
BMI Paper

Variance effects in polling systems
The limits of Japanese production theory?

Author:
Jan-Pieter Dorsman

Supervisor:
Dr. Ir. Erik Winands

BMI Paper

Variance effects in polling systems
The limits of Japanese production theory?

Author:
Jan-Pieter Dorsman

Supervisor:
Dr. Ir. Erik Winands

August 2009

Vrije Universiteit Amsterdam
Faculty of Sciences
De Boelelaan 1081a
1081 HV Amsterdam

Preface

This paper was written as part of the Business Mathematics and Informatics master pro-
gramme. The goal of the BMI paper is to give an answer to a certain problem statement
by means of research. The paper should encompass at least two of the following programme
components: ’business’, ’mathematics’ and ’informatics’.

In this paper we consider polling systems. More specifically, we study the effect of the
system policies on the behaviour of the queue lengths, when set-up times are cut. This is
done mainly by means of simulation. The simulation part accounts for the mathematics and
informatics components of the programme, while the business part is represented by polling
systems themselves; polling systems are for example widely used in production facilities.

I would like to thank my supervisor dr. ir. E.M.M. Winands for introducing me to the
subject of polling systems and for his support and feedback during the process of writing this
paper.

i

ii

Abstract

In this paper we consider polling systems, systems in which one single server serves jobs from
multiple queues. This server typically needs a set-up time to switch from one queue to an-
other. More specifically, we study the effect of cutting these set-up times on the lengths of the
queues. In case of the so-called exhaustive service policy and the cyclical sequencing policy,
it is shown in literature that the lengths of each of the queues in the system can in fact grow
without bound as the duration of the set-up periods is being cut. As a result, a discussion
is ongoing whether Japanese production theory, which prescribes that set-up time should be
limited, is flawed. After all, a decrease in set-up time does not guarantee an improvement
on the queue lengths. An argument against this statement is that the policies used in the
example are sub-optimal and hence the statement is not valid. According to this argument,
the apparent sub-optimality of the policies is to blame rather than the Japanese production
theory.

Our main research objective is to find out if this effect exclusively occurs when these policies
are used or that a wider group of policies can provoke this effect. For this purpose, we con-
sider several policies common in practice. Because analysis is not always tractable for these
policies, we study the behaviour of the queue lengths using these policies by means of discrete
time event simulation.

We observe that the queue lengths grow without bound when set-up times are being cut,
in case the policies used do not allow the server to idle and force the server to always either
be serving a job or setting up for service at another queue.
When the policies used allow the server to idle at queues and be in stand-by mode, the queue
lengths no longer grow without bound and the variance effect loses a lot of its strength.
Since policies not allowing the server to idle are used commonly in practice, we conclude that
the claim of the existence of flaws in the Japanese production theory should not be dismissed
based upon arguments attacking the representativity of the policies considered in literature.

iii

iv

Contents

Preface i

Abstract iii

1 Introduction 1

2 Overview of policies 3
2.1 The polling system . 3
2.2 The anomalous effect of reducing set-up times 4
2.3 Service policies . 6

2.3.1 Exhaustive policy . 6
2.3.2 Quantity-limited policy . 7
2.3.3 Time-limited policy . 8

2.4 Sequencing policies . 8
2.4.1 Pre-set sequencing . 9
2.4.2 Longest Queue First (LQF) . 9
2.4.3 Prioritize by characteristics . 10

2.5 Idling policies . 10
2.5.1 No-idling . 11
2.5.2 Empty-system-idling . 12
2.5.3 Switch to important queue first . 12

2.6 Heuristic by Van Oyen and Duenyas . 13

3 Simulation 15
3.1 Simulation study of service policies . 16
3.2 Simulation study of sequencing policies . 19
3.3 Simulation study of idling policies . 20

3.3.1 Idling policies under the cyclical sequencing policy 22
3.3.2 Idling policies under the LQF sequencing policy 22
3.3.3 Possible explanations . 26

3.4 Simulation study of the heuristic by Van Oyen and Duenyas 26
3.5 The role of the set-up time distribution . 28

4 Conclusion 33

Bibliography 35

v

A The set-up time distribution 37

Chapter 1

Introduction

Half a century ago, the principle of the Just-In-Time production (JIT) originated in Japan,
also referred to as the concept of Japanese production theory. This theory states that inven-
tory in production systems reflects ’waste’. Everything in the production facility that does
not add value, but does increase production time and costs can be seen as waste. Inventory
is thus regarded as such. As a consequence, this theory claims that the need of inventory
reflects flaws in a production system. JIT states that by reducing inventory, one is forced to
address these flaws, which in general results in better performance of the production system
in terms of production time and production costs. This principle is well celebrated in practice.

In 1991, Sarkar and Zangwill[10] examined a certain type of a production system called a
polling system. In polling systems, there is one machine or server processing jobs at multiple
queues. When the serves moves from one queue to another, the server needs time to prepare
for processing the new type of jobs. This is called set-up time or switch-over time. Following
the Japanese production theory, reducing this set-up time should yield a reduction of the
inventory, in this case the lengths of the queues.
Sarkar and Zangwill however show that this assumption may be erroneous in certain circum-
stances! Indeed, they show that queue lengths can go up if set-up time is reduced, which is
a very counter-intuitive and anomalous effect.

In a subsequent provocative paper, Zangwill[13] contests the Japanese production theory
based on this discovery:

”The paradoxes and inconsistencies in Japanese production theory seem to have a
pattern and occur in certain situations. If we uncover the limits of that theory, we
might discover a new and more advanced theory of production and productivity.”

This paper drew a massive amount of response, the executive editor stated that this article
alone drew more response than all other articles combined during his editorship. Following
up on this article, Duenyas[2] and Gerchak and Zhang[4] both claim that the observed effect
is not a flaw in the reasoning of Japanese production theory as much as it is a flaw in the
reasoning of Zangwill. The example given by Zangwill in his provocative paper supposedly
uses a system policy1 that is not nearly optimal and that would be the reason for the observed

1A set of rules that specifies what action the server should take, like processing a job, setting up for service
at another queue or even be stand-by and do nothing at all, given information about all of the other variables
in the system, such as the lengths of the queues.

1

2 CHAPTER 1. INTRODUCTION

anomalous effect to occur. Therefore, they claim the Japanese production theory is not in
error.
In response to these papers, Zangwill[14] does not deviate from his original view on the mat-
ter. His point of defense is that whether something is optimal or not does very much depend
on what one would like to optimize. If the objective is to minimize the inventory in the whole
system, Zangwill claims that the policy used is at least close to optimal.

In this discussion no strongly founded arguments (or maybe even a proof) can be found
that back up the claims that sub-optimality of the policy is or in case of Zangwill is not the
key issue. Duenyas states that another, supposedly more optimal policy does not exhibit the
described effect. However, there is no guarantee available that this policy is in fact optimal,
it might be sub-optimal as well. Gerchak and Zhang express their high doubts about the
system policy used in Zangwill’s example being optimal, but again it is not shown rigorously
that the sub-optimality is the very reason why this effect occurs.
Zangwill in return attacks the optimality of the policy by Duenyas and gives other exam-
ples of polling systems exhibiting the anomalous effect in which he tries to take away the
doubts of Gerchak and Zhang about the optimality of his own policy. However, the question
whether it is sub-optimality of the policy itself that can cause this effect remains unaddressed.

The research objective of this paper is to research whether the policy is a major factor
in what triggers the anomalous effect. More specifically, we want to determine whether it is
only the specific policy used by Sarkar and Zangwill that shows the effect or that the effect
is more generally existent in a wider group of policies. If the latter is the case, we aim to
characterize this group of policies. Consequently, we try to conclude whether this effect is
merely theoretical or should be considered in practice policy-wise.

Since in case of most policies there is no closed-form mathematical expression known for
the length of the separate queues, this research will be done by means of a simulation study.
A simulation tool was exclusively made for this paper to study the behaviour of the several
polling systems. This tool imitates the behaviour of a polling system with given characteris-
tics. Meanwhile, the tool also acts as an observing outsider, who keeps track of this system
at all times, and is therefore able to give an answer on the question how certain things like
its queue lengths behave.

In chapter 2, the characteristics of a polling system are described more carefully and the
set-up time effect found by Sarkar and Zangwill[10] is also examined more closely. Further-
more, an overview of the policies we will study by means of simulation is presented. In chapter
3, for each policy several polling systems are considered and simulation runs performed. Of
course, we run simulations with both high and low set-up times. In addition to giving the
results of the simulation, we aim to give an intuitive explanation of these results. Finally, in
chapter 4 we aim to fulfill our research objective and give an answer to the questions at hand.

Chapter 2

Overview of policies

2.1 The polling system

A polling system consists of n queues (n > 1) at which jobs (products or customers) arrive,
waiting to be processed by one single server (a machine or person processing products or
serving customers) processing jobs at each of the queues. The server cannot serve all queues
simultaneously, only one queue is served at a time. For a schematic view of a polling system
with three queues, see Figure 2.1.
At each queue i, jobs of type i arrive according to a certain arrival process, of which the in-
terarrival times are distributed according to a random variable Ai with expectation EAi and
variance Var(Ai). Throughout this paper the assumption of exponential interarrival times
with a certain rate λi is made, in which case the arrival process is a Poisson process with rate
λi.

When the server is currently set up to serve queue i, it has the possibility to process a
job at queue i. This incurs a processing time (also called service time), which again is a
random variable denoted by Si with expectation ESi and variance Var(Si). The server also
has the possibility to stop serving the current queue i at all and set up for or switch to another
queue j (i 6= j), since products or customers at other queues are waiting to be processed as
well. This typically takes set-up time or switch-over time, also called a set-up period. Finally,
the server can also decide to idle at queue i, that is stay at the current queue in stand-by
mode until some event occurs, after which it decides to commence service or set-up once again.

Whether to stay idle or be active (serving a job or setting up for service at a queue) is a
decision made by the idling policy. In case the server will be active and becomes available at
a queue after just having arrived at the queue, having processed a job at the queue or just
having concluded an idling period at the queue, the question whether to process another job
at the current queue or to start setting up for another queue is addressed by the service policy.

Leaving a queue i and setting up for service at queue j incurs set-up costs kij and a set-up
time dij , since changes have to be made to the server in order to prepare for the processing
of a new type of job at the cost of resources like money and time. The kij-parameters are
assumed to be constant and known beforehand, while the set-up times are realisations from
the random variables Dij with expectation EDij and variance Var(Dij).

3

4 CHAPTER 2. OVERVIEW OF POLICIES

Figure 2.1: A polling system with three queues.

