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Abstract 
 

The credit VaR model that underpins the Basel II Internal Ratings Based (IRB) approach 
assumes that the portfolio idiosyncratic risk is fully diversified away and thus the required 
economic capital depends only on the systematic factor. Nevertheless that is not true in 
most cases. The impact of remaining firm-specific risks due to exposure concentrations on 
the portfolio VaR may be estimated by the usage of the so called Granularity Adjustments 
(GA). The scope of this paper is to mathematically present the newest and most accurate 
GA’s, while trying to preserve the same notation, and to summarize which one works best 
in each particular situation.  
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I. Introduction 

Given a loan portfolio, credit risk may arise in general from two sources – systematic and 

idiosyncratic. Systematic risk reflects the effect of unexpected changes in the financial 

markets and the macroeconomic conditions on the borrowers’ performance. Borrowers 

usually differ in the degree of sensitivity to the systematic factor, but almost no companies 

are invulnerable by the economic conditions in which they operate. That is the reason why 

the systematic portfolio risk is unavoidable and almost not diversifiable. On the other hand, 

idiosyncratic risk mirrors the effect of borrower-specific risks on the borrowers’ 

performance. Those risks are specific for every individual obligor. The more fine-grained 

the portfolio is, the more the idiosyncratic risk is diversified away (by fine-grained we 

mean that even the largest exposures in the portfolio represent only a small part of the 

total portfolio exposure). In the framework of the Vasicek model, that we consider from 

now on, it is assumed that bank portfolios are all perfectly fine-grained (infinitely 

granulated). That means that the idiosyncratic (non-systematic) risk has been totally 

diversified away, in other words the capital requirements depend only on the systematic 

risks. On the contrary, in the real world, the bank portfolios are often finitely granulated 

and do not satisfy the asymptotic assumption. Exposure (name) concentration in the 

portfolio in general may be the result of imperfect diversification of the idiosyncratic risk 

due to the small size of the portfolio or the large size of some individual exposures. In case 

of substantial name concentration the Internal Ratings Based (IRB) formula (mentioned in 

the next chapter) omits the contribution of the remaining idiosyncratic risk to the required 

economic capital. This contribution may be assessed by means of methodology called 

Granularity Adjustment (GA). In reality banks use a variety of ways to measure 

concentration risk – some of them use sophisticated models that account for interactions 

between different kinds of exposure, others use simpler ad-hoc approaches. Some banks 

use stress tests that include a concentration risk component. A research of BCBS (2006) 

shows that for the tested portfolios name concentration adds between 2% and 8% to the 

Value at Risk (VaR). In general the Vasicek model produces higher risk measures due to the 

fact that it does not fully account for diversification between different credit-types in the 

portfolio. On the other hand, in some situations one-factor models produce lower risk 
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measures, due to the fact that name concentrations are not captured. The scope of this 

paper is to mathematically describe the most accurate and recent granularity adjustment 

methods, while simultaneously trying to keep the notation the same. At the end of the 

paper those methods are compared and the various situations in which each of them may 

be applied are summarized.  

II. Basel II and the Vasicek one-factor Model 

In 1988 is taken the first step towards introducing standard capital adequacy for banks 

based on risk measurement – the Basel I Capital Accord. In general Basel Accords are 

recommendations and regulations issued by the Basel Committee of Banking Supervision 

(BCBS) – institution consisting of senior representatives of central banks and supervisory 

authorities from thirteen countries1

1. The Vasicek Model 

. As the financial world (and in particular financial 

markets and instruments) is flourishing and rapidly changing ever since this moment, few 

years later banks already needs improved regulations to manage their risks. Because of 

that reason in 2007 the Basel II Capital Accord is introduced. It aims to improve the 

preceding regulations by means of making capital requirements more risk-sensitive, 

separating operational from credit risk and aligning economic and regulatory capital more 

closely to reduce the level of regulatory arbitrage.  

Parts of the Basel II Capital Accord are the credit risk regulations – estimating required 

capital that covers the risk of banks’ credit portfolios. This is accomplished by means of the 

so called Internal Ratings Based (IRB) Approach. The model behind IRB is known as the 

Asymptotic Single Risk Factor (ASRF) model and is based on the Vasicek model, introduced 

for the first time in 1991 and extended by others like Finger (1999), Gordy (2003), etc. In 

general the Vasicek model is a one–factor model that assumes normal distribution of both 

the idiosyncratic and systematic risk factors of any credit portfolio.  

In this part we briefly present the Vasicek one-factor model in mathematical terms for a 

given credit portfolio of n  loans with maturity T . We assume that loan i  (thus obligor i ) 
                                                        
1 Belgium, Canada, France, Germany, Italy, Japan, Luxemburg, Netherlands, Spain, Sweden, Switzerland, UK 
and US 
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has a probability of default ip . In general we can characterize any borrower by three 

parameters: 

• iEAD  - Exposure at default of loan i  - measure of potential exposure in currency, 

calculated till maturity.   

• iLGD  - Loss given default of loan i  - the percentage of iEAD  that will not be 

recovered in case of default of loan i . 

• iPD  - Probability of default of loan i  (denoted simply by ip ) – the likelihood that 

loan i  will not be repaid until maturity.  

We define the default indicator on loan i  to be iD  and to follow a Bernoulli distribution: 





−
=

default)not  doesborrower th - (if )1( prob. with ,0
defaults)borrower th - (if  prob. with ,1

ip
ip

D
i

i
i  

We also define the effective exposure iw  of loan i  and the relative effective exposure ic  of 

loan i  in the portfolio by: 

iii LGDEADw ×=   and  
∑
=

×
= n

i
i

ii
i

EAD

LGDEAD
c

1

. 

Thus the absolute loss due to default of loan i  is calculated by iii DwL = . Then the absolute 

loss on the whole portfolio is given by the weighted average of all separate absolute losses: 

∑∑
==

==
n

i
ii

n

i
i DwLL

11
. On the other hand the relative loss of loan i  is defined by ii

rel
i DcL =  

and the portfolio relative loss is then ∑∑
==

==
n

i
ii

n

i

rel
i

rel DcLL
11

. In his work Vasicek assumes 

that the LGD of each loan is 100% (it is defined to be loss before recoveries) and because of 

this we get ∑
=

=
n

i
ic

1
1. 
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Wiener process: A continuous-time stochastic process )(tW  for 0>t  with 0)0( =W  and 

such that the increment )()( sWtW −  is Gaussian with mean 0 and variance st −  for 

any ts <≤0 , and increments for non-overlapping time intervals are independent. 

Brownian motion (i.e., random walk with random step sizes) is the most common example 

of a Wiener process. 

Geometric Brownian Motion (GBM): A continuous-time stochastic process )(tG the 

logarithm of which follows a Wiener process.  )(tG  follows a GBM if: 

)()()()( tWtGttGtG ∂+∂=∂ σµ  with µ - drift, σ - volatility and )(tW - a Wiener process. 

 We assume that obligor i  defaults if his assets’ value iA  falls below the amount iB  that he 

owes to the bank. Then the assets’ value of company i  may be modeled by a GBM:  

)(tWAtAA iiiiii ∂+∂=∂ σµ  

with )(tWi  being a Wiener processes. Then the analytic solution of the above stated 

stochastic differential equation is: ))(2/1exp()0()( 2 tWttAtA iiiiii σσµ +−×= . 

Finally, the assets’ value of borrower i  at maturity T  is given by: 

( ) ( ) 



 +−×=



 +−+= iiiiiiiiiii XTTTAXTTTATA σσµσσµ 22

2
1exp)0(

2
1)0(logexp . 

The standardized asset log-returns iX  are standard normal variables and iρ  is the 

correlation between the firm’s assets and the common factor. Because of their joint 

normality, iX  can be decomposed to fit a one-factor model: 

iiii ZYX ρρ −+= 1 . 

