/blob/master/

README.pdf. Accessed: 10-16-2017.

Wang, S. (2016). Predicting banking customer satisfaction. https://

shuaiw.github.io/assets/data-science-project-workflow/

santander-customer-satisfaction.pdf. Accessed: 10-16-2017.

Xie, Y., X. Li, E. Ngai, and W. Ying (2009). Customer churn prediction using improved balanced
random forests. Expert Systems with Applications 36(3), 5445–5449.

Yooyen, T. and K.-C. Ma (2016). Csci 567 spring 2016 mini-project. https://markcsie.
github.io/documents/CSCI567Spring2016Project.pdf. Accessed: 10-16-
2017.

24

https://cseweb.ucsd.edu/classes/wi17/cse258-a/reports/a079.pdf
https://cseweb.ucsd.edu/classes/wi17/cse258-a/reports/a079.pdf
https://www.kaggle.com/c/santander-customer-satisfaction
https://www.kaggle.com/c/santander-customer-satisfaction
https://github.com/diefimov/santander_2016/blob/master/README.pdf
https://github.com/diefimov/santander_2016/blob/master/README.pdf
https://shuaiw.github.io/assets/data-science-project-workflow/santander-customer-satisfaction.pdf
https://shuaiw.github.io/assets/data-science-project-workflow/santander-customer-satisfaction.pdf
https://shuaiw.github.io/assets/data-science-project-workflow/santander-customer-satisfaction.pdf
https://markcsie.github.io/documents/CSCI567Spring2016Project.pdf
https://markcsie.github.io/documents/CSCI567Spring2016Project.pdf

	Introduction
	Related Work
	Data Exploration
	Feature Groups
	Individual Features
	var3 (Nationality)
	var15 (Age)
	var21
	var36
	var38 (Mortgage Value)
	num_var4 (Number of Bank Products)

	Preprocessing
	Data Cleaning
	Correlation
	Feature Engineering

	Modeling
	Performance Measure
	Solution Methods
	Logistic Regression
	Decision Tree
	Random Forest
	XGBoost

	Results
	Tuning RF
	Tuning XGBoost
	Results

	Conclusion
	Appendix Feature Sets