When the set-up costs are not specified, they are assumed to be equal for every possible set-up
from one queue to any other, in which case they do not need to be considered explicitly when
evaluating the performance of the system.
In the literature, it is often assumed that Dij is the same for each possible i, i 6= j. When
this assumption is made, we use the random variables Dj , because the index i has become
redundant.
The decision which queue j to set up for, after having decided to leave queue i is determined
by the sequencing policy.

Wi is the random variable representing the waiting time in queue i with expectation EWi.
The length of queue i at a certain point in time when the system is stable is represented by
Li, which has expectation ELi. If the arrival process is a renewal process such as the Poisson
process, Little’s law should hold: ELi = λiEWi. From this it follows that an observation of
overall increasing (decreasing) waiting time in queue i will always go together with the ob-
servation of an overall increasing (decreasing) length of queue i, since we assume exponential
interarrival times.
The average waiting time W is defined as

∑n
i=1

λiPn
j=1 λj

Wi and has expectation EW . The

load of queue i is defined as ρi = ESi
EAi

. The server utilization ρ is then defined as the sum of
these loads: ρ =

∑n
i=1 ρi.

2.2 The anomalous effect of reducing set-up times

Sarkar and Zangwill[10] published a paper in 1991 that showed that reduction of set-up times
in polling systems can in contradiction with the JIT-principle force the mean queue lengths
to go up. This is a very counter-intuitive effect, since one would expect the queue lengths
to fall, because by reducing set-up times, the server would have more time to process jobs,

2.2. THE ANOMALOUS EFFECT OF REDUCING SET-UP TIMES 5

which would be in favour of the queue lengths and the job waiting times.
Consider a polling system with n queues, each with a Poisson arrival process with rate λi.
The server keeps processing jobs at each queue i till the queue is completely empty and there
are no more jobs of type i to process. After that, it immediately starts setting up for queue
i + 1, or in case the server just cleared queue n, it starts setting up for queue 1 again. The
server is always active and never idles. Using this so-called exhaustive service policy and
cyclic sequencing policy, Sarkar and Zangwill show that the following holds:

EWi =
1− ρi

2

(∑n
j=1 EDj

1− ρ
+

n∑
j=1

hij(ρ1, ..., ρn){λjE(S2
j) + λjVar(Sj) +

Var(Dj)∑n
k=1 EDk

(1− ρ)}
)

(2.1)
where the hij are functions depending only on the ρi and yield possible values. Sarkar and
Zangwill[9] show that these functions are known explicitly and are derived by solving a linear
system of n equations in n variables.

When looking at equation 2.1, we see that the set up times contribute to the mean wait-
ing time of queue i through the following two terms:

1− ρi

2

(∑n
j=1 EDj

1− ρ

)
and

1− ρi

2

(∑n
j=1 Var(Dj)∑n

j=1 EDj
(1− ρ)

n∑
j=1

hij(ρ1, ..., ρn)
)

since the several Dj are independent. When cutting the set up times (that is, decreasing∑n
j=1 EDj), the situation might occur that

Pn
j=1 Var(Dj)Pn

j=1 EDj
grows sufficiently large such that the

increasing effect on the second term overshadows the decreasing effect on the first term. In
this case, the sum of both terms has increased with respect to the original situation, which
results in overall longer waiting times, and as a consequence higher queue lengths. This result
goes against intuition.
The key issue here is that when cutting down the sum of expected set-up times or the total
expected set-up time incurred during one cycle1

∑n
j=1 EDj , the sum of the several set-up

time variances
∑n

j=1 Var(Dj) does not necessarily decrease. Moreover, even if
∑n

j=1 Var(Dj)

would decrease but not at the same rate as
∑n

j=1 EDj ,
Pn

j=1 Var(Dj)Pn
j=1 EDj

could still grow without
bound and trigger the anomalous effect of higher queue lengths. Consequently, one should
not only be concerned about the mean of the set-up times, but also the degree of variation
they exhibit!
We will commonly refer to this effect as ’the variance effect’ or ’the anomalous effect’.

Example 2.1 We consider the described situation with two queues in a production system.
Suppose that λ1 = λ2 = 1

4 and the processing times are exponentially distributed with ES1 =
ES2 = 1.

1The start of service at an arbitrary queue till the next start of service at the same queue.

6 CHAPTER 2. OVERVIEW OF POLICIES

Initially, the set-up times are characterized as follows: ED1 = ED2 = 3, Var(D1) = 0,
Var(D2) = 900. In this case the time to set up for queue 1 is deterministic. The high
variance of the time needed to set-up for queue 2 seems very unnatural, however in cases
where the server has a chance to break down and consequently needs a lengthy repair these
numbers are realistic.
Under these circumstances, EL1 = 24.125 and EL2 = 16.625. The management of this
production systems now wants to address these queue lengths in accordance with the JIT-
principle and decides to reconsider the procedure of the server set-up to queue 1. A successful
result is achieved; possibilities to cut down ED1 to 1 are discovered. This set-up time remains
deterministic. However, upon implementing this change, management in this case found that
in contrary to their intentions the queue lengths have risen! Now, EL1 = 35 and EL2 = 23.75,
which is an increase of more than 40% for both queues!

The difficulty level of the analysis of polling systems ranges from easily doable to very hard,
depending on the scenario. While analysis of this particular scenario is tractable, the analysis
of scenarios with other service, idle or sequence policies might not.

2.3 Service policies

Whenever the server becomes available for service at a queue after a service period, set-up
period or even an idling period in which the server was put on stand-by, the question whether
the server needs to process jobs at the current queue or set up for service at another queue,
given that server will be active, is addressed by the service policy.
We consider the following service policies:

Service policy Description
Exhaustive policy The server does never switch to another queue if there are jobs

left to be processed in the current queue.

Quantity-limited policy At each queue i the server will process jobs until either ki jobs have
been processed or until the queue is empty, whichever happens
first. Afterwards the server will switch.

Time-limited policy At each queue i the server will process jobs until either ti units of
time have past or the queue is empty, whichever happens first. If
the queue threshold of ti has been reached, the server will finish
processing the current job. Afterwards the server will switch to
another queue.

In the following subsections each of these service policies is examined more closely. Of course,
in practice variations or combinations of these policies and completely other policies exist.

2.3.1 Exhaustive policy

In situations where the server does not start setting up for another queue while there are
jobs waiting in the queue which the server is currently set up for, one speaks of an exhaustive

2.3. SERVICE POLICIES 7

service policy. In practice this service policy is widely used in cases where the jobs of the
different queues have equal importance and thus the only performance measure is the amount
of work to be done in the whole system. In case of a production system, it is indeed intuitively
plausible that one server should continue processing jobs of the queue it is currently at rather
than setting up for the next queue which incurs a set-up time, which in a way can be seen
as downtime. When processing another job at the current queue, new jobs can arrive at each
queue during the processing time of this job, maximizing the time between two set-up periods.
Levy, Moshe and Boxma[5] indeed show that exhaustive-like service policies are dominant to
other types of service policies when one is only interested in the minimization of the amount
of work, under the assumption that the server never idles.

However, it is not always the case that the amount of work in the system is the only thing
that one should look at. Some queues may be more important to others, because jobs waiting
to be processed in those queues are of a very desired type or the holding costs of inventory of
those queues are much higher.
In systems where the jobs demanding service at queues are customers (customer systems),
’fairness’ often plays a role as well. Serving another customer who just arrived at the queue
the server is at while customers at other queues are waiting a long time already can yield such
a high amount of what is called ’unfairness’, that an exhaustive policy is out of question.

When the server is never idling and the sequence policy is cyclic(see section 2.4.1), the condi-
tions that the set up times are finite and that ρ < 1 are necessary and sufficient for the queue
lengths not to be growing without bound (i.e. for the system to be stable). This is shown by
Fricker and Jaibi[3].

In case of the exhaustive service policy, analysis is tangible in cases when the service se-
quence is cyclic (or according to a pre-defined table) and the server is always active (that is
either processing jobs or setting up for service of a current queue), as was seen in section 2.2.

2.3.2 Quantity-limited policy

When the server adheres to a quantity-limited service policy, the server can only process so
many jobs at a certain queue before it starts to set up for the next queue. For each queue
i a parameter ki is defined, which denotes the amount of jobs the server is able to process
during one service period at this queue. If the queue becomes empty and the server has not
processed ki items yet, the server will end its current service period prematurely and start
setting up for the next queue in line.

This service policy is used in practice for several reasons. Sometimes, technical restrictions
apply to production of units of a certain type. For example, in a production facility where
chemical substances are created, the server might not be able to keep producing for an in-
definite amount of time; after having provoked a certain amount of chemical reactions, the
ability of processing another batch of chemical substance has faded away and the server needs
to set up for the provoking of other chemical reactions.
Another reason why this policy might be favoured is because of the ability to prioritize among
different queues. When queue i is more important than queue j, ki can be set higher than
kj in which case more jobs will be processed at queue i than at queue j during one service

8 CHAPTER 2. OVERVIEW OF POLICIES

period.
In terms of fairness in customer systems this policy also performs better than for example
the exhaustive policy. When the ki-parameters are set with that in mind, a situation can be
achieved such that the waiting time for an arbitrary customer is not heavily dependent on
the queue in which the customer arrives.

It occurs that when using this service policy, waiting times in some queues may grow without
bound, while the other queues appear to be stable. In cases where the service sequence is
cyclic(see section 2.4.1) and the arrival process of each queue i is Poisson with rate λi, a nec-
essary and sufficient condition for stability at each queue, and thus the whole system, using
this service policy is derived and proven by Fricker and Jaibi[3]. When we define the sum
of all set-up times in one cycle as a random variable D with expectation ED, this condition
reads:

ρ + ED max
i∈{1,...,n}

λi

ki
< 1 (2.2)

In case ki = ∞ for each i, this service policy is equivalent to the exhaustive policy. This
service policy may be referred to as the k-limited policy if k1 = k2 = ... = kn = k.
Analysis of polling systems with this service policy is in general hardly tangible.

2.3.3 Time-limited policy

The time-limited policy is similar to the quantity-limited policy because this policy also limits
the amount of work the server can do at a certain queue before switching to another queue.
However, in case of the time-limited policy, the duration of the service period is not restricted
by a certain job limit, but by a certain time limit. For each queue i, a parameter ti is defined,
which denotes the limit of time the server is able to spend on this queue before a set-up to
another queue is needed. If the queue becomes empty and the server has not spent ti units of
time processing jobs of that type, the server will end its current service period prematurely
and start setting up for the next queue in line. If the time limit has been reached, the server
will switch to the next queue in line after it has ended processing the job which was in process
at the moment the time limit expired.