The variables { }niZY i ,...,1, =  are standard normal and mutually independent. In this 

decomposition iY ρ  stands for the i -th loan’s systematic risk (company’s exposure to the 

common factor) with Y  being the portfolio common factor (for example economic index, 
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some macroeconomic factor, etc.) for the time till maturity. The other part iiZ ρ−1  of the 

decomposition stands for the firm-specific (idiosyncratic) risk.  

The Vasicek model is widely used in the industries for risk management and capital 

allocation. The method calculates the distribution of credit portfolio losses and sets the 

required capital allocations to be equal to the 99,9% percentile of a limiting distribution. 

The Assumption: Assume that all loans are of the same amount (homogeneous portfolio), 

have the same probability of default, and have a common asset correlation 

( nipPDnc ii ,...1 , , ,/1 i =∀=== ρρ ). For a fixed common factor Y  we may express the 

probability of portfolio loss conditional on Y . Thus for any loan we get the probability of 

default under the specified common factor: 

[ ] 










−

−Φ
Φ===

−

ρ
ρ

1
)(

1)(
1 Yp

YDPYp i , 

where Φ  stands for the cumulative normal distribution function. We may think of this in 

another manner - every common factor generates a unique economic scenario and under 

every scenario we can calculate the conditional probability of default and then weight each 

of them by its likelihood. In this way we get the unconditional default probability for each 

loan. In our case it is just the average of all conditional probabilities over all scenarios. 

Under Y  the portfolio losses rel
iL  are independent and identically distributed with finite 

variance. Then again under the common factor Y , the portfolio loss relL  converges to its 

expectation )(Yp  as the number of loans in the portfolio goes up to infinity ( ∞→n ). In 

other words: 

=≥=≤=≤ −

∞→∞→∞→
)]([lim])([lim][lim 1 xpYPxYpPxLP

nn

rel

n
 

( ) 








 Φ−Φ−
Φ=−Φ=

−−
−

∞→ ρ
ρ )()(1

)(lim
11

1 px
xp

n
, 

which shows the cumulative distribution function of losses on a very large portfolio.  



Dealing with Idiosyncratic Credit Risk in a Finitely Granulated Portfolio - 10 - 

 

Definition of VaR: According to Basel II Accord, Value at risk (VaR) is the measure to 

calculate capital requirements for a given confidence interval α . The value at risk 

corresponding to a confidence interval α  is simply the α - quantile of the loss distribution 

(the distribution of L ). In other words: 

{ }αα ≥≤= )(inf xLPxVaR . 

Definition of VaR Contribution: VaRC measures the contribution of each separate obligor to 

the total VaR of the portfolio. It is important, because it can apply constraints on larger 

credit exposures. Briefly speaking it is the conditional expectation of iL , given that the 

portfolio loss is equal to the corresponding VaR: 

)()()(, L
w

VaR
wVaRLDEwVaRLLEVaRC

i
iiiii ∂
∂

===== α
ααα . 

It can be easily derived that the sum of all separate contributions is equal to the VaR of the 

portfolio, which is not true for the individual VaR’s. That is the main reason for which 

VaRC’s are considered: 

ααααα VaRVaRLLEVaRLDwEVaRLDEwVaRC
n

i

n

i
ii

n

i
iii ===








====∑ ∑∑

= ==

]|[|]|[
1 11

, . 

Thus Vasicek (1991) finally derives the VaR and VarC formulae under the Basel II Accord I 

in terms of the relative loss relL  instead of the absolute loss L : 












−

Φ+Φ
Φ=

−−

ρ
αρ

α 1
)()( 11 p

VaR  












−

Φ+Φ
Φ=

−−

ρ
αρ

α 1
)()(1 11

,
p

n
VaRCi  

The transition to ‘absolute’ VaR may be done by multiplying the ‘relative’ one by the total 

portfolio exposure EADn× . 
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The general case: In the case of an inhomogeneous portfolio the above described 

convergence still holds (with one necessary and sufficient restriction). Then the portfolio 

loss relL  under the condition Y  converges to its expectation )(Yp  as before if the so called 

Herfindahl-Hirschman Index (explained in detail later) goes to zero as n  goes to infinity: 

0

2

1

1

→



















= ∑
∑=

=

n

i
n

j
j

i

EAD

EAD
HHI  as ∞→n . 

Thus we need to consider portfolios without any name concentrations (infinitely 

granulated portfolios), i.e. all the separate loans are of similar size and none of them is 

much larger than the others.  For those portfolios we can assume that the limiting 

distribution given above is a good approximation of the portfolio loss distribution. In 

general it reproduces well the fat tail and skewness of the loss distribution. 

Assume now that all loans have different probabilities of default iPD  as stated in the 

beginning of the chapter and different correlations iρ . In this case Huang et al. (2007) 

derive the general VaR and VarC formulae again, this time in terms of the absolute loss L : 

∑
=

−−












−

Φ+Φ
Φ=

n

i i

ii
i

p
wVaR

1

11

1
)()(

ρ

αρ
α  












−

Φ+Φ
Φ=

−−

i

ii
ii

p
wVaRC

ρ

αρ
α 1

)()( 11

,  

III. Granularity Adjustment and Semi-Asymptotic Approaches 

There are various methodologies proposed by practitioners and researchers that deal with 

name concentrations in credit portfolios. In general, those can be divided into two groups – 

methods based on heuristic measures of risk concentration and methods based on more 

sophisticated risk modeling. The second group is to be preferred if there exist feasible 

implementations of the models. 
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1. Ad Hoc Granularity Adjustment Approach 

The simplest granularity adjustment is not based on any credit risk model. It uses the so 

called Herfindahl-Hirschman Index ( HHI ) of the loan portfolio: 

2

1

1

∑
∑=

=


















=
n

i
n

j
j

i

EAD

EAD
HHI , 

where iEAD  is as defined in the second chapter. For example for portfolio consisting of two 

loans of equal amounts the HHI  is equal to 5,05,05,0 22 =+ . It is considered that the closer 

the HHI  to 1, the higher the concentration of the 

portfolio and so the higher the granularity 

adjustment. The shortfall is that there is no 

consistent rule that sets appropriate granularity 

add-on for a given HHI . In fact, empirical 

studies on single name concentration show that 

there can be established almost linear relation 

(see Figure 1) between the HHI  and the 

percentage granularity adjustment (see 

Deutsche Bundesbank (2006)). Another shortfall 

of this approach is that it does not account for 

changes in the credit quality of the obligors (such 

changes have huge impact on the granularity 

adjustment on the required reserves). 

2. Vasicek Granularity Adjustment Approach 

In 2002 Vasicek proposes a granularity adjustment approach that tries to increase 

systematic risk in order to compensate for the ignored (due to name concentrations) 

idiosyncratic risk. The GA assumes equal probabilities of default and correlations of the 

loans. The problem is that for small portfolios the law of large numbers does not hold and 



Dealing with Idiosyncratic Credit Risk in a Finitely Granulated Portfolio - 13 - 

 

the convergence assumption of the Vasicek model also does not hold. In other words the 

conditional variance of the portfolio loss )( YLVar rel  at maturity T  is non zero.  Let δ  be 

the HHI  of the portfolio. Then we can derive expressions for the conditional variance, 

unconditional expectation and unconditional variance of relL  at time T (for details on the 

derivation refer to Vasicek (2002)).  Having those and the limiting distribution underlying 

the Vasicek model, we can derive the percentage granularity adjustment to the distribution 

of relL  at maturity: 












−+

Φ−Φ−−−
Φ=≤

−−

)1(
)()()1(1

][
11

ρδρ
ρδρ px

xLP rel . 

