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Abstract

Studying the dependences across financial markets is an important issue for risk
management and portfolio management. This paper investigates the dependence structures of
several emerging financial markets in Central and Eastern Europe — Bulgaria; Romania; Poland;
Check Republic; Hungary; Slovakia and Russia. Focus falls on two kinds of dependence — first
the correlation between equity prices and foreign exchange rates in each country and second -

the co-movements of neighboring equity markets.

To model the dependences, we use the copula approach and we discuss its advantages
over the standard correlation-based approach. The questions we intend to answer are: what is
the dependence structure between equity and FX rates in Central and Eastern European
financial markets? Is there any extreme (upper or lower) tail dependence? Is it symmetric or
asymmetric? By answering these questions, we hope to better understand the co-movements

across these financial markets and the risks associated with them.
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1. Introduction

Studying the dependences across financial markets is an important issue for the risk
management and portfolio management. A great deal of research exists today, focusing on the
co-movements of international equity markets. Roll and Chakrabarti (2002) compare the Asian
stock markets with the European stock market before and during the Asian crisis. They find out
that correlations, and volatilities increased from the pre-crisis to the crisis period in both regions,
but the percentage increases were much higher in Asia. They also find out that diversification
potential was better in Asia than in Europe before the crisis but this was reversed during the
crisis. Other examples of research on the co-movements of equity markets can be found in
Karolyi and Stulz (1996), Longin and Soinik (2001), Forbes and Rigobon (2002). They all used

methodology based on correlations and conditional correlations.

After the limitations of correlation based models were identified in Embrechis et al.
(2002), researchers have started to use copulas to directly model the dependences and co-
movements across financial markets. There are a number of works that go along this line -
Mashal and Zeevi (2002), Hu (2003) and Chollefe, Pena and Lu (2005). They all report
asymmetric extreme dependence between equity returns, in other words, stock markets tend to

crash together but do not boom together.

All of the above literature focuses on the dependence structure and co-movements in
equity markets via copulas. Paffon (2005) also uses copulas to model the asymmetric exchange
rate dependence. He finds that the German Mark-Dollar and Yen-Dollar exchange rates are
more correlated when they are depreciating against the U.S. Dollar than when they are

appreciating.

While there are a number of papers studying the co-movements of international equity
markets, there is little literature on studying dependences between equity and exchange rates.
Ning (2006) uses a Symmetrized Joe-Clayton (SJC) copula to directly model the underlying

dependence structure between the equity market and the foreign exchange market in the G5




countries (US, UK, Germany, Japan and France) for the period 1/1/1991 to 31/12/1998. She
finds that there exists significant upper and lower tail dependence between equity market and

foreign exchange market, and the dependence is symmetric.

On the other hand, there is little or almost no research that studies dependences
between equity and exchange rates in Central and Eastern Europe emerging markets. A
possible reason for this is the fact that these financial markets are relatively young.
Nevertheless, the results of such research will have important implications for both global
investment management and asset pricing modeling. Central and Eastern European markets
can become a very attractive option for global investors who want to diversify their portfolios

internationally.

In this paper, we will investigate the dependence between the equity returns and the
exchange rate returns, by the use of the copula approach. The rest of the paper is organized in
the following: first we present the theoretical reasoning behind the research and give the
definitions of the main concepts to be used; second the dependences between the main stock
exchange index and the FX rate of a country’s currency with the US Dollar are investigated;
third, we model the co-movements of main stock indices for pairs of neighboring countries and
last but not least, we will build a number of different portfolios that follow those indices and

determine their Value at Risk, expressed in US Dollar.

In the next section we will describe the main theory behind the research. We assume that
the reader is familiar with the concept of normal distribution, correlation and covariance. In order
to better understand the ideas discussed in the paper we will give short definitions of multivariate
normal distribution, dependence measures, Copulas and Value at Risk. Most of the theoretical
explanations are based on the book - “Quantitative Risk Management — Concepts, Techniques

and Tools” by McNeil, Frey & Embrechts




2. Theoretical Foundation
2.1 Risk Factors and Loss Distributions

Let us consider a financial portfolio as a collection of risky assets (e.g. stocks, bonds,
derivatives, risky loans etc.). We denote the value of this portfolio at time t by V, and we
assume that V, is observable at time t. The /oss of the portfolio over a given time horizon A is

defines as
L[t,t+A] ==Vea —V0) (2.1)

The distribution of L[ ] is called the /oss distribution.

tt+A

Following standard risk management practice the value V, is modeled as a function of
time t and a d -dimensional random vector Z, = (ZiynZyy)' of risk factors, i.e. we get the

following representation of V, :
V,=1(t2,) (2.2)

with a measurable function f:R, x R% - R. The risk factors Z, are observable (known) at
time t. Frequently used risk factors in practice are logarithmic prices of financial assets, yields
and logarithmic exchange rates.