The motivations for using this service policy are quite the same as the quantity-limited policy.
A time limit could be imposed by a technical constraint, it can be a means of prioritizing
queues, and it could also be used to control fairness in customer systems.

In case ti = ∞ for each i, this service policy is equivalent to the exhaustive policy.
In case of deterministic service times, this service policy is equivalent to the quantity-limited
policy. A time limit of ti units of time then amounts to exactly one job limit ki through
ki = d ti

ESi
e.

Analysis of polling models with this service policy is in general hardly tangible.

2.4 Sequencing policies

The sequencing policy decides what queue to switch to, when the server is entering a set-up
period. The sequencing policies considered are the following:

2.4. SEQUENCING POLICIES 9

Sequencing policy Description
Pre-set sequencing The server visits the queues repeatedly in a fixed, predeter-

mined order.

Longest Queue First (LQF) When initiating set-up, the server will switch to the queue
which has the most jobs waiting at that moment.

Prioritize by characteristics When initiating set-up, the server will switch to the queue
which sustains the longest time since service, weighted by a
certain queue characteristic, such as the load or arrival rate.

In the next subsections, we will take a closer look at these policies.

2.4.1 Pre-set sequencing

In cases where the server visits the queues in a fixed sequence known beforehand, one speaks
of a pre-set sequencing policy.

A special case of this sequencing policy is the cyclical sequencing policy, in which the queue
sets up for service at queue i + 1 after having processed jobs at queue i. In case the server
just stopped service at queue n, the server will set up for queue 1 again. The start of service
at queue 1 till the next start of service at queue 1 is called a cycle.

Pre-set sequencing policies are commonly used in polling systems. One common reason for
this is the existence of technical constraints, such that from one queue the server cannot set
up directly to any other queue. Consider for example a production system in which paint is
produced. After the server has produced black paint, it cannot go straight to producing white
paint, because there are still traces of black paint left in the machine. Instead, the machine
needs to produce other colours of paint first, like several darker and lighter shades of grey.
Also, in systems where information about the length of each queue is not completely available,
the cyclic policy is a good sequencing policy to adhere to. Indeed, Liu and Nain[6] show that
in cases where only the history of each queue up till the last time the server visited that queue
is known and an exhaustive service policy is used, a cyclic policy should be adopted when
one is only interested in minimizing the total amount of work in the system.

2.4.2 Longest Queue First (LQF)

When the server has a total freedom of set-up2, a self-evident sequencing policy is the Longest-
Queue-First policy. When using this policy, the server will set up to the queue containing the
highest amount of jobs, after having stopped service at the current queue.
The idea behind this sequencing policy is simple; in general long queues are undesirable, so in
order to contest these, the server switches to the longest queue. Also, in case of an exhaustive
policy, the service periods will typically be the longest using this sequencing policy. Over
time less set-ups will be needed, which in a way accounts for less downtime.

2The server is at each queue able to set up to any other queue.

10 CHAPTER 2. OVERVIEW OF POLICIES

Liu and Nain[6] show that in case an exhaustive service policy is used and information about
the length of all queues is known continuously, one should adopt the Longest-Queue-First
policy in order to minimize the total amount of jobs in the system. However, this policy is
based on minimizing the total amount of work in the system. When one aims to differentiate
between queues because one is more important than others, this sequencing policy will not
always perform well.

2.4.3 Prioritize by characteristics

When information about the queue lengths is not readily available at all times, however in-
formation about the characteristics of each queue is available (distribution interarrival time,
distribution service time, load, waiting space in the queue, time since last visit), the manage-
ment may base decisions which queues to switch to on these characteristics.

Let lj denote the time since the latest service period at queue j and suppose the server
currently is at queue i. We list several decisions, which will also be examined in the simula-
tion study:

1. Let k = argmaxj∈{1,..n},j 6=i ljρj . After stopping service at queue i initiate a set-up to
queue k. Here, queues with high loads are favoured. We call this policy the PHVL
sequencing policy (Prioritize High Valued Load).

2. Let k = argmaxj∈{1,..n},j 6=i
lj

EAj
. After stopping service at queue i initiate a set-up to

queue k. Here, queues with low interarrival times are favoured. We call this policy the
PLEA sequencing policy (Prioritize Low Expected interArrival time).

3. Let k = argmaxj∈{1,..n},j 6=i ljESj . After stopping service at queue i initiate a set-up to
queue k. Here, queues with high service times are favoured. We call this policy the
PHES sequencing policy (Prioritize High Expected Service times).

4. Let k = argmaxj∈{1,..n},j 6=i
lj

ESj
. After stopping service at queue i initiate a set-up to

queue k. Here, queues with low service times are favoured. We call this policy the PLES
sequencing policy (Prioritize Low Expected Service times).

These policies each prioritize by a certain characteristic: the queue load, the interarrival time
and the service time respectively. They are then weighted by the time since the last visit, so
that lesser favoured queues will be visited as well after time elapses. They may be used in
practice because of their self-evidence; management might feel for example that queues with
a high load yield more urgency.

2.5 Idling policies

Whenever the server ends processing a job or just concluded a set-up period, the server has
the possibility to either be active3 or to idle at a queue. A server is said to be idling if it is
in stand-by mode, ready to resume activity instantly. The question whether to idle or not is
addressed by the idling policy. The following idling policies are considered:

3Processing jobs or setting up for service at another queue.

2.5. IDLING POLICIES 11

Idling policy Description
No-idling The server does never idle, it is always either processing

a job at a certain queue or in a set-up procedure.

Empty-system-idling Whenever each queue has no jobs waiting to be processed,
the server goes in stand-by mode at the queue it processed
its last job at. The server will go back into active mode
(service or set-up), once a job arrives at any queue.

Switch to important queue first Whenever the system is empty, the server will switch to
the queue that is deemed most important based on a
certain characteristic, after which the server idles at that
queue till the next arrival to the system.

In the next subsections we will examine these idling policies more closely. Again, in practice
other idling policies do of course exist.

2.5.1 No-idling

When using the no-idling policy, the server is always either processing jobs or setting up at
any time in all possible circumstances. In short, the server is never idling.
In some situations, the option to do this may be optimal. Although it may intuitively seem
optimal for the server to be stand-by and idling at some queue instead of being totally
irresponsive while in the middle of a set-up period, idling does not always yield better results,
as we will see in example 2.2.

Example 2.2 Consider an empty system with two queues, where the server just cleared queue
1 of its jobs. We assume that both queues have equal characteristics when it comes to arrival
processes, service processes, et cetera. Now, it needs to make the decision whether to idle at
queue 1 till the next arrival of a job in the system or to switch to queue 2, incurring a set-up
time of two time units. We consider the decisions of idling and no idling in two different
scenarios. These are depicted in Figure 2.2.

Assume that in the first scenario the system is currently empty, the next arrival at queue 1
occurs after one unit of time and the next arrival at queue 2 will not be occurring until much
later. In this case the decision to idle would have been better, because the server could have
immediately started processing the job upon arrival, whereas in the other case it would have
been right in the middle of a set-up period to the wrong queue and the job would have needed
to wait in queue 1 for three units of time.

However, another plausible scenario is that the first arrival to the system is at queue 2 after
one unit of time and there is no arrival at queue 1 until much later. In this case, the decision
of switching immediately would have been in favour. When the server idles till the arrival at
queue 2, the server realizes it is at the wrong queue, and hence the job at queue 2 will need
to wait for a whole set-up period to pass by. In the no-idling case however, the set-up period
would have been partly completed already at the time the job arrived at queue 2.

In cases where analysis of a polling model is tangible, usually the server is never idling.

12 CHAPTER 2. OVERVIEW OF POLICIES

Figure 2.2: Idling decisions in two different scenarios.

2.5.2 Empty-system-idling

When the system is empty, the server can opt to go in stand-by and idle at the queue at
which jobs of the latest processed job type arrive.

As was shown in example 2.2, this strategy can have benefits in certain situations, and can
have a decreasing effect on the total amount of jobs in the system. Moreover, Liu and Nain[6]
show that in a fully symmetric polling system, idling at the last visited queue is optimal,
whenever the system is empty.

2.5.3 Switch to important queue first

The idea behind the ’Switch to important queue first’-idling policy is that in case of an empty
system the server will first switch to the queue deemed to be most attention deserving because
of some characteristic of that queue. Then, the server will idle there if there are no arrivals
to the system in the meantime. The benefit of this idling policy is that the server will be
available at the queue of choice, such as the one with the highest arrival rate, rather than
just an arbitrary queue which was last visited.
There are several possible variations of this policy. The following variations are examined in
our simulation study:

1. Let queue j be the queue with the highest load. When the server is currently at queue
i, switch to queue j if i 6= j and idle there. Idle at queue i otherwise. We call this policy
the HL idling policy (Highest Load).

2.6. HEURISTIC BY VAN OYEN AND DUENYAS 13

2. Let queue j be the queue with the lowest interarrival time expectation. When the server
is currently at queue i, switch to queue j if i 6= j and idle there. Idle at queue i otherwise.
We call this policy the LIA idling policy (Lowest InterArrival time expectation).

3. Let queue j be the queue with the highest service time expectation. When the server is
currently at queue i, switch to queue j if i 6= j and idle there. Idle at queue i otherwise.
We call this policy the HES idling policy (Highest Expected Service time).

4. Let queue j be the queue with the lowest service time expectation. When the server is
currently at queue i, switch to queue j if i 6= j and idle there. Idle at queue i otherwise.
We call this policy the LES idling policy (Lowest Expected Service time).

This idling policy is used in cases where the mean switch-over times are typically low compared
to the arrival rates of the queues. In those cases it is likely that there are no arrivals during
the switch-over period, such that there is no effective downtime.

2.6 Heuristic by Van Oyen and Duenyas

While going through the several service, idling and sequencing policies in the previous sec-
tions, we have mainly looked at policies that are commonly used in cases where the waiting of
jobs of each type is equally undesirable. However, in practice sometimes it is desired that the
size of inventory at one queue is pushed back at the cost of having more inventory at another
queue. Inventory costs could be much higher at one queue than another or the management
might feel the need to prioritize the production of a certain type of job. In those cases, holding
costs parameters ci are introduced for each queue, which denote the cost of having one job
of type i waiting for one unit of time at queue i. Of course, in a polling system in which the
server is free to set up from each queue to every other, the server tends to set up for service
at queues with higher inventory holding costs.

Buyukkoc, Varaiya and Walrand[1] show that if the server switches to other queues instantly
without having any downtime (Dij = 0, for each i and j, i 6= j), the optimal policy is to pro-
duce items with the shortest weighted mean processing time. The weighted mean processing
times for jobs of type i is defined as ESi

ci
.