This approach tries to increase the systematic risk and in this way to compensate for the 

idiosyncratic risk that is considered to be fully diversified, but is rather vague and 

inefficient, due to the fact that both risk types have different distributions. The model is 

known to perform poorly in practice and for this reason it is not mathematically explained 

in this paper and not compared to the newer and more sophisticated granularity 

adjustment approaches later on.  

3. Emmer and Tasche Granularity Adjustment Approach 

Gordy (2003) presented a methodology for estimating a capital add-on that is supposed to 

cover the undiversified idiosyncratic risk that remains in the credit portfolio. Emmer and 

Tasche (2003) improve further the approach by developing a new formula for computing 

adjustments at the transaction level. That formula calculates the partial derivatives of the 

estimated approximation of αVaR  and multiplies them with the portfolio weights. Thus we 

simply get approximated capital requirements for each separate asset in the portfolio, 

assuming again that every loan has LGD=100% – the so called VaR contributions 

(VaRC’s)2

                                                        
2 Notice that the VaRC formula stated by Emmer and Tasche is in terms of relative exposures like the one 
defined by Vasicek in the homogeneous case, unlike the VaRC’s stated by the authors of the other GA 
approaches. The transition is done again by multiplying by the exposure of the particular loan. 

:  
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Capital Requirements for loan 
i

i c
VaR

ci
∂

∂
= α . 

The method has several shortfalls:  

• It assumes that the portfolio HHI, in this case equal to ∑
=

n

i
ic

1

2  goes to zero as ∞→n . 

Thus its accuracy is not satisfactory when there are very large exposures in the 

portfolio.  To deal with this problem we refer to the so called Semi-Asymptotic 

Approach, described later in the chapter.  

• It does not maturity-adjust the input parameters. 

• The formulae are too complex and hard to implement. 

• It does not account for idiosyncratic recovery rates. The loan recovery rate is 

normally equal to one minus the loan LGD in percentage. The model assumes fixed 

LGD=100% and thus identical expected LGD’s for each loan. To introduce recovery 

risk the LGD’s should be drawn from some proper distribution like the gamma 

distribution. In general the model may be extended to cover this issue, but then the 

formulae get even more complex and hard to implement. 

We skip the mathematical explanation of this model, because of the above stated shortfalls. 

We continue with the semi-asymptotic granularity adjustment approach, which is much 

simplified and easier to implement.  

4. Semi-Asymptotic Granularity Adjustment Approach (SAGA) 

The approach that we describe in this section is developed by Emmer and Tasche (2005) 

and is an alternative approach for measuring capital requirements for loans with higher 

concentrations (and thus is applied only on part of the portfolio), capturing fully the effect 

of those concentrations on the portfolio risk. Let us first introduce the new variables we 

need in order to mathematically present the model. We define the event iED  (event of 

default) that loan i  defaults, because its value falls below some critical threshold ir : 
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{ }iiiii rZYED ≤−+= ρρ 1  

Assume without any loss of generality that τρ =1 , ρρ =i  for ni ,...,2=∀ , ZZ =1 , ar =1  

and rri =  for ni ,...,2=∀ . We also assume that the LGD of each loan is 100%, cc =1 , 

∑=
=

n

i ic
2

1 and ∑=∞→∞→
==

n

i inn
cHHI

2
2 0limlim .  

If we define { }aZYED ≤−+= ττ 1  to be the event of default of the first loan and 

| Yy
 

1 =











−

−
≤=

ρ
ρ yr

ZPX , we can then give the following formulae for the portfolio loss ( L ) 

and the so called semi-asymptotic percentage loss function ( PL ): 

{ } { } 1)1(1
2

11 ∑
=

≤−+≤−+
−+=

n

i
rZYiaZY i

cccL ρρττ  

XccDcPL )1()( −+=  

A proof of the latter equation is not the scope of this thesis and can be found in the 

appendix of Emmer and Tasche (2005). In general it gives us a model to apply separately 

for each loan (that may be considered a shortfall of the approach). The semi-asymptotic 

capital requirement (at level α ) of the loan with exposure c  (this may be any loan in the 

portfolio) is then defined as: 

))](()([ cPLqcPLEDcP α= . 

Having those separate asset charges we can add them up and get the capital requirements 

for the whole portfolio. The good thing about this method is that it accounts for the 

exposure c  (in other words it is not portfolio invariant). 

The last thing to do is to derive the solution for the given capital charges equation. Let us 

express the conditional probability of X  given D  by: 

[ ] ∫ ∞−
===≤

x
ii dttfxFiDxXP )()( , ∈x ℝ, 1,0=i , 
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given that iF  and if  are the conditional distribution and density functions of X  

respectively and D  is the default indicator of the first loan. Then we can easily derive the 

distribution function of the percentage loss: 








−

×−+







−
−

×=≤
c

zFPD
c
czFPDzwPLP o 1

)1(
1

])([ 1  

and its density function (given by the first derivative of the distribution function): 
















−

×−+







−
−

××
−

=
∂

≤∂
c

zfPD
c
czfPD

cz
zwPLP

1
)1(

11
1])([

01  

with PDPD =1  being the probability of default of the considered loan (in our case the first 

loan). One can use these formulae to numerically derive the α -quantile of the percentage 

loss ( ))(( cPLqα ). Given our assumptions about the distributions of the factors Y  and Z  

(remember, we assumed that they are both independent and standard normal) we can 

finally derive the formula for the percentage capital charges for the loan under 

consideration: 








−

×−+







−
−

×









−
−

×
×==×=

c
zfPD

c
czfPD

c
czfPD

czcPLEDPcVaRC

1
)1(

1

1])([
01

1

α . 

Because of the distribution assumptions we can now explicitly derive the conditional 

densities if  and use them in the above expression: 

)1,0(  , 

otherwise , 0
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1)(1
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1
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with  
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However, there is one major shortfall of value at risk (VaR) as a portfolio risk measure. In 

the case α−< 1PD  we may concentrate all the exposure to the single loan with this low 

probability of default and this is going to reduce the capital charges. To avoid this, we may 

consider different and sounder measures like Expected Shortfall (ES) instead of VaR. More 

details about this limitation of VaR are given in Emmer and Tasche (2005), and Tasche and 

Theiler (2004). 

5. Gordy and Lütkebohmert Granularity Adjustment (GA) Approach 

In this part we introduce a granularity adjustment suitable to use under Pillar 2 of Basel II 

(Basel Committee on Bank Supervision 2006), developed by Gordy and Lütkebohmert in 

2006. It is a +CreditRisk - based approach similar to the one published by Emmer & Tasche 

in 2005. The similarity comes from the fact that both models are based on the basic 

concepts and initial form of GA introduced by Gordy in 2000 for application in Basel II 

(published in 2003) and later refined by Wilde (2001b), Martin & Wilde (2003) and others. 

In principal the adjustment can be applied to any risk-factor model and is adapted to the 

latest changes in the definition of regulatory capital (finalized Basel II distinguishes 

between unexpected loss (UL) capital requirements and expected loss (EL) reserves). This 

means that the granularity adjustment for capital requirements should be invariant to EL 

and should not be expressed in terms of EL plus UL as in the past.  

To estimate the required value at risk for the given portfolio we need )(Lqα , that is the q-

th percentile of the distribution of the portfolio loss. The IRB formula estimates the q-th 

percentile of the conditional expected loss - ])|[( YLEqα  and thus we define the exact 

granularity adjustment to be equal to the difference: ])|[()( YLELGA qq αα −= . This exact 

adjustment cannot be obtained, but can be approximated by a Taylor series in orders of 
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n/1 . Let ]|[)( YLEY =µ  and ]|[)(2 YLVarY =σ  are defined to be the conditional mean and 

variance of the portfolio loss, and h  is the probability density function of Y . For 1=ε  we 

can express the portfolio loss as: ))(()( YLYL µεµ −+= . We use second–order Taylor 

expansion at 0=ε  to approximate the α - quantile of the loss as did Wilde (2001b): 

)())](()([
2
1))](()([))(()( 3

02

2

0 εµεµα
ε

µεµα
ε

µαα εε OYLYYLYYL qqqq +−+
∂
∂

+−+
∂
∂

+= ==  

Gourieroux (2000) shows that the first derivative in the expansion vanishes and the second 

derivative is exactly the first-order granularity adjustment, given by the formula: 

| )(

2
  

)(
)()(

))((2
1

Yy
q qy

yhy
yYh

GA
αµ

σ
α =








′∂

∂−
= . 