Now let us define the series of risk factor changes (Xt)teN by X, =2Z,-Z,, since they
are the objects of interest in most statistical studies of financial time series. Note that if Z, are
logarithmic prices, then X, are simply the /ogarithmic returns of the prices in consideration.

Using (2.2) the loss of the portfolio can be written as
Ly =~(f(t+1Z,+ X)) - £ (1,2))) 2:3)

Since Z, is known at time t, the loss distribution is completely determined by the distribution of
the risk factor change X,,,. We can therefore introduce the /oss operator |, : R - R, which

maps risk factor changes into losses. It is defined as




Iy () =—=(f(t+1,Z, +x) - f(t.Z,)) xeR* (2.4)
and we obviously have L, =1,,(X,,)
If f is differentiable we can consider the first-order approximation L, of the loss (2.3),

t+1

which is given by

d
I‘tA+1 = _[ ft (t7zt)+z fzi (tlzt)*xh—l,ij (25)
i=1
where f, and f, are the partial derivatives of f with respect to time t and the risk-factors Z; .

Using this we can define the linearized loss operator, corresponding to (2.5) as

14(%) = —[ f, (t,Zt)+Zd: f, (t,Zt)*xiJ (2.6)

The first order approximation is very useful as it allows us to express the loss as a /inear
function of the risk factor changes. The quality of the approximation is obviously best when the
risk factor changes are likely to be small (i.e. if we are measuring risk over a short time horizon)
and if the portfolio value is almost linear in the risk factors (i.e. if the function f has small

second derivatives).

2.2 Multivariate Normal Distribution

A random variable X = (X,,..., X;) is multivariate normally distributed if

d
X=pu+AZ

where Z =(Z,,...,Z,)" is a vector of independent identically distributed standard normalrandom
variables (mean 0 and variance 1), and Ac R and x<R® are a matrix and a vector of

constants, respectively.

It is easily verified that the mean vector of this distribution is E(X)=u and the
covariance matrix is cov(X) =X, with ¥ =AA" and X is a positive semi-definite matrix. It is
obvious that the distribution is characterized by its mean vector and covariance matrix, therefore

a standard notation is X ~ N (¢, %)




2.3 Standard Estimators of Covariance and Correlation

Let X,,....,X, be n observations of a d -dimensional risk-factor return vector and

n
assume that the observations come from a distribution with mean vector u, finite covariance
matrix ~ and correlation matrix P.

Standard estimators of 4 and X are given by the sample mean vector X and sample

covariance matrix S , defined by

_ 1 1 V2 Eva\
X=X, 8= 3 (XXX, - ) (27)
i=1 i=1

where arithmetic operations on vectors and matrices are performed componentwise. X is
unbiased estimator but S is biased. An unbiased version can be obtained by setting
S, =nS/(n-1).

The sample correlation matrix R may be easily calculated from S ; the (j,k)-th element
is Iy =S, /./S;Sk » where s, is the (],k)-th elementof S.

The properties of the estimators X, S and R will depend very much on the true
multivariate distribution of the observations. These quantities are not necessarily the best
estimators of the corresponding theoretical quantities in all situations. This is often forgotten in
financial risk management, where sample covariance and correlation matrices are routinely
calculated and interpreted with little crucial consideration of underlying models.

When our data X,,....., X, are IID multivariate normal, then X and S are maximum
likelihood estimators of the mean vector x and covariance matrix X . Their behavior is well
understood and statistical inference for the model can be made.

However, over short time intervals such as daily data, the multivariate normal distribution
is certainly not a good description of financial risk factors, and it is often not very good for longer
time intervals either. Under these circumstances the behavior of the standard estimators (2.7) is
less well understood and statistical inferences based on the estimators might not produce an

accurate model.