When the service times are exponentially distributed, this well celebrated policy is called the
cµ-rule, because the server is said to earn rewards at a rate of ciµi, when it serves a queue
with weighted mean processing time (ciµi)−1.

In polling systems the set-up times are usually strictly positive, in which case the cµ-rule is not
necessarily optimal. The complete characterization of an optimal policy has not been found
so far, however heuristics for this problem have been developed. Van Oyen and Duenyas[8]
considered this very problem, found some characteristics of the optimal policy and provided a
simple heuristic policy, which regulates all the service, idling and sequencing decisions. They
renumber the queues such that ci

ESi
≥ cj

ESj
if i < j. Now, the queues are sorted in ascending

order of weighted mean processing time. When the server is processing jobs at queue 1, the
server will serve this queue in an exhaustive manner till the queue is completely empty, since
this queue has the shortest weighted mean processing time and thus yields the most urgency.
Whenever the queue is empty, the server will consider to switch to lesser urgent queues. If

14 CHAPTER 2. OVERVIEW OF POLICIES

the server is currently set up for service at queue 2, it will process jobs at queue 2 and after
each job evaluate whether a set-up to queue 1 is needed. When queue 2 becomes empty, the
server will consider to switch to one of the higher numbered queues, if queue 1 is empty. In
general, if the queue is processing jobs at queue j, then every time after finishing a job, it
considers switching to a queue i if 1 ≤ i < j. If queue j becomes empty, it also considers
switching to queue k if j ≤ k < n.

The exact rules of the heuristic are as follows. Assume that the server is set up to serve
queue i and queue i contains xi jobs. Furthermore, renumber the queues such that c1

ES1
≥

c2
ES2

≥ ... ≥ cn
ESn

. We define

φj(xj) =
cj(xj + EDj

EAj
)

ESj(xj + EDj

ESj
)

and

ϕj(xj) =
cj(xj + EDj

EAj
)

ESj(xj + EDj

ESj
+ (1

ESj
− 1

EAj
)EDi)

• If xi = 0, then

1. Let σ = ∅.
2. For all j 6= i, if φ(xj) ≥ cjρj

ESj
, then let σ = σ ∪ j.

3. If σ 6= ∅, then among all j ∈ σ, let k denote the queue such that k = argmaxj∈σ φj(xj).
If xk ≥ EDi

EAk
, then switch to queue k, else idle until the next arrival to the system.

4. If σ = ∅, then let k denote the queue such that k = argmaxj 6=i φ(xj). If xk > EDi
EAk

,
then switch to queue k else idle until the next arrival to the system.

• If xi > 0, then

1. Let σ = ∅
2. For all j < i, compute ϕj(xj). For all j < i, if for queue j ϕj(xj) ≥ cjρ

ESj
+ ci(1−ρ)

ESi
,

then σ = σ ∪ j.

3. Among all j ∈ σ, switch to the queue that has the highest index ϕj(xj). If σ is
empty ,then serve one more job of type i.

For the general idea and intuition behind these rules, see [8]. Van Oyen and Duenyas[8] show
by means a simulation study that this heuristic outperforms several other policies in terms of
total holding costs in situations with symmetric and asymmetric queues, high and moderate
utilization, and both equal and different holding costs for different job classes. Moreover,
this heuristic is easy to implement in systems, which makes it a very interesting heuristic in
polling models where holding cost rates are not equal for each queue.
Duenyas[2] states that this heuristic is not subject to the variance effects described in section
2.2 and provides a simulation example with two queues which supports his statement. In the
next chapter, we will also expose this heuristic to a simulation study using a scenario with
more than two queues.

Chapter 3

Simulation

The majority of the in chapter 2 described policies defy an exact analysis, which means there
are no closed-form expressions available to compute the overall and marginal queue length
distributions. One has to resort to discrete time event simulation to shed some light on the
behaviour of the queue lengths in these cases. In discrete time event simulation the operation
of a system is represented as a chronical sequence of events. In the case of polling systems
such events consist of things like job arrivals, the start of job processings and the start of
set-up periods. Of each event a system time is recorded.

The simulation is initiated by creating the event for the first job arrival at each queue.
The system time for all of these events (in the case of job arrivals, the time of the arrival)
are determined by drawing numbers out of the interarrival time distribution. After that, all
events will be ’handled’ in a chronological order: each event will result in new events to be
added to the chronical sequence1, all in accordance to the specified service-, sequencing- and
idling policies. Of course, these resulting events will be ’handled’ as well at a later point in
time, which will result in even more events to be added. During this process of handling
events and creating new events a log file can be kept of the history of the systems behaviour,
from which certain system characteristics like the average lengths of each separate queue can
be deduced, simply by looking at the past events. Another option is to get this information
’on-the-fly’, which means that while handling the events information about the average queue
lengths is updated continuously.
After the system time of the events has grown long enough, the process of handling events
can be stopped and a reliable time weighted average for certain specifics of the system can
be calculated. Now, estimations of the performance measures are derived without the help of
complicated formulas or expressions.
Often the first part of the simulation period is regarded as a ’warm-up’-time, in which the
system is not in a steady-state situation yet. In that case, the time weighted average does
not consider this period of time.

Of course, there are several drawbacks to this method. It cannot be done by hand, because
it is simply not doable for a human being to perform a vast amount of such computations
consecutively. The computation power of a computer is needed and even then the simula-

1For example, if a job arrives at a certain queue, an event for the next job arrival at that queue is scheduled
and added to the sequence at the right place.

15

16 CHAPTER 3. SIMULATION

tions can take up quite a bit of time. Also, simulation does not always guarantee a reliable
outcome. When numbers are drawn from distribution of which moments are not necessarily
finite, the outcomes can be horribly unreliable.
On the other hand, it sometimes brings the only possibility of evaluation of systems which
would otherwise be impossible. This is the case in our situation.

Solely for the purpose of studying the variance effects of the set-up times when adhering
to several different policies, a discrete time simulation tool was developed. Afterwards, sev-
eral scenarios were evaluated and its outcomes are presented in this chapter. Each numerical
result found in this chapter was a result obtained from a simulation run of 2,000,000 units
of time, of which the first 500,000 were regarded as warm-up time. Of each result only two
positions after the decimal point is given.
In the different scenarios the same distribution was used for the duration of any set-up pe-
riod, and is described in appendix A. This distribution has the property that by raising its
parameter u, the expectation will fall considerably, while the ratio of the variance versus
the expectation tips over in favour of the variance more and more. These characteristics are
exactly the ones that should provoke the variance effect described in section 2.2.
Moreover, when comparing the different policies, we used one different policy to those used in
the original scenario (see section 2.2) at the time. All the other policies and possibly relevant
variables we kept constant as much as possible, as to rule out possibilities of mutually deviating
results being caused by anything else than the difference in the one policy.
Recall that the observation of increasing (decreasing) waiting times in a certain queue is
equivalent to the observation of an increasing (decreasing) mean length of that queue, through
Little’s law.

3.1 Simulation study of service policies

To see whether the set-up variance effect occurs with other service policies than the exhaustive
service policy, a polling system with two queues is considered. We assume that the arrival
processes are Poisson with rates λ1 = 2 and λ2 = 3. The service times are exponentially
distributed with rates µ1 = 10 and µ2 = 12 respectively.
The queues have an infinite buffer capacity, which means that there is always space for a job
to wait at its queue. For all set-up distributions Dij the distribution described in appendix
A is used. A no-idling policy and a cyclic sequencing policy is assumed, as is the case in
Zangwill’s example (see section 2.2).

We observe the behaviour of the system under the exhaustive service policy, the quantity-
limited service policy and the time-limited service policy. We know already that the exhaustive
service policy should exhibit the variance effect. For observing the behaviour of the system
under the quantity-limited policy, the limits k1 = 7 and k2 = 11 were chosen. In case u = 2,
ED = 30

16 and the system is only just stable for these limits. Indeed, when we check condition
2.2, the inequality holds by a very small margin:

ρ + ED max
i=1,...,n

λi

ki
= (

2
10

+
3
12

) +
30
16

max{2
7
,

3
11
} =

138
140

< 1

For the time-limited policy, the limits t1 = 7
10 and t2 = 11

12 are used. When u = 2 the system
is stable, but again near the edge of unstability.

3.1. SIMULATION STUDY OF SERVICE POLICIES 17

Exhaustive Quantity-Limited Time-Limited
u EW1 EW2 EW EW1 EW2 EW EW1 EW2 EW

2 2.17 2.05 2.10 47.41 12.38 26.40 9.23 7.90 8.43
3 2.10 2.01 2.05 3.22 2.88 3.02 3.01 2.84 2.91
4 2.40 2.31 2.34 3.01 2.81 2.89 2.89 2.81 2.84
5 2.80 2.69 2.74 3.24 3.07 3.14 3.15 3.08 3.11
6 3.26 3.16 3.20 3.62 3.45 3.52 3.53 3.46 3.49
7 3.73 3.59 3.64 4.04 3.87 3.94 3.92 3.88 3.90
8 4.24 4.08 4.15 4.50 4.32 4.39 4.41 4.35 4.37
9 4.70 4.53 4.60 4.95 4.76 4.84 4.85 4.81 4.82
10 5.21 5.02 5.10 5.43 5.22 5.31 5.31 5.27 5.29
15 7.75 7.48 7.59 7.88 7.62 7.72 7.73 7.70 7.71
25 12.89 12.44 12.62 12.90 12.49 12.65 12.66 12.68 12.68
50 25.32 24.59 24.89 25.49 24.66 24.99 25.08 25.18 25.14

Table 3.1: Simulated mean waiting times using a no-idling policy, a cyclical sequencing policy
and several service policies.

Using different u-values, the simulation tool came up with the results shown in Table 3.1. A
graphical representation of the behaviour of the average mean waiting times under the service
policies can be found in Figure 3.1.

We see that in the case of u = 2, the waiting times under the quantity-limited policy
and the time-limited policy are very high compared to the exhaustive policy. This is because
of the near unstability of the system. When the expectation of the switch-over time reduces,
the waiting times reduce significantly at first as well. While under the exhaustive policy the
waiting times become shorter just a tiny bit when we change from u = 2 to u = 3, the variance
effect becomes clear afterwards and the higher the u, the longer the waiting times become and
thus the larger the queue lengths grow. The point of turnover in case of the quantity-limited
and the time-limited policy is a bit later at u = 4. These policies contain a processing limit,
and because of lowering the set-up times the system will move away from being near unstable2

between u = 2 and u = 4. This effect makes the queue lengths go down for higher u. However,
as u keeps increasing after u = 4, this stability effect vanishes and the limits of these policies
do incur less additional switch-over time over the exhaustive policy, since the expectation of
the duration of the set-up periods decrease. As a consequence the queue lengths become less
responsive to the service policy, because the distinction between the service policies decreases.
As such the variance effect also shows itself using the quantity-limited and time-limited policy.