We change notation slightly only for this chapter and set the weights iw  to be the 

proportion of the exposure of loan i  to the total exposure of the portfolio: 
∑

=

j

i
i EADj

EAD
w . 

Then iii DLGDL ×=  and again ∑=
i

ii LwL  become the relative losses of loan i  and the 

whole portfolio respectively. We can express our granularity adjustment in terms of true 

EL and UL, and their asymptotic approximations asEL  and asUL : 

asas
qq ULULYLEEULELULYLEL −=+−+=− ]])|[[()(])|[()( αα , 

because ]]|[[][ YLEELEEL == . 

The expressions )(Yµ  and )(2 Yσ depend on the model for the portfolio loss. It would be 

desirable to calculate the GA based on the Vasicek model, but then the conditional mean 

and variance are too complex  (for supervisory application). This implies that we should 

use an indirect methodology – we initially base the calculations of the expressions on a 

different model and then change the input parameters in a specific way to restore the 

consistency of the overall adjustment as much as possible. The chosen initial model is the 
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+CreditRisk . In general, in its standard version the recovery rates (and thus the LGD’s) are 

assumed to be deterministic. However Gordy and Lütkebohmert allow in their model the 

LGD’s to be random variables. According to the +CreditRisk  model the conditional 

probabilities of default are given by: 

)1()(]|1[ yllPDyPDYDP iiiii +−=== , 

where il  is defined as a factor loading that controls the sensitivity of borrower i  to the 

common factor Y , which we assume is gamma distributed with mean 1 and positive 

variance ξ1 . Also as part of the model we assume a Poisson distribution of the default 

indicator and that iLGD  is independent of Y  for every loan. Thus we get: 

∑
=

===
n

i
ii ywyYLEy

1
)(]|[)( µµ   and  ∑

=

===
n

i
ii ywyYLVary

1

22 )(]|[)( σσ , where: 

)1()(]|[)( yllPDELGDyPDELGDyYLEy iiiiiiii +−×=×===µ , 

=×−=×=== )(]|[]|[)( 2222 yPDELGDyYDLGDEyYLVary iiiiiiσ  

)(]|[][ 222 yyYDELGDE iii µ−=×= . 

In the given expressions iELGD  and iVLGD  stand for the expected value and the standard 

deviation of iLGD  respectively. For the default indicator we have assumed a Poisson 

distribution so: 

)(]|[]|[ YPDYDVarYDE iii ==  ⇒  )()(]|[ 22 YPDYPDYDE iii += . 

We can also substitute 2222 ][][][ iiiii ELGDVLGDLGDELGDVarLGDE +=+=  and get: 

2

2
222222 ))(())(()())()(()()(

i

i
qiqiiiiiiii ELGD

VLGD
YYCyYPDYPDELGDVLGDy αµαµµσ +=−+×+=  
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where 
i

ii
i ELGD

VLGDELGD
C

22 +
= . 

By definition of the +CreditRisk model the EL required reserves for loan i  are: 

iii PDELGDR ×=  

and the UL required capital is given by: 

)1)(()](|[ −×××=== YlPDELGDYYLEK qiiiqii αα  

In the +CreditRisk  framework we have: 

iiqi RKY +=))((αµ         ⇒       
1)(

))((
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Y
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q
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qi α

αµ  

2

2
22 ))(())(())((
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i
qiqiiqi ELGD

VLGD
YYCY αµαµασ += . 

Using those and given the granularity adjustment formula we can now substitute 

everything we have in it and get : 
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Thus at the end we have the following expression for the granularity adjustment: 
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where ∑
=

∗ =
n

i
ii KwK

1
 is the required capital per unit exposure for the whole credit portfolio 

and where 








 −
+−=

)(
1)1)((

Y
Y

q
q α

ξξαδ  is a regulatory parameter, through which the 

variance parameter ξ  of the systematic factor affects the GA. According to Basel II we set 

%9,99=q  and 25,0=ξ (this value depends on the calibration method used) and thus we 

get 83,4=δ . 

To somewhat simplify the GA formula we assume that all second-order terms may be 

omitted, because the quantities they add to the GA are too small. Thus we get the simplified 

formula the accuracy of which is evaluated later: 

∑
=

−+=
n

i
iiiii KRKCw

K
AG

1
* ))((

2
1~ δ . 

In the model discussed above there is only one implementation challenge – the aggregation 

of multiple exposures into a single one for each borrower. Gordy and Lütkebohmert (2007) 

propose a way to deal with this complication – the banks are allowed to calculate the GA 

based only on the set of largest exposures in the portfolio (m out of n). Still, the smaller 

exposures’ influence should also be taken into account and this is accomplished by setting 

an upper bound of the GA for them. From the supervisory point of view that is not a very 

consistent method, because the upper bound in most cases is bigger than the “real” GA (and 

never smaller). 

IV. Numerical Methods for Derivation of VaR in the Vasicek Model 

In this chapter we describe the numerical methods for computation of value at risk (VaR) 

in the Vasicek one-factor portfolio credit loss model evaluated by Huang et al. (2007). In 

the next two chapters those models are compared and their efficiency and characteristics 

are discussed. 
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1. Normal Approximation (NA) Method 

This method is derived for the first time by Martin in 2004. Most simply put, it is just an 

application of the Central Limit Theorem (CLT). 

CLT: Under some conditions the average (or sum) of a large number of independent 

random variables is normally distributed.  

One of the conditions for the CLT to hold is that the random variables should be identically 

distributed. In our case that condition is not satisfied, but actually it is required only to 

make the proof feasible. In general, the CLT applies to the case of non-identical 

distributions as long as the set of distributions is bounded in terms of mean and variance 

(for details - WolframMathworld). Simply put, the CLT applies for any distribution of finite 

variance and in our case the conditional variance used below fulfils the criterion. We now 

would like to use the CLT to approximate the portfolio loss L  conditional on the common 

factor Y . Let us assume that it is normally distributed with mean  

∑
=

=
n

i
ii YpwY

1
)()(µ  

and variance 

∑ −= ))(1)(()( 22 YpYpwY iiiσ . 

The variables iii LGDEADw ×=  and ]1[)( YDPYp i ==  are given as in the Vasicek model in 

chapter I, part 1. We can now easily express the conditional tail probability by: 








 −
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)(
)(][
Y

xYYxLP
σ

µ  

and thus by integrating over Y  we can derive the unconditional tail probability: 

∫
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In the above equations Φ  denotes the cumulative distribution function and φ  denotes the 

probability density function of the standard normal distribution. In order to numerically 

approximate the integral and calculate the required VaR we consider the so called Discrete 

Fourier Transformation (DFT), which in general turns the integral into a finite sum that is 

calculated instead. For more details on the discretisation procedure refer to Martin (2004).  

In order to calculate the VaRC of a given obligor i  we need to compute the derivatives of 

the tail probability ][ xLP > , of the conditional mean )(Yµ  and of the conditional variance 

)(2 Yσ  of the portfolio loss L  with respect to the asset allocations iw . Those derivatives are 

given by the expressions: 
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We want the tail probability ][ αVaRLP > to be fixed at α−1  and xVaR =α  to vary. This 

means that the left hand-side of the above equation vanishes for xVaR =α :  
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We finally derive the VaRC for obligor i  to be: 
i

ii w
VaR

wVaRC
∂

∂
= α

α, . 

2. Saddlepoint Approximation (SA) Method 

The saddlepoint approximation (SA) method is based on the existence of the so called 

analytic Moment Generating Function (MGF), which we use to generate the loss 

distribution of the credit portfolio and is known to approximate small tail probabilities 

accurately.   

Moment Generating Function: For a given random variable iL  (which again represents the 

loss of asset i ) we define the MGF as the unknown analytic function ][)( i

i

tL
L eEtM = . If 

ni ,...,1=  and ∑=
=

n

i iLL
1

 is the total portfolio loss, then the MGF of L  is given by: 
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,  

with Lf  being the density function of L . 

Cumulant Generating Function: We introduce also the Cumulant Generating Function (CGF) 

of L  by simply taking the logarithm of the MGF: ))(log()( tMtK LL = . We use it to express 

the inverse MGF of L  and thus its distribution, also known as the Bromwich integral (or 

the Fourier-Mellin integral), which we derive using Fourier inversion (for details refer to 

Taras (2005)): 
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where 1−=j .  
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The Direct Saddlepoint Approximation: The use of saddlepoint approximation for credit 

portfolios appeared in the literature for the first time around 2001. In the beginning it was 

applied by Martin (2001a, b) to the unconditional MGF of the portfolio loss L . The MGF is 

unique, thus the Bromwich integral exists, but in general it is not analytically tractable. 

Traditional approaches for solving it lead to ill-conditioning and truncation errors.  Thus 

saddlepoint approximation (SA) arises in this setting to give an accurate analytic 

alternative for Lf  which avoids calculating the integral. For detailed description of 

saddlepoint approximations refer to Jensen (1995). Let t~  be the point at which txtK L −)(  

is stationary. It is then called the saddlepoint and is given by the solution of xtK L =′ )~(  (the 

derivative is with respect to t ).  

The main idea of the method is that the density function Lf  and the unconditional tail 

probability ][ xLP >  can be approximated by the CGF and its derivatives at t~  up to some 

order. For that purpose we use Taylor expansion of the function xttK L −)(  as a function of 

t  around the saddlepoint t~ : 

...)~()~(3/1)~()~(2/1~)~()( 32 +′′′−+′′−+−=− tKtttKttxttKtxtK LLLL . 

The n-th derivative of the MFG is given by ][)()( tLnn
L eLEtM =  and thus: 
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and so on. There are a few different approximations that have been studied already, 

depending on the order of the Taylor expansion. The formula for the density we consider is 

derived by Daniels (1987) and the one for the tail probability - by Lugannani & Rice 

(1980). Both of them use fourth-order Taylor expansion.  

These formulae are given by: 
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with )]~(~[2)~sgn( tKtxtz Ll −=  and )~(~ tKtz Lw ′′= . 

The Indirect Saddlepoint Approximation: In the previous part we applied the SA to the 

unconditional MGF of the portfolio loss L , but the assumption of mutual independence of 

all iL  is then violated. Annaert (2006) shows that in this case the method is inefficient and 

the results are wrong for portfolios with exposure size of high skewness and kurtosis. 

Despite those cons the model is simple and can be easily extended to the one we mention in 

the next part - the Simplified Saddlepoint Approximation (SSA). To avoid the shortfalls of 

the Martin’s method, Huang (2006) applies the SA method to the conditional MGF of the 

portfolio loss L  under Y . Then all the separate losses iL  are indeed independent. The 

latter approach is called Indirect SA and is mostly used in practice at the cost of some brute 

computations – for every realization of the common factor Y  we need to estimate the 

saddlepoint t~  from the equation xtKL =′ )~( .  

In line with the previous paragraph Huang (2006) defines the conditional MGF of L  to be: 
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Now the conditional CGF and its first four derivatives can be defined as: 
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Once we have calculated the conditional CGF ),( YtKL  and its derivatives we may use 

saddlepoint approximation to estimate the conditional density and tail probability of the 

portfolio loss as explained in the direct SA. For ∑∈ ],0[ iwx  we have a unique saddlepoint 

t~ . We get the unconditional loss density and tail probability by integrating over Y  (for 

example ∫ >=> ][]|[][ YdPYxLPxLP ). We can calculate the αVaR  by inverting the loss 

distribution.  

To calculate α,iVaRC  Huang (2006) differentiates the tail probability with respect to the 

effective exposures iw : 
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Just like for the normal approximation in the previous part, if we replace x  with αVaR  in 

the above formula, the left hand-side becomes zero, because the tail probability 

αα −=> 1][ VaRLP . That is how we finally derive the α,iVaRC : 
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If we define the CGF of L  conditional on Y  and 1=iD  as: 
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then we can simplify the formula for the α,iVaRC  to: 
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Another way to derive the α,iVaRC  explicitly is to set ∑∑
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the portfolio excluding obligor i . Then we get a different formula: 
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with f  being the conditional loss density of the portfolio excluding obligor i , which can 

also be approximated by direct SA.  

The two formulae for the α,iVaRC  are the same in the sense that they both are 

approximated by saddlepoint approximations with the same saddlepoints. The 

denominators are approximated by the saddlepoint derived from xtK X =′ )~( . The 

nominators are approximated using the saddlepoint it
~  equal to the solution of the 

following equation: 
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Although we assume heterogeneity of the obligors, it is more efficient to group the obligors 

into buckets of similar characteristics as much as possible, especially for larger portfolios. 
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Then the computation of the CGF and its derivatives is more simplified and the number of 

separate VaRC’s is lower.  

3. Simplified Saddlepoint Approximation (SSA) Method 

The simplification comes from omitting the n  calculations of it
~  for every realization of Y . 

Instead we calculate t~  only. In general this is possible if we assume that both values are 

close to each other, thus saving significant amount of calculation time. Of course in some 

cases the model is less accurate (if the assumption is strongly violated). Basically this 

method was first presented by Martin (2001b) and then further developed during the next 

years. Martin assumed that all obligors are independent and derived an explicit formula for 

the value at risk contribution of obligor i  with )(tK L  being the CGF of the portfolio loss L : 
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If the obligors are conditionally independent instead of independent we can extend the 

model and derive the SSA solution, in which )|( YVaRf L α should be computed by direct SA: 
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For details about the derivation of the given formula refer to Antonov (2005). 

4. Importance Sampling (IS) Method 

The method is initially suggested by Glasserman & Li (2005) and Glasserman (2006) as a 

method for VaR and VaRC calculation, and is later adopted by Huang (2007). This 

particular IS is a procedure of rare event simulation for credit risk management with main 

idea to increase the frequency of rare event occurrence by changing the distribution from 

which we sample. In this framework capturing the dependence between obligors in the 

portfolio is of great importance. In the later described approach this is accomplished by 

using the normal (Gauss) copula model, which is widely used by practitioners nowadays. 
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We assume that the unconditional PD’s are given, as well as the effective exposures iw . In 

the Gauss copula model the dependence between the obligors is modeled by introducing 

dependence amongst the default indicators iD  (for details - Glasserman & Li (2005)). Thus 

the used formula for the conditional default probabilities is the already familiar one from 

the previous parts (in the case of one common factor): 
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In general the IS method consists of two parts (and is called two-step IS): 

• Exponential Twisting – change of the distribution of the conditional PD’s in order to 

increase them and make losses less rare events. 

• Mean Shifting – shifting the mean of the common factor Y  for the same reason as 

exponential twisting. 

Exponential Twisting: The purpose of exponential twisting is to increase (twist) the 

conditional default probabilities )(Ypi  to the new probabilities given by the formula below 

in order to increase the estimates of our tail probabilities and make the defaults less rare: 

]1))()[exp((1
))(exp()(

)()(, −+
=

ii

ii
Yi wYYp

wYYp
Yq

θ
θ

θ  with 0>θ . 