There is a special case of a polling system using the quantity-limited policy known for which
analysis is tractable. The above observed queue length behaviour can also be shown analyti-
cally in this case, as we will see in the next example.

Example 3.1 We consider a polling system, in which the server adheres to a 1-limited ser-
vice policy, never idles and switches through the queues in a cyclical manner. The polling

2ED reduces, so in case of the quantity-limited policy inequality 2.2 is more likely to hold. Something
similar goes for the time-limited policy.

18 CHAPTER 3. SIMULATION

Figure 3.1: The behaviour of the average mean waiting time under a cyclical sequencing policy,
a no-idling policy and several service policies.

system is fully symmetric, which means that all queues are equal in terms of arrival processes
and service time distributions and that the duration distributions of all possible set-up periods
are identical to each other.

Winands[12] shows that the following equation holds for this particular system:

n∑
i=1

ρiEWi = ρ

n∑
i=1

λiE(S2
i)

2(1− ρ)
+ ρ

Var(D)
2ED

+
ED

2(1− ρ)

n∑
i=1

ρi(1− ρi) +
n∑

i=1

ρiλi
ED

1− ρ
(EWi + ESi)

where D is again a random variable denoting the total duration of the set-up periods in one
cycle.
When we use the fact that ρ =

∑n
i=1 ρi, we can reduce this equation to an expression for the

expected waiting times EWi (i=1, ..., n):

EWi =
ρ

∑n
i=1

λiE(S2
i)

2(1−ρ) + ρVar(D)
2ED + ED

2(1−ρ)

∑n
i=1 ρi(1− ρi) + ρλi

ED
1−ρESi

ρ(1− λi
ED
1−ρ)

(3.1)

Of course, since the polling system is symmetric, the expectations of the waiting times in the
different queues are the same. We see that equation 3.1 has potential for the variance effect
to occur because of the term ρVar(D)

2ED in the nominator.

Let us consider this system with two queues, each with a Poisson arrival process, each having
a rate of λi = 0.3, and exponentially distributed service times with expectation ESi = 0.725.
The duration of the set-up periods are all distributed according to the random variable de-
scribed in appendix A with parameter u. In case u = 2, the system is only just stable. When
checking condition 2.2, we find

ρ + ED max
i=1,...,n

λi

ki
=

174
400

+
30
16

∗ 3
10

=
399
400

< 1

3.2. SIMULATION STUDY OF SEQUENCING POLICIES 19

and see that it indeed only just holds. Now, when we compute EWi with the available infor-
mation and equation 3.1, we see that in case of u = 2 the waiting times are huge with an
expected duration of 744.21. This high number is a result of the denominator ρ(1 − λi

ED
1−ρ),

which in this case amounts to a number of 0.001925.
When we increase u to 3, the denominator rises to 0.2334932 and consequently the expected
waiting time falls immensely to 5.33. This is the very same effect as the effect we have called
the stability effect earlier.
When we increase u further, the denominator will keep increasing, however it cannot grow
beyond ρ = 0.6. Instead, it will converge to this value. Hence the denominator will be
increasing at a decreasing rate, which means that the stability effect will grow feebler and
feebler. When u = 5, the expected waiting time will become 4.03. However, when u increases
any further, the relative increments of the nominator through the term ρVar(D)

2ED will be higher
than those of the denominator. When u = 6, the average queue length has risen to 4.26 and
will continue to rise as u keeps increasing. The variance effect has grown stronger than the
stability effect.

3.2 Simulation study of sequencing policies

After studying the service policies, we wish to examine the behaviour of the in subsection 2.4
described sequencing policies. To do this, we consider a polling system with three queues.
The consideration of a system with more than two queues is needed, since otherwise all se-
quencing policies would be the same. In case of two queues, the only option when the server
is at queue 1 would be to set up to queue 2 and vice versa.

All queues have a Poisson arrival process, with rates λ1 = 2, λ2 = 1 and λ3 = 3. The
service times are deterministic with ES1 = 0.2, ES2 = 0.25 and ES3 = 0.05 respectively. All
the queues have infinite capacity, there is always enough space in the queue for an arriving
job. For every possible set-up the distribution described in appendix A is assumed, all of
them with the same parameter u. Furthermore, an exhaustive service policy and a no-idling
policy is used. In the case of a cyclical sequencing policy, this scenario reduces to the scenario
considered by Zangwill(see section 2.2) and hence the queue lengths will grow without bounds
at least in that case.

We simulated the above described scenario combined with the following sequencing policies:

• Two pre-set sequencing policies:

– (Cyclical) The cyclical sequencing policy (Zangwill’s scenario)

– (Pre-set) A pre-set sequencing policy with service order 1-2-1-3-2-3

• (LQF) The Longest-Queue-First policy

• Several policies prioritizing by characteristics:

– (PHVL) The PHVL sequencing policy

– (PLEA) The PLEA sequencing policy

– (PHES) The PHES sequencing policy

20 CHAPTER 3. SIMULATION

Figure 3.2: The behaviour of the average mean waiting time under the exhaustive service
policy, a no-idling policy and several sequencing policies.

– (PLES) The PLES sequencing policy

The results of these simulations can be found in Table 3.2. A graph of the behaviour of the
average mean waiting time EW is depicted in Figure 3.2.
We see that in case of the cyclical sequencing policy, the variance effect shows itself as ex-
pected. Initially, when increasing u to 4, the queue lengths go down, but afterwards the
queue lengths seem to grow without bound. We also see that the variance effect also shows
itself with every other considered sequencing policy; after the point of turnover of u = 4, the
queue lengths seem to explode for every sequencing policy. Moreover, the queue lengths do
not mutually deviate very much when using different sequencing policies.

Hence, it seems that the sequencing policy plays no role in the degree of existence of the
variance effect whatsoever. This is not hard to believe, since whichever sequencing decision
is taken, the ratio of the variance over the expectation of the distribution underlying the
duration of the set-up period incurred grows without bound as u increases.

3.3 Simulation study of idling policies

For the study of the idling policies, the same polling model as in section 3.2 is considered.
Again, we have three queues with Poisson arrival processes having rates λ1 = 2, λ2 = 1 and
λ3 = 3 respectively. The service times are deterministic as before with ES1 = 0.2, ES2 = 0.25
and ES3 = 0.05. The queues still have an infinite capacity buffer, so there is always enough
space for an arriving job to wait at the queue. The set-up times are distributed according to
the distribution described in appendix A with parameter u.

To study the existence of the variance effect with several idling policies, an exhaustive service
policy is used. For the sequencing policy both cyclical and ’Longest-Queue-First’ sequencing
policies are used. We use the cyclical sequencing policy because of the fact this policy was
used in Zangwill’s example (section 2.2) as well, so any conclusions based on this study will

3.3. SIMULATION STUDY OF IDLING POLICIES 21

Cyclical Pre-set (LQF)
u EW1 EW2 EW3 EW EW1 EW2 EW3 EW EW1 EW2 EW3 EW

2 5.20 6.48 7.35 6.49 5.60 6.39 9.37 7.62 5.65 7.81 5.98 6.17
3 3.50 4.36 4.89 4.34 3.69 4.26 6.04 4.96 3.61 5.19 3.85 3.99
4 3.14 3.92 4.36 3.88 3.20 3.73 5.13 4.25 3.14 3.92 4.36 3.88
5 3.17 3.96 4.35 3.89 3.24 3.80 5.11 4.27 3.18 4.52 3.41 3.52
6 3.42 4.29 4.69 4.20 3.44 4.07 5.39 4.52 3.42 4.82 3.67 3.78
7 3.70 4.66 5.07 4.54 3.72 4.38 5.78 4.86 3.77 5.19 4.01 4.13
8 4.08 5.13 5.56 4.99 4.06 4.83 6.27 5.29 4.12 5.60 4.36 4.49
9 4.44 5.59 6.03 5.43 4.45 5.28 6.68 5.79 4.56 6.15 4.83 4.96
10 4.86 6.13 6.63 5.96 4.83 5.70 7.41 6.26 4.99 6.63 5.27 5.40
15 6.97 8.76 9.43 8.50 6.91 8.18 10.51 8.93 7.73 9.43 7.63 7.80
25 11.38 14.26 15.32 13.83 11.17 13.27 17.10 14.49 11.93 15.01 12.31 12.64
50 22.13 27.75 29.69 26.85 21.76 26.09 33.26 28.23 23.26 29.08 23.81 24.51

PHVL PLEA PHES
u EW1 EW2 EW3 EW EW1 EW2 EW3 EW EW1 EW2 EW3 EW

2 4.77 6.09 9.01 7.11 5.93 7.75 5.89 6.21 4.54 5.67 11.96 8.44
3 3.14 4.17 5.97 4.73 3.86 5.31 3.64 3.99 3.12 3.65 7.52 5.41
4 2.61 3.55 4.76 3.84 3.35 4.67 3.11 3.45 2.84 3.24 6.48 4.73
5 2.87 3.86 5.30 4.25 3.36 4.74 3.12 3.47 2.90 3.26 6.37 4.69
6 3.10 4.16 5.69 4.57 3.57 5.06 3.31 3.69 3.15 3.51 6.78 5.03
7 3.37 4.54 6.15 4.96 3.81 5.42 3.55 3.95 3.43 3.83 7.33 5.45
8 3.69 4.99 6.71 5.41 4.23 6.02 3.94 4.38 3.75 4.17 7.95 5.92
9 4.03 5.44 7.28 5.89 4.58 6.53 4.27 4.75 4.09 4.57 8.67 6.46
10 4.41 5.97 7.96 6.44 4.97 7.10 4.65 5.16 4.49 5.01 9.49 7.08
15 6.36 8.68 11.33 9.24 5.20 6.48 7.35 6.49 6.47 7.19 13.49 10.10
25 10.29 13.95 18.26 14.89 11.5 16.68 10.69 11.99 10.48 11.75 21.83 16.73
50 20.11 27.48 35.21 28.88 22.58 32.81 20.72 23.35 20.29 23.06 42.26 31.74

PLES
u EW1 EW2 EW3 EW

2 6.67 8.33 5.00 6.12
3 4.26 5.41 3.30 3.97
4 3.56 4.79 2.89 3.43
5 3.49 4.82 2.89 3.42
6 3.67 5.13 3.08 3.62
7 3.96 5.57 3.34 3.92
8 4.28 6.04 3.64 4.25
9 4.70 6.63 3.99 4.67
10 5.10 7.23 4.35 5.08
15 7.22 10.34 6.17 7.21
25 11.72 16.80 9.99 11.70
50 22.70 33.06 19.25 22.70

Table 3.2: Simulated mean waiting times using an exhaustive service policy, a no-idling policy
and several sequencing policies.