Thus we obtain a new probability measure Q (notice that the higher the exposure iw  the 

higher the increase in the default probability). We see that for 0=θ  the new probabilities 

are the same as the old ones and for 0>θ  there is indeed an increase. There are many 

possibilities to increase the PD’s, but this one has specific features that make it more 

effective. One of them is the resulting form of the likelihood ratio that corrects for changing 

those probabilities. It is given by: 
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Given that the default indicators iD  are independent under Y , the likelihood ratio for 

changing all PD’s is simply the product of the individual likelihood ratios: 

( )( ) ( ))),(()(exp1)(1
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1)(1log|)(explog)),(( θθθ  being the conditional 

CFG of L . Glasserman & Li (2005) suggest that )(~ yθ  be the unique solution of the equation 

(unique solution indeed exists due to the fact that the derivative is monotonically 

increasing in θ ): 
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If ]|[ yYLEx =>  then 0)(~
>yθ  and the new twisted PD’s are higher than the original ones. 

In the case ]|[ yYLEx =≤  no exponential twisting is needed.  

Mean Shifting: In general we have assumed that the common factor Y  is standard normally 

distributed. Let us define a probability measure R under which the common factor Y  is 

normally distributed with mean 0≠µ  and variance still equal to one (so we have the 

transition )1,()1,0( µNN → ). The idea is to artificially increase the mean of the distribution 

and thus also the probability ][ xLP > , in order to make the losses less rare. After that mean 

shift, we need to correct for this change of the distribution by multiplying each observation 

by a given likelihood ratio. Glasserman (2006) states that the ratio is equal to 

( )22/1exp µµ +− Y  and thus we get the expression for the corrected tail probability under R 

(given the original PD’s): 
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The effectiveness of the IS depends to a great degree on the choice of µ . The value of µ  

proposed by Glasserman (2006) is the solution µ~  (which is unique under the one-factor 

model) of the equation: }2/1)(~)),(~({max 2yxyyyK
y

−−θθ   for 0~
≥θ . 

Calculating the VaRC’s: Using the two parts explained above we can derive the tail 

probability under the new probability measures Q and R (using the new probabilities of 

default and the new distribution of the common factor Y ): 
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In that case the α,iVaRC  of obligor i  can be directly expressed by the formula: 
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In the given formula the subscript k  denotes the k -th simulation and l  stands for the 

combined likelihood ratio (a multiplication of the ratios of the shifting and of the twisting): 

)]),(()(2/exp[ 2 YYKLYYl θθµµ +−+−= . 

V. Numerical Evidence and Comparison of Explained Models 

In this part of the paper are presented the numerical results derived by the authors of the 

described granularity adjustments that will help us to compare those techniques and will 

prepare us for the next part, where we are going to finally investigate which of those 

techniques are preferable and in what situations.  
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1. The Semi-Asymptotic Approach 

To demonstrate the model described in part III.4, Emmer & Tasche (referred to as ‘the 

authors’ till the end of the chapter) consider a portfolio driven by systematic risk Y  with an 

average credit standing ( )(025,0)( rXE Φ== ) and asset correlation ρ . The main idea is to 

enlarge the portfolio by an additional loan, expressed by the indicator D  in the equation 

given before - YccDcPL )1()( −+= . This loan has a high credit worthiness - 

)(002,0)( aEDPp Φ===  and asset correlation τ .  

In line with the Basel II proposal for corporate loan portfolios (BCBS (2005)) the authors 

set 154,0=ρ  and 

229,0=τ . They would like 

to plot the risk (calculated 

by means of VaR at 

confidence 99,9%) of the 

portfolio loss variable 

)(cPL  as defined in the 

above equation, as a 

function of the relative 

weight c  of the additional 

loan. They plot three VaR’s 

for comparison: the true 

VaR, the granularity 

adjustment approximation 

of the VaR and the VaR 

according to the Basel II Accord (for details on the exact computation steps refer to Emmer 

(2005)). On Figure 2.1 we see that for w  up to 2% both approximations are quite accurate, 

compared to the true VaR. For higher relative weight of the new loan they start losing 

quality very fast. The Basel II VaR becomes more and more inaccurate also compared to the 

granularity adjusted VaR. For example for c  of about 4% it is about 7 times more 

inaccurate. The reason for that sudden drop of quality is of course the assumption of both 



Dealing with Idiosyncratic Credit Risk in a Finitely Granulated Portfolio - 34 - 

 

methods that the portfolio has no name concentration. Obviously, for c  higher than 2% this 

is not the case.  

Another aspect that the authors consider is a comparison of relative VaRC’s of the new loan 

to the portfolio risk, 

considered also as 

functions of c . They plot 

on Figure 2.2 those 

contributions to the true 

VaR, the GA VaR, as well as 

to the Basel I and II VaR’s. 

The Basel I curve crosses 

the real contribution curve 

at the minimal risk 

portfolio, for relative 

weight *c  of about 7%. 

Again for c  up to 2% the 

GA contribution is quite 

accurate compared to the 

real contribution, but for 

higher weights it starts losing quality fast. The Basel II curve is not a bad approximation of 

the true VaRC as well for relative weight of the new loan up to 1,5% – 2% (although not as 

good as the GA VaRC), but after that it becomes way too inaccurate (also compared to the 

GA VaRC). We also notice that both the GA VaRC and the Basel II VaRC curves lie below the 

Basel I curve. That may give us the wrong feeling that higher relative weight of the 

additional loan may still improve the overall risk of the portfolio. To provide a reasonable 

argument against that claim we take a look again at Figure 2.1 and we notice that for a 

higher than 7% w  the VaR of the portfolio is unacceptably high.   
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2. The Gordy and Lütkebohmert Approach 

To demonstrate the granularity adjustment approach described in section III.5 Gordy and 

Lütkebohmert (referred to as ‘the authors until the end of the chapter) apply it to a number 

of realistic bank portfolios. The data used is provided by the German credit register and 

consists of loans greater than or equal to 1,5 Million Euros. The portfolios they use contain 

more than 250 exposures and they believe that is an appropriate size for calculating the GA. 

Those portfolios are divided into 4 groups, according to the number of exposures and 

degree of heterogeneity: large (more than 4000 exposures), medium (1000 - 4000 

exposures), small (600 - 1000 exposures) and very small (250 - 600). The PD  of each loan 

is predetermined by the S&P’s credit ratings.  

The authors calculate the GA as percentage of the total portfolio exposure for the given 

portfolio groups (the 

results are given on 

Figure 3.1) and 

compare it to the HHI. 

We notice that for the 

large portfolios the GA 

is 12 to 14 basis 

points, but it grows substantially for the very small portfolios up to 161 basis points. Also a 

high correlation with the HHI is observable. The correlation is not perfect though, due to 

the fact that the HHI is not sensitive to the PD  of the exposures (and thus to the credit 

ratings). In their results the authors also include a benchmark (reference) portfolio of 6000 

loans each with 01,0=PD  and 45,0=ELGD , and of homogeneous EAD . We notice the 

importance of heterogeneity for calculating the GA by comparing the GA for the benchmark 

and for the largest portfolio. Although the number of exposures of both portfolios is big 

enough, the GA of the benchmark portfolio is about six times smaller due to its 

homogeneity in name concentrations.  

Another thing Gordy and Lütkebohmert calculate is the VaR of the large and medium 

portfolios (by means of the +CreditRisk  model) and the GA as percentage of this VaR. For 
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the large portfolios the GA add-on is between 3% and 4% and for the medium ones it is 

between 5% and 8%. That is evidence that GA is higher for smaller portfolios as percentage 

of the VaR.  