22 CHAPTER 3. SIMULATION

not be caused by a different sequencing policy. The LQF sequencing policy has to be used,
because when evaluating the behaviour of the ’Switch to important queue first’-policy, one
needs to assume complete freedom of set-up for the server from any queue i to any queue j.
This assumption is violated by the cyclical sequencing policy. In section 3.2 we saw that in
this polling system the sequencing policy does not impact the existence of the variance effect
in any way, which justifies the use of an LQF-sequencing policy.

First we study the situation in which the cyclical sequencing policy is used. We study the
behaviour of the no-idling policy and the empty-system-idling policy. As done before, we
examine the queue lengths of the system with different values of u. The higher u, the lower
the expectation of the duration of the set up times, but the higher the variance becomes
relative to the expectation.
Afterwards we will study the behaviour of all the in section 2.5 described idling policies under
the LQF sequencing policy in very much the same way.

3.3.1 Idling policies under the cyclical sequencing policy

When under the exhaustive service policy and cyclical sequencing policy simulations are run,
the results are very interesting. These results can be found in Table 3.3. In Figure 3.3, the
behaviour of the average mean waiting time is shown, based upon the results of the table. In
case of the no-idling policy, our situation reduces to the circumstances in which Zangwill’s
analysis holds and indeed the variance effect of the set-up time is clearly noticeable. The
overall queue length and the average queue lengths go down initially when u is raised from
2 to 4, but afterwards the variance effect gets the leading hand and the queue lengths grow
without bound. When the empty-system-idling policy is used however, there is no noticeable
variance effect ! When we keep increasing u, both the marginal and overall queue lengths keep
decreasing. Even in case of u = 50 these queue lengths seem to have become smaller. In the
transition from u = 2 to u = 50, the expected duration of a set-up period has gone down from
15
16 to approximately 1

625 , while the ratio of Var(D)
ED has gone up from 343

240 to approximately 50.
Of course, one could be in denial of the non-existence of the effect and state that it still
might occur with a much higher u. However, we see here that the transition considered is a
huge one. Moreover, in practice set-up time cuts like these or even greater ones will not be
achieved, so we think it is safe to postulate that the variance effect does not show itself in
this polling system.
Srinivasan and Gupta[11] show that in general the reduction of set-up time actually can
increase queue lengths in certain situations using empty-system-idling. In other words, it is
not always the case that the queue lengths will decrease monotonously while set-up times are
cut. However, based on the simulation results, it seems very unlikely that the queues can
grow without bound when an empty-system-idling policy is used.

3.3.2 Idling policies under the LQF sequencing policy

Under the LQF sequencing policy, we consider the no-idling policy, empty-system-idling policy
and several switch-to-important-queue-first policies. These include the following:

3.3. SIMULATION STUDY OF IDLING POLICIES 23

No-idling Empty-system-idling
u EW1 EW2 EW3 EW EW1 EW2 EW3 EW

2 5.20 6.48 7.35 6.49 5.14 6.43 7.28 6.43
3 3.50 4.36 4.89 4.34 3.48 4.33 4.86 4.31
4 3.14 3.92 4.36 3.88 3.03 3.79 4.21 3.74
5 3.17 3.96 4.35 3.89 2.85 3.56 3.93 3.51
6 3.42 4.29 4.69 4.20 2.76 3.44 3.78 3.38
7 3.70 4.66 5.07 4.54 2.69 3.37 3.69 3.30
8 4.08 5.13 5.56 4.99 2.56 3.21 3.51 3.14
9 4.44 5.59 6.03 5.43 2.44 3.06 3.37 3.01
10 4.86 6.13 6.63 5.96 2.36 2.95 3.25 2.90
15 6.97 8.76 9.43 8.50 1.87 2.33 2.56 2.29
25 11.38 14.26 15.32 13.83 1.32 1.64 1.84 1.63
50 22.13 27.75 29.69 26.85 0.74 0.85 1.03 0.90

Table 3.3: Simulated mean waiting times using an exhaustive service policy, a cyclical se-
quencing policy and several idling policies.

Figure 3.3: The behaviour of the average mean waiting time under the cyclical sequencing
policy and several idling policies.

24 CHAPTER 3. SIMULATION

Figure 3.4: The behaviour of the average mean waiting time under the exhaustive service
policy, LQF sequencing policy and several idling policies.

• Highest Load (HL): Whenever the system becomes empty, the server will switch to the
queue with the highest load, before it starts an idling period. In this case, the queue
with the highest load is queue 1.

• Lowest expected interarrival time (LIA): Whenever the system becomes empty, the
server will switch to the queue having the lowest expected interarrival time first, before
it starts an idling period. In this case, the queue with the lowest expected interarrival
time is queue 3.

• Highest expected service time (HES): Whenever the system becomes empty, the server
will switch to the queue having the highest expected service time first, before it starts
an idling period. In this case, the queue with the highest expected service time is queue
2.

• Lowest expected service time (LES): Whenever the system becomes empty, the server
will switch to the queue having the lowest expected service time first, before it starts
an idling period. In this case, the queue with the lowest expected service time is queue
3.

In this situation, the LIA- and LES-policies are completely identical.

For each of the examined idling policies, simulations have been run and the results of
these can be found in Table 3.4. A graph depicting the behaviour of the average mean wait-
ing time under these policies can be found in Figure 3.4. As we see, the variance effect shows
itself in the case of the no-idling policy as already concluded in section 3.2, but it does not
while using any other of the idling policies in this particular polling system! On a side note,
we see that the switch-to-important-queue-first idling policies do not perform as well as the
empty-system-idling policy, in both marginal queue lengths and overall queue length, also in
case of high u’s.

3.3. SIMULATION STUDY OF IDLING POLICIES 25

No-idling Empty-system-idling HL
u EW1 EW2 EW3 EW EW1 EW2 EW3 EW EW1 EW2 EW3 EW

2 5.65 7.81 5.98 6.17 5.62 7.80 5.96 6.26 5.63 7.80 5.95 6.15
3 3.61 5.19 3.85 3.99 3.58 5.16 3.81 3.96 3.60 5.18 3.83 3.98
4 3.14 3.92 4.36 3.88 2.97 4.31 3.18 3.30 3.09 4.50 3.31 3.44
5 3.18 4.52 3.41 3.52 2.71 3.94 2.90 3.01 2.88 4.26 3.10 3.22
6 3.41 4.82 3.67 3.78 2.54 3.70 2.71 2.82 2.81 4.18 3.03 3.15
7 3.77 5.19 4.01 4.13 2.38 3.49 2.55 2.65 2.75 4.12 2.96 3.08
8 4.12 5.60 4.36 4.49 2.24 3.28 2.39 2.49 2.61 3.92 2.84 2.94
9 4.56 6.15 4.83 4.96 2.08 3.05 2.21 2.31 2.54 3.80 2.74 2.85
10 4.99 6.63 5.27 5.40 1.95 2.85 2.10 2.17 2.46 3.71 2.68 2.78
15 7.25 9.43 7.63 7.80 1.54 2.23 1.65 1.71 1.95 2.95 2.11 2.19
25 11.93 15.01 12.31 12.64 1.08 1.57 1.16 1.20 1.42 2.11 1.53 1.59
50 22.13 27.75 29.69 26.85 0.67 0.97 0.77 0.77 0.94 1.39 1.08 1.08

LIA HES LES
u EW1 EW2 EW3 EW EW1 EW2 EW3 EW EW1 EW2 EW3 EW

2 5.65 7.80 5.97 6.17 6.66 8.33 4.99 6.10 5.65 7.80 5.97 6.17
3 3.58 5.14 3.82 3.96 3.59 5.15 3.82 3.96 3.58 5.14 3.82 3.96
4 3.03 4.41 3.24 3.37 3.09 4.46 3.29 3.42 3.03 4.41 3.24 3.37
5 2.77 4.04 2.95 3.07 3.17 4.36 2.63 3.10 2.77 4.04 2.95 3.07
6 2.62 3.83 2.79 2.90 2.97 4.13 3.06 3.21 2.62 3.83 2.79 2.90
7 2.47 3.64 2.63 2.75 2.90 4.02 2.96 3.11 2.47 3.64 2.63 2.75
8 2.30 3.37 2.45 2.55 2.86 3.96 2.91 3.07 2.30 3.37 2.45 2.55
9 2.23 3.26 2.37 2.47 2.79 3.82 2.81 2.97 2.23 3.26 2.37 2.47
10 2.07 3.04 2.21 2.30 2.67 3.68 2.71 2.86 2.07 3.04 2.21 2.30
15 1.67 2.43 1.76 1.84 2.14 2.91 2.14 2.27 1.67 2.43 1.76 1.84
25 1.15 1.68 1.25 1.29 1.63 2.19 1.63 1.72 1.15 1.68 1.25 1.29
50 0.67 1.01 0.78 0.78 0.95 1.30 1.01 1.04 0.67 1.01 0.78 0.78

Table 3.4: Simulated mean waiting times using an exhaustive service policy, an LQF sequenc-
ing policy and several idling policies.

26 CHAPTER 3. SIMULATION

3.3.3 Possible explanations

We have seen that both under the cyclical sequencing policy and the LQF sequencing policy,
any idling policy apart from the no-idling policy do not allow the queues to grow without
bound. An explanation for these observation might be that the server will be idling more
when set-up times are cut in case the empty-system-idling policy is used, whereas in case of
the no-idling policy the server keeps switching and incurring set-up times. Because a lot less
set-up time is used overall, the variance effect might be too feeble to persist or even show
itself. Then again, this is pure speculation as analysis of systems using empty-system-idling
policies is hardly tractable.

In literature it is shown that idling can be employed to counter the variance effect. Van
Oyen[7] says that when using idling, the systems performance can at least not degrade if set-
up times are cut. When set-up times are cut, one can always decide to lengthen the set-up
periods with an idling period such that the sum of the duration of these periods equals the
duration of an original set-up period. Then, the queue lengths will not have changed. Van
Oyen then says that this particular idling policy may be far from optimal and that as such
the optimal policy using a similar form of idling will at least perform as well and maybe
even better. While the form of idling we have studied, such as empty-system-idling, does not
exactly work in the same way (it is not used to artificially increase the duration of set-up
periods), it gives another insight in how idling can be seen as a means to prevent the variance
effect to occur.