Next the authors compute the GA for the large, medium and small portfolio groups as 

percentage of the Basel II Risk Weighted Assets (RWA), used for estimation of IRB capital 

charges. The results 

are given in Figure 

3.2. As shown in 

Figure 3.1 the GA for 

the benchmark 

portfolio is about 

0,018%. The IRB capital charge for this same portfolio (the capital requirements that 

account for the systematic risk of the portfolio) is 5,86% of the total portfolio exposure. 

Thus the authors derive that the relative add-on due to granularity is about 0,3% of the 

RWA. Same methodology is used to calculate the add-on for the three real portfolio groups. 

Again the heterogeneity of the large bank portfolios plays important role in calculating the 

GA – the GA for the large portfolios is more than 13 times higher than that of the reference 

portfolio. Nevertheless, the GA is quite small for the large portfolios and also for some of 

the medium ones, but highly significant for the small portfolios (up to 32% of the RWA).  

Another important issue is to investigate the approximation quality of the simplified GA 

( AG~ ) compared to the ‘full’ GA. For that reason Gordy and Lütkebohmert consider six 

portfolios of 1000 exposures each, constant PD (either 1% or 4%) and 45,0=ELGD . The 

portfolios differ by degree of heterogeneity – P0 is completely homogeneous and P50 is 

with high name concentration (the largest exposure 50
1000 1000=A  accounts for 5% of the 

total exposure). The results are given on Figure 3.3 below. In general we notice that the 

error increases with concentration and PD, but it is really trivial for realistic portfolios. 

Even for P10 and PD of 4% the error is 3,2 basis points and for the extreme case P50 with 

PD=4% the error is 14,1 basis points, but both are small compared to the total GA. That 
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proves the claim that the simplified GA is a good approximation that may be used in 

practice.  

 

As stated earlier, one major drawback of ad hoc GA methods is the fact that they do not 

account for the PD’s of the loans, but that is not the case with the model introduced by 

Gordy and Lütkebohmert. 

Figure 3.4 shows the 

dependence of the simplified 

GA on the default probability. 

The GA is calculated in 

percentage of the total 

portfolio exposure for 

homogeneous portfolios of 

100 borrowers with different 

PD’s. We notice that for 

increase of the PD from zero to 10% the GA becomes about 0,4% higher.  

In part III.5 we explained that the variance parameter ξ  of the systematic risk factor Y  

may differ according to the calibration method we consider. For that reason the authors 

explore the effect of different ξ  values on the GA. On one hand the GA is increasing with ξ  
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(for example for ξ  going up from 0,2 to 0,3 the GA increases by 10%). On the other hand 

the absolute degree of the GA is really sensitive to changes in ξ , but the relative one across 

bank portfolios is in fact not that sensitive at all. That is why we conclude that in general 

the precision of the calibration of ξ  is not that crucial for the efficient functioning of the GA 

as a supervisory tool.  

3. Numerical Methods 
In this part we investigate the quality of the methods described in chapter IV, by means of 

numerical results estimated by Huang, Oosterlee and Mesters (referred to as ‘the authors 

until the end of the chapter). They use a stylized portfolio of low granularity (meaning that 

the largest obligor has a lot higher exposure than the smallest one), consisting of 11325 

obligors. It is divided in six buckets of different exposure size (see Table 4.1). The total 

exposure of the portfolio is 54000. Exposure concentrations are not significant due to the 

fact that the weight of the largest obligor is less than 1,5%. The asset correlation ρ  is 20% 

and the PD is 0,33% for each loan.  

Bucket: 1 2 3 4 5 6 

Exposure: 1 10 50 100 500 800 

# of Obligors 10.000 1000 200 100 20 5 
Table 4.1: The stylized portfolio used to evaluate numerical models for 
computation of VaR. 

 

In Huang (2007) may be observed additional details on the computations compared later 

on. For the rest of the part by ‘Vasicek’ we denote asymptotic approximation of the Vasicek 

model. ‘NA’ and ‘SA’ stand for the normal and saddlepoint approximations respectively. By 

‘IS-10K’ we denote importance sampling with ten thousand scenarios, which are divided 

into 10 samples of equal size in order to estimate VaR and sample standard deviations. For 

a reference (benchmark) method the authors use a Monte Carlo simulation based on ten 

subsamples with 16 Million scenarios each. By CI we denote the 95% confidence intervals. 

In Figure 4.1 we compare both 99,9% and 99,99% VaR’s calculated by the above mentioned 

methods. Computation (CPU) time is reported in seconds. In brackets next to the VaR 

estimates we show also the sample standard deviations. The main thing we notice by first 
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looking at the results is the fact that even for the stylized portfolio of low exposure 

concentration the Vasicek 

results at both confidence 

levels are far from the 

benchmark results 

(relative errors about 

5%). The normal 

approximation outputs are better at the cost of small additional computation time (the 

relative errors are less than 1%). The saddlepoint approximation results are even better 

(they are both in the 95% confidence interval of the benchmark and the relative errors are 

less than 0,2%) and the method remains pretty fast. The results from the importance 

sampling are quite similar to those of the SA, but the computational costs are significantly 

higher. 

For all the numerical methods the authors estimate the VaRC of an obligor in a slightly 

different manner than explained in chapter IV – scaled by the effective weight of the obligor 

(thus the VaRC’s are expressed as percentage of the obligor’s effective exposure and the 

values are all between 0 and 1), i.e. 

]|1[)( VaRLDcPL
w

VaR
ii

i

===
∂

∂ α . 

On Figure 4.2 we give the VaRC’s for each bucket at two different loss levels - 4000=L  and 

6800=L . We see that the Vasicek approximation simply does not work for calculating the 

VaRC’s and no results fall into the 95% confidence interval. The normal approximation is 

also quite inaccurate with 7 estimates outside the confidence interval and 1,27% difference 

with the benchmark. Importance sampling has 5 outcomes outside the confidence interval 

and 1,24% difference with the benchmark. A good method here is the simplified 

saddlepoint approximation with only two results outside the confidence interval and 

1,14% difference with the benchmark. An issue with IS is that the calculated contributions 

do not increase monotonically with the effective weight w  and for that reason we conclude 

that 10000 scenarios are not enough. The most accurate model is the full saddlepoint 
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approximation with all estimates inside the confidence interval and a maximal error of 

0,33%. On the other hand, the SSA is about seven times faster than the full SA. 

 

As stated earlier, the portfolio considered until now had no serious name concentration. 

We now proceed with another testing portfolio used by Huang, Oosterlee and Mesters, for 

which that is not the case. It consists of one bucket of 1000 obligors with exposure 11 =w  

and a second bucket of only one obligor with a higher exposure Sw =2  (the authors 

consider two cases - 20=S  and extreme concentration 100=S ). We keep %20=ρ  and 

%33,0=PD . As a benchmark is used Binomial Expansion Method introduced in Huang 

(2006). To investigate the accuracy of the models in case of high name concentration the 

authors compare the 99,99% VaR in terms of relative error with the benchmark. The 

results are provided 

in Figure 4.3. For 

20=S  we notice 

that all methods 

except the Vasicek 

approximation give 

relatively small errors below 2%. Things change dramatically in the case 100=S : the 

Vasicek and normal approximations are highly inaccurate, while the SA and IS methods 

remain within the 2% error bound. The SA is also tested for S  up to 1000 and the results 
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are still smaller than 2%. That holds also for the SSA, which is not included in the results, 

but is as accurate as the SA and much faster as well. 

For the latter portfolio the authors also investigate VaRC approximations and in Figure 4.4 

we present the results 

both for a small 

(VaRC1) and for a large 

(VaRC2) obligors; 

20=S  and 100=S  are 

considered again. 

Again the results of the 

Vasivek method are far 

from the reality. The 

NA gives relatively 

accurate results for 

20=S , but highly 

inaccurate ones for 

100=S . SA is accurate 

for VaRC1, but not really accurate for VaRC2 and 100=S  (the absolute error exceeds 2%). 