3.4 Simulation study of the heuristic by Van Oyen and Duenyas

The policy we study in this section is the heuristic by Van Oyen and Duenyas as explained in
section 2.6. As we already know, this heuristic constitutes a service policy, a sequencing policy
and an idling policy. We consider the same polling system as in the previous two sections with
three queues, since a sequencing decision is involved. Once again, the queues of this system
has Poisson arrival processes with rates λ1 = 2, λ2 = 1 and λ3 = 3. The service times are
deterministic and have durations ES1 = 0.2, ES2 = 0.25 and ES3 = 0.05 respectively. The
distribution of the durations of all possible set-up periods is the one described in appendix A
with parameter u.
Within these specifications, we consider the system with three different holding cost settings:

• c1 = 0.2, c2 = 0.25 and c3 = 0.05. We choose these holding cost rates, because then the
weighted mean processing times are all equal: ES1

c1
= ES2

c2
= ES3

c3
= 1.

• c1 = c2 = c3 = 1. These settings treat inventory in every queue as equally undesirable.
The weighted mean processing times are ES1

c1
= 0.2, ES2

c2
= 0.25 and ES3

c3
= 0.05.

• c1 = 3, c2 = 5 and c3 = 7. These settings treat inventory in queue 3 as more undesirable
than inventory in queue 2, and inventory in queue 2 on its turn more undesirable than
inventory in queue 1. The weighted mean processing times in this case are ES1

c1
= 1

15 ,
ES2
c2

= 1
20 and ES3

c3
= 1

140 .

The results of the simulations performed can be found in Table 3.5. The behaviour of the
average mean waiting time is depicted in Figure 3.5. We see that the average queue length

3.4. SIMULATION STUDY OF THE HEURISTIC BY VAN OYEN AND DUENYAS 27

c1 = 0.2, c2 = 0.25, c3 = 0.05 c1 = 1, c2 = 1, c3 = 1 c1 = 3, c2 = 5, c3 = 7
u EW1 EW2 EW3 EW EW1 EW2 EW3 EW EW1 EW2 EW3 EW

2 4.14 6.39 10.20 7.54 4.43 8.00 8.41 7.02 5.10 6.51 8.00 6.78
3 2.55 5.32 5.71 4.59 3.12 5.50 4.60 4.26 3.74 4.25 4.63 4.27
4 2.39 3.58 5.48 4.13 2.73 5.11 3.27 3.40 3.83 3.37 3.29 3.48
5 2.22 3.28 4.91 3.74 2.37 5.51 2.40 2.91 4.32 2.60 2.32 3.04
6 2.11 3.12 4.55 3.50 2.09 5.65 1.85 2.56 4.46 2.15 1.78 2.73
7 1.98 2.94 4.25 3.27 1.82 5.77 1.53 2.33 4.56 1.74 1.49 2.55
8 1.88 2.78 3.98 3.08 1.66 5.92 1.29 2.18 4.58 1.55 1.26 2.41
9 1.75 2.58 3.70 2.86 1.53 5.56 1.10 1.99 4.40 1.40 1.08 2.24
10 1.66 2.43 3.47 2.69 1.46 5.66 0.98 1.92 4.09 1.27 0.94 2.04
15 1.31 1.93 2.77 2.14 1.12 4.74 0.65 1.49 3.73 0.96 0.61 1.71
25 0.98 1.44 2.08 1.60 0.83 3.82 0.43 1.13 3.59 0.75 0.46 1.55
50 0.65 0.92 1.42 1.08 0.63 2.72 0.27 0.80 1.81 0.42 0.25 0.80

Table 3.5: Simulated mean waiting times using the heuristical policy by Van Oyen and
Duenyas.

Figure 3.5: The behaviour of the average mean waiting time under the heuristical policy by
Van Oyen and Duenyas.

28 CHAPTER 3. SIMULATION

decreases as u increases. It is hard to pinpoint what variable exactly is responsible for this,
since this heuristical policy constitutes a service policy, an idling policy and a sequencing
policy. One could speculate that the heuristical policy includes idling periods and, since we
found before that idling policies other than the no-idling policy battle the variance effect,
that this idling part makes it such that the queue lengths decrease.

Also, we see that most of the marginal queue lengths decrease as u increases. Moreover,
when we look at the situations where the weighted mean processing times are not equal at
every queue (the cases where c1 = c2 = c3 = 1 and where c1 = 3, c2 = 5, c3 = 7), we see
that the lengths of the queues with the lowest weighted mean processing time can increase
when u goes up! Indeed, when c1 = c2 = c3 = 1 we see that the length of queue 2 decreases
as u goes from 2 to 4, but then increases once again as u goes from 4 to 8. Afterwards, it
decreases again. The same effect we see with the length of queue 1 when the holding cost
rates c1 = 3, c2 = 5 and c3 = 7 are used. As u goes from 2 to 3, the queue length goes down,
however when u increases further to 8, the queue length increases! Afterwards, the queue
length decreases again. One could speculate this observation to be a combination of several
effects. We saw earlier in section 3.1 that a stability effect may account for the early reduction
in queue length. An equivalent effect might be showing itself here. When u = 2, the length of
queue 2 in case of c1 = c2 = c3 = 1 and the length of queue 1 in case of c1 = 3, c2 = 5, c3 = 7
are higher than what they would have been in case of c1 = 0.2, c2 = 0.25, c3 = 0.05. These
queues might be near instability: the server utilization is quite high (0.80) and the weird
behaving queues themselves do not have any priority at all when it comes to being served.
Furthermore, the server will be very reluctant to idle at these queues when they are not
prioritized. Hence, because of the little idling, the variance effect might show itself for these
queues and the marginal queue length goes up, when the stability effect has passed. If u then
keeps increasing, the server will also consider idling at these queues, and the variance effect
will be too feeble to let the queue length grow without bound.

Although this reasoning is pure speculation and the effects observed are not crystal clear
to understand, we can conclude that using this policy, the variance effect does not present it-
self in such a way that the queue lengths grow without bound. Duenyas [2] already concluded
this in case of a system with two queues.

3.5 The role of the set-up time distribution

Throughout the previous sections, we have used a very convenient distribution for the set-up
times (see appendix A). With a change of one parameter, the variance effects were triggered
if the policies used enabled it to occur. Not every distribution family is likely to exhibit the
variance effect, consider example 3.2.

Example 3.2 In case the duration of every set-up period can be modeled as an exponential
distribution with a certain parameter λ, the variance effect is not likely to occur. Let X denote
the duration of a set-up period. Then, EX = λ−1 and Var(X) = λ−2. When set-up times are
cut, EX is cut, and hence λ becomes bigger. However, V ar(X)

EX = λ−2

λ−1 = λ−1, which is also
decreasing in λ! The variance decreases at a bigger rate than the expectation itself. Hence,
Zangwill’s observed variance effect will most likely not occur.

3.5. THE ROLE OF THE SET-UP TIME DISTRIBUTION 29

a EW1 EW2 EW

0 0.16 0.15 0.15
0.1 0.30 0.28 0.29
0.2 0.46 0.42 0.43
0.3 0.63 0.57 0.59
0.4 0.82 0.73 0.76
0.5 1.07 0.91 0.98
0.6 1.42 1.15 1.26
0.7 2.04 1.51 1.73
0.8 3.68 2.24 2.82

Table 3.6: The behaviour of the average mean waiting time under a quantity-limited sequencing
policy and a no-idling policy, assuming uniformly distributed set-up durations.

One could argue that the set-up time distributions considered both in the previous sections
and this example are not realistic. The degree of variation of the distribution in Appendix A
might be ridiculously high, while a memoryless distribution does not seem likely either.
We do not aim to research how set-up periods are generally distributed in practice, since that
falls out of the scope of this paper. However, we do want to point out in this section that
the set-up time distributions themselves must yield a high degree of variation relative to their
expectation for the variance effects to occur. Otherwise, the increase of the term Var(Di)

EDi
may

be too feeble for every i to be able to exhibit the variance effects. While the distribution of
Appendix A satisfies this condition amply, in practice the distribution might not have this
property.

To illustrate this case further, let us consider a polling system with two queues. The arrival
processes are Poisson with rates λ1 = 2 and λ2 = 3. The service times are also exponentially
distributed with rates µ1 = 10 and µ2 = 12. This time, we do not consider the set-up distri-
bution described in appendix A, the duration of a set-up period between any pair of queues
is now uniformly distributed with parameters a and b, b = a + 0.1, a > 0. The variance of
the duration of a set-up period is quite moderate in this case, it is equal to 0.12

12 = 1
1200 . This

number is insensitive to the a-parameter, as this parameter only controls the location of the
distribution, and hence only is positively correlated with the distributions expectation. So,
when lowering a, the variance effect could occur theoretically, since the term Var(Di)

EDi
rises for

every i.
We assume a quantity-limited service policy with limits k1 = 7 and k2 = 11 and a no-idling
policy. We simulated this scenario using several values of a. The results can be found in
Table 3.6. A depiction of the behaviour of the average mean waiting time can be found in
Figure 3.6. We see that as a decreases to 0 (it cannot go any lower), the queue lengths all
monotonously decrease as well! We have shown however in section 3.1 that this particular
combination of policies does allow variance effects to occur. For a variance effect to occur in
this situation, one should increase the variance of the distribution itself, which is something
that is absolutely not suggested by the Japanese production theory.

In case of a polling system with an exhaustive service policy, a cyclical sequencing policy

30 CHAPTER 3. SIMULATION

Figure 3.6: The behaviour of the average mean waiting time under a quantity-limited sequenc-
ing policy and a no-idling policy, assuming uniformly distributed set-up durations.

and a no-idling policy, we can also illustrate this matter analytically. In this case, equation
2.1 for the expected waiting time of queue i holds. We assume that D1 = D2 = ... = Dn = D.
In other words, we assume that the duration of any set-up period is distributed according to
a random variable D, regardless of the departure queue and destination queue. In that case,
equation 2.1 can be simplified to

EWi =
1− ρi

2
nED

1− ρ
+

1− ρi

2

n∑
j=1

hij(ρ1, ..., ρn){λjE(S2
j) + λjVar(Sj)}

+
1− ρi

2
(1− ρ)Var(D)(

n∑
j=1

hij(ρ1, ..., ρn))
1

nED
(3.2)

If we would now increase the total set-up time in a cycle nED by a constant δ, while the
variance of the total set-up time remains unchanged, equation 3.2 changes accordingly into

EWi =
1− ρi

2
nED + δ

1− ρ
+

1− ρi

2

n∑
j=1

hij(ρ1, ..., ρn){λjE(S2
j) + λjVar(Sj)}

+
1− ρi

2
(1− ρ)Var(D)(

n∑
j=1

hij(ρ1, ..., ρn))
1

nED + δ
(3.3)

We see that the second term is independent of δ, while the first and third term are increasing
and decreasing in δ respectively.
From equation 3.3 we can derive the optimal shift δ∗ by equating the derivative of the right
hand side with respect to δ to 0 as follows

3.5. THE ROLE OF THE SET-UP TIME DISTRIBUTION 31

1− ρi

2(1− ρ)
−

1−ρi

2 (1− ρ)Var(D)
∑n

j=1 hij(ρ1, ..., ρn)
(nED + δ)2

= 0

(1− ρ)Var(D)
∑n

j=1 hij(ρ1, ..., ρn)
(nED + δ)2

=
1

1− ρ

(1− ρ)2Var(D)
n∑

j=1

hij(ρ1, ..., ρn) = (nED + δ)2

√√√√(1− ρ)2Var(D)
n∑

j=1

hij(ρ1, ..., ρn)− nED = δ (3.4)

We ought to check if we have found a minimum here by looking at the second derivative of
the right hand side of equation 3.3 with respect to δ. This second derivative reads

(1− ρi)(1− ρ)Var(D)
∑n

j=1 hij(ρ1, ..., ρn)
(nED + δ)3

Recalling that the hij are functions that can only yield positive values, we see that this
expression is evidently positive for every queue i. Hence, from equation 3.4 we can derive the
optimal shift

δ∗ =
(√√√√(1− ρ)2Var(D)

n∑
j=1

hij(ρ1, ..., ρn)− nED
)+

(3.5)

Now, we see that the counter-intuitive effect that the mean waiting time of a certain queue i
can be decreased by increasing the total set-up time in a cycle occurs only if

Var(D) ≥ n2(ED)2

(1− ρ)2
∑n

j=1 hij(ρ1, ..., ρn)

Analogously, this condition is necessary for the length of queue i to increase if the total set-up
time in a cycle is cut. We conclude that to trigger the variance effect by altering the expected
set-up time in a cycle in this case, the variance of the set-up times should be sufficiently large
to begin with.

32 CHAPTER 3. SIMULATION

Chapter 4

Conclusion

In chapter 2, we considered an example of a particular polling system, in which queue lengths
were growing without bound when set-up times are cut. This rather strange effect was found
by Sarkar and Zangwill[10] and used an exhaustive service policy, a cyclical sequencing policy
and a no-idling policy. This scenario containing the effect was used by Zangwill[13] to contest
the Japanese production theory, therefore also called ’Zangwill’s scenario’. The effect itself
we called the effect the ’variance-effect’. Furthermore, we considered other possible service
policies, sequencing policies and idling policies as well as the heuristical system policy by Van
Oyen and Duenyas.
In chapter 3, we studied the behaviour of the queue lengths under each of the considered poli-
cies by examining one deviating policy while keeping all other policies and relevant variables
the same as in Zangwill’s example as much as possible. That way, we could deduce from the
results what group of policies was responsible for observed changes in the behaviour of the
queue lengths. Our results led to the following conclusions.

Group of policies Effect

Service policies While altering Zangwill’s scenario by using different service poli-
cies, the behaviour of the queue lengths did not change substan-
tially when set-up times were cut, apart from the sometimes ob-
served initial ’stability-effect’. Therefore, the choice of service pol-
icy does not seem to influence the existence of the variance effect.

Sequencing policies When using other sequencing policies than the one used in Zang-
will’s example, the behaviour of the queue lengths did not signifi-
cantly deviate from the behaviour observed in case of the cyclical
sequencing policy. Therefore, the choice of sequencing policy does
not seem to influence the existence of the variance effect.

Idling policies When Zangwill’s scenario was considered, but idling policies were
used based on which the server could opt for periods of idling, the
behaviour of the queue lengths changed. No longer did they grow
without bound as duration of set-up periods was cut. Hence, the
choice of idling policy does influence the existence of the variance
effect of the set-up time.

33

34 CHAPTER 4. CONCLUSION

As a result of addressing the question whether the system policy used in Zangwill’s sce-
nario is the only policy in which the counter-intuitive effect shows itself, the answer found is
simply no. All policies observed by us that did not allow the server to idle (cases in which the
no-idling policy was used) showed the variance effect and allowed the queues to grow without
bound. However, the choice of policies to be used is not totally irrelevant; we saw that in
case idling policies are used such that the server can enter idling periods, the variance effect
grows much feebler or is even non-existent.

We also considered the heuristic by Van Oyen and Duenyas, which was claimed to not show
the variance effect either. We found that queue lengths could still grow in the least priori-
tized queues in certain circumstances, but as the set-up time kept decreasing, the length of all
queues would decline eventually. When this heuristic is used, the server does assume idling
periods, which may be the reason why the queues lengths did not grow unbounded.

However, based upon our findings we can assert that Zangwill’s dismissal of the Japanese
production theory should not be rejected based upon the policy used, as Duenyas[2] and
Gerchak and Zhang[4] did. There certainly are policies used in practice which adopt the
no-idling policy, for example due to technical constraints which render the server unable to
do just nothing for an indefinite amount of time. Therefore, the variance effect is not merely
theoretical. With that said, we do not want to intervene further in the discussion whether
Zangwill’s statement about the Japanese production theory is right or not. In this paper we
focused on the system policy used, but there are so many more variables out there that should
be examined carefully before judgement can be passed on the matter. We found for example
that the distribution of the set-up period’s duration must have a sufficiently large variance in
order to even expose the variance effect.

As said before, we do now know that the idling policy does influence the degree of exis-
tence of the variance effect. We did not find any clues of the service policy and sequence
policy influencing this existence.
Whereas we can state that the choice of idling policy is influential in this case, we only have
a strong presumption that the choice of service and sequencing policies is not of influence.
To be able to state this with complete certainty, we would have to consider each and every
service and sequencing policy possible in each and every possible set of circumstances. By
means of discrete time event simulation this is simply not feasible. This limits the strength
of parts of our conclusion. Therefore, a suggestion for further research would be to create
methods to consider these policies by means of analysis, although in literature it is shown
that this is a rather hard task.

BIBLIOGRAPHY 35

Bibliography

[1] Buyukkoc, C., Varaiya, P., Walrand J., (1985). The cµ-rule revisited. (Advances in Applied
Probability, Vol. 17, No. 2, pp. 237-238).

[2] Duenyas, I., (1994). The limitations of suboptimal policies. (Interfaces, Vol 24., No. 5, pp.
77-84).

[3] Fricker, C., Jaibi, R., (1994). Monotocity and stability of periodic polling models. (Queue-
ing Systems, Vol. 15, pp. 211-238).

[4] Gerchak Y., Zhang, Z., (1992). The cheaper/faster-yet-more-expensive phenomenon: Are
Zangwill’s paradoxes indeed paradoxical? (Interfaces, Vol 24., No. 5, pp. 84-87).

[5] Levy, H., Moshe, S., Boxma, O., (1990). Dominance relations in polling systems. (Queue-
ing Systems, Vol. 9, pp. 155-171).

[6] Liu, Z., Nain, P., Towsley, D., (1992). On optimal polling policies. (Queueing systems,
Vol. 11, pp. 59-83).

[7] Oyen., M. Van, (1997). Monotonicity of optimal performance measures for polling systems.
(Probability in the Engineering and Informational Sciences, Vol. 11, No. 2, pp. 219-228).

[8] Oyen, M. Van, Duenyas, I., (1995). Stochastic scheduling of parallel queues with set-up
costs. (Queueing Systems, Vol. 19, No. 4, pp. 421-444).

[9] Sarkar, D., Zangwill, W.I., (1989). Expected waiting time for nonsymmetric cyclic queue-
ing systems - Exact results and applications. (Management Science, Vol. 35, No. 12, pp.
1463-1474).

[10] Sarkar, D., Zangwill, W.I., (1991). Variance effects in cyclic production systems. (Man-
agement Science, Vol. 37, No. 4, pp. 444-453).

[11] Srinivasan, M.M., Gupta, D., (1996). When should a roving server be patient? (Man-
agement Science, Vol. 42, No. 3, pp. 437-451).

[12] Winands, E.M.M., (2007). Polling, production & priorities. (PhD Thesis, Eindhoven
University of Technology).

[13] Zangwill, W.I., (1992a). The limits of Japanese Production Theory. (Interfaces, Vol. 22,
No. 5, pp. 14-25).

[14] Zangwill, W.I., (1992b). Response to comments on our work by Duenyas, by Gerchak
and Zhang, and by McIntyre. (Interfaces, Vol. 24, No. 5, pp. 90-94).

36 BIBLIOGRAPHY

Appendix A

The set-up time distribution

For the set up time distribution a convenient distribution is used consistently throughout
the several simulation scenarios.

Assume that X is a random variable distributed according to this distribution. Then this
distribution, also used by Zangwill[13] in a slightly modified form, has the pleasant property
that with the change of one single parameter EX can go down rapidly, while the term
Var(X)

EX goes up simultaneously. This is very useful since exactly those characteristics would
invoke the anomalous effects described in section 2.2.

The probability distribution of X is defined as follows:

X =
{

2
u2 with probability 1− 1

u3

2u with probability 1
u3

Here,

EX =
2
u2

(1− 1
u3

) + 2u(
1
u3

) = 2(
2
u2

− 1
u5

)

and
EX2 = (

2
u2

)2(1− 1
u3

) + (2u)2(
1
u3

) = 4(
1
u

+
1
u4

− 1
u7

)

Hence,

Var(X) = EX2 − (EX)2 = 4(
1
u

+
1
u4

− 1
u7

)− 4(
2
u2

− 1
u5

)2 = 4(
1
u
− 3

u4
+

3
u7

− 1
u10

)

.

Now, it is easy to see that when u increases, EX decreases considerably. However, Var(X)
EX

grows without bound when u keeps increasing. To see this, let us consider the case where
u approaches infinity.

lim
u→∞

Var(X)
EX

=
4(1

u −
3
u4 + 3

u7 − 1
u10)

2(2
u2 − 1

u5)
= lim

u→∞

2u9 − 6u6 + 6u3 − 2
2u8 − u5

=

lim
u→∞

2u− 6
u2 + 6

u5 − 2
u8

2− 1
u3

= lim
u→∞

2u

2
= ∞

37

38 APPENDIX A. THE SET-UP TIME DISTRIBUTION

Indeed, Var(X)
EX diverges to infinity, so the conditions needed to provoke the anomalous

effect described in section 2.2 are met.