The SSA provides similar results to SA for VaRC1, but for VaRC2 the error is too high 

(above 5%). The best method here is the IS, which gives absolute errors below 2% in all 

cases. 

VI. Efficiency Evaluation of Explained Models 
In this final part we are going to talk about the efficiency and robustness of the methods 

described before and to mention their pros and cons. 

The semi - asymptotic approach explained in section III.4 described by Emmer and Tasche 

in 2005 in general is an extension of the approach introduced by Gordy (2003) that 

accounts for the exact weights of the portfolio assets. Approximation of the capital charge 

for every individual asset may be calculated by estimating the partial derivatives of the 

portfolio loss quantile and multiplying them by the asset weights. The approach also 
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accounts for concentrations, but the results are counter-intuitive in case of very small 

probability of default of the considered loan. This drawback can be avoided by using 

coherent risk measures like Expected Shortfall.  

The method introduced by Gordy and Lütkebohmert in 2007 is a revision (some technical 

advances and modifications) and extension of the methodology introduced in the Basel II 

Second Consultative Paper. After thorough studies of the model on various portfolios, there 

are two further potential sources of inaccuracy that we need to mention. The first one is the 

fact that the GA formula is asymptotic and due to this fact it may not work properly for 

small portfolios. In general it overstates the effect of granularity for that type of portfolios, 

but is quite accurate for medium-sized portfolios of like 200 low-quality obligors or even 

500 investment-grade obligors. The second and more serious issue with this approach is 

the form of ‘basis risk’ (or ‘model mismatch’) – the IRB formulae are based on a different 

credit risk model. On the other hand the model under consideration has a great advantage – 

its analytical tractability that permits us to re-parameterize the GA formula in terms of the 

IRB capital charges, including maturity adjustment. The maturity adjustment of the GA is 

indirect, in the sense that only the inputs are adjusted, rather than the formula itself. A last 

limitation of the approach described in section III.5 is the fact that it assumes that each 

position in the portfolio is an unhedged loan to a single borrower and that makes it difficult 

to incorporate credit default swaps and loan guarantees in the GA.  

As mentioned earlier the normal approximation described in section IV.1 is based on the 

central limit theorem. In that case we need to be concerned whether it holds for portfolios 

with severe exposure concentrations. Apparently that is not the case as we already saw in 

the previous part where we considered the numerical examples of Huang et al. (2007) 

(called the authors till the end of the chapter). The reason is simple – the method tries to 

approximate the loss density by the normal distribution, but it cannot capture the pattern 

and therefore the CLT does not hold in more extreme cases (concentration of more than 

2% of the total exposure). A proof is given by the authors on Figure 5.1 where they 

compare the tail probability given by the normal approximation conditional on the 

common factor Y . 



Dealing with Idiosyncratic Credit Risk in a Finitely Granulated Portfolio - 43 - 

 

 

Let us now consider the GA from section IV.2. An important issue to handle is to investigate 

how the saddlepoint approximation can handle name concentrations. To do that, the 

authors compare the whole loss distribution derived by the SA in case of very high 

concentration to the benchmark one. We easily notice that the true distribution is not 

smooth around 100=S  (refer to Figure 5.2). Recall that the SA is based on the formulation 

of the Bromwich integral mentioned before, which represents a probability density 

function. The portfolio loss L  is 

discrete when the LGD  is constant. 

Then the authors assume that L  can 

be closely approximated by a 

continuous random variable with 

absolutely continuous cumulative 

distribution function. That is how a 

smoothed version of the loss 

distribution is produced. On Figure 

5.2 we notice that the SA to the tail 

probabilities is incorrect for almost 

all quantiles before the non-smoothness one (around 99,6%), but is accurate for higher 
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quantiles. In that sense we may conclude that with one or more exceptional exposures in 

the portfolio the SA may not achieve uniform accuracy of the loss distribution and this may 

be a problem if the quantile we are interested in precedes the non-smoothness one. As a 

solution to this problem, Beran (2005) suggests the so called Adaptive Saddlepoint 

Approximation.  

The importance sampling seems to perform well for determining the VaRC’s. A reason for 

that is that in the sample portfolios considered in the previous part, the obligors in each 

bucket are assumed identical and as a result the calculated VaRC’s are less volatile. In 

general IS can cluster the simulated losses around the required quantile and thus there is a 

substantial increase in the probability ][ VaRLP = . On the other hand, quite a large number 

of replications is needed to obtain such results. Huang et al. consider a portfolio of a 

hundred obligors, each with different exposure ( iwi = , 100,...,1=i ), assets correlation and 

PD are again 20% and 0,33%.  

 

On Figure 5.3 the authors show scatterplots of the scaled VaRC at the loss level 700=L  (on 

the y-axis) and the EAD  (on the x-axis) for the various numerical methods. All of them 

provide higher VaRC’s for higher EAD , which is highly desirable. Consistent with the 

results from the last section, the NA overestimates the VaRC of small exposures and 

underestimates the VaRC of large exposures. The SSA again almost replicates the SA. We 

notice the difference in the quality of the IS, depending on the number of scenarios. For 
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10000 scenarios the relation between VaRC and EAD  is not really clear. For 100000 

scenarios we see a huge improvement – the upward trend of VaRC is obvious, but it’s highly 

volatile. For that reason the authors suggest even higher number of simulated scenarios. 

As a conclusion about the numerical methods from section IV, we would like to say that for 

portfolios of lower granularity and medium name concentration all methods provide 

relatively good solutions. There is no method to be absolutely preferred under all 

circumstances; the choice will always be a tradeoff between accuracy, robustness and 

speed. The NA is the fastest method, achieves a fair accuracy and is incapable of handling 

portfolios with high exposure concentrations. The SSA is the second in speed, performs 

better than the NA in calculating VaR, but may suffer from the same problem in calculating 

VaRC’s. IS is really robust if a large enough number of scenarios are simulated, because it 

makes no assumptions on the portfolio structure. The IS VaR results are not always the 

best amongst the other methods, but are accurate enough. A drawback is the more 

computational time required for a good estimation of VaRC as stated in the previous 

paragraph. The SA is more accurate than the NA and the SSA and handles well extreme 

exposure concentrations. Thus it is a faster substitute of the IS with satisfactory accuracy 

level, but one should be aware of the non-smoothness of the loss distribution mentioned 

earlier in this section. Again, the NA and SA are based on asymptotic approximations and 

thus their accuracy improves significantly by increasing the portfolio size. On the other 

hand, IS becomes even more time demanding for large portfolios.  

VII. Conclusion 
In this paper we have dealt with a number of theoretical and practical issues related to the 

measurement of credit risk and dealing with concentration risk. The numerical results are 

provided by the authors of the papers that introduced the described Granularity 

Adjustments and our comparisons and evaluation of the methods are based on those same 

results. A possible extension of the paper may be the implementation of the models and 

their comparison on the same portfolios. That will give us more sound and reliable 

numerical results to compare the techniques and to fully investigate their pluses and 

drawbacks.  
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List of Acronyms: 
 

ASRF –  Asymptotic Single Risk Factor 

BCBS –  Basel Committee of Banking Supervision 

CGF –   Cumulant Generating Function 

CLT –   Central Limit Theorem 

DFT -   Discrete Fourier Transformation 

EAD –   Exposure at Default 

EL –   Expected Loss 

GA –   Granularity Adjustment  

GBM –   Geometric Brownian Motion 

IRB –   Internal Ratings Based 

LGD –   Loss Given Default 

MGF –   Moment Generating Function 

NA –   Normal Approximation 

PD –   Probability of Default 

RWA –  Risk Weighted Assets 

SA –   Saddlepoint Approximation 

UL –   Unexpected Loss 

VaR –   Value at Risk 

VaRC –  Value at Risk Contribution 
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