2.4 Copulas

One method of modeling dependencies which has become very popular recently is the
copula. The word copula is a Latin noun which means ‘a link, tie or bond’, and was first
employed in a mathematical or statistical sense by Abe Skiar. Mathematically, a copula is a
function which allows us to combine univariate distributions to obtain a joint distribution with a
particular dependence structure.

Every joint distribution function for a random vector of risk factors contains both a
description of marginal behavior of individual risk factors and a description of their dependence
structure. The copula approach gives us a way to separate the description of the dependence
structure. Copulas help us understand the potential pitfalls of approaches that focus only on
linear correlation and show us how to define a number of alternative dependence measures.
Copulas express dependence on a quantile scale, which is useful for describing the
dependences of extreme outcomes.

The copula approach makes it possible to combine more developed marginal models
with a variety of dependence models and to investigate the sensitivity of risk to the dependence

specification.

Definition 2.4.1 Ad -dimensional copula is a distribution function on [0,1] with standard

uniform marginal distributions.

In other words, a copula C(u) =C(uy,.....,uy) is a multivariate distribution function of the
unit hypercube to the unit interval. A mapping of the form C :[0,1]° —[0/] is a copula if the

following three properties hold:

a) C(u,,.....,uy) isincreasing in each component u;
by CL....Lu;1...1)=u, foralliefl...d}, u, €[0]1]

c) Forall (a,,....,a,),(b,......,by) €[01]" with a, <b, we have

2 2 ) _
DI N G L of (TR B0 (2.8)

iy ig

where u;, =a; and u;, =b; forall je{l...,d}.




The first property is a requirement for any multivariate distribution function and the second
property is a requirement of uniform marginal distributions. The last one is less obvious, but it
ensures that is the random vector (U,,....,U,)" has a distribution function C, then

P(a, <U,; <b,,.....,a; <U, <Db,) is non-negative.

The following theorem summarizes the importance of copulas in the study of multivariate

distribution functions:

Theorem 2.4.2 (SKklar 1959) Let F be a joint distribution function with margins F,....,F,.

Then there exist a copula C :[01]° — [01] such that, for all X,.,...., Xy in [~o0,],

F(Xgseen Xg) = C(F (X))o Fy (X4)) (2.9)

If the margins are continuous, than C is unique.

Conversely, if C /s a copula and F,,....,F, are univariate distribution functions, then the function

F defined by (2.9) is a joint distribution function with margins F,,....,F, .

Proof: see McNeil, Frey & Embrechts - “Quantitative Risk Management — Concepts, Techniques and Tools”

Another essential property of copulas is given in the following proposition:

copula C .

2.4.4 Examples of copulas

There are three main categories of copulas: fundamental copulas represent a number of
important special dependence structures; implicit copulas are extracted from well known

multivariate distributions using Sklar’'s Theorem, but do not necessary have simple closed-form




expressions and explicit copulas — copulas that have simple closed-form expressions and follow

general mathematical constructions.
A. Fundamental copulas
I.  The independence copula is

I1(u,,....,uy) (2.10)

=

It is clear from Sklar's Theorem and equation (2.9), that random variables with
continuous distributions are independent if and only if their dependence structure is given by

(2.10)
Il.  The comonotonicity copula is given by
M (ug,....,uy) = min{u,,....,u,} (2.11)
The comonotonicity copula represents perfect positive dependence. If X,,....., X, are

perfectly positive dependent in the sense that they are almost surely strictly increasing functions

of each other, then (2.11) is their copula.
lll.  The countermonofonicity copula is given by

W (u,,u,) = max{u, +u, —1,0} (2.12)

This copula is the joint distribution function of the random vector (U1-U), where
U~U(@)J). If X, and X, have continuous distribution functions and are perfectly negatively
dependent, in the sense that X, is almost surely a strictly decreasing function of X,, then
(2.12) is their copula. Note that the concept of countermonotonicity is defined only for two

random variables.

10



B. Implicit copulas

I.  Gauss Copula.

If Y~N,(uZX) is a Gaussian (Normal) random vector, then its copula is the Gauss
Copula. By Proposition 2.4.3 the copula of Y is exactly the same as the copula of X ~ N, (0,P)

where P is the correlation matrix of Y . Then this copula is

C2*(u) = P(D(X,) < Uy, D(X,) < U
:®P(q)7l(ul)! ----- ’q)il(ud))

where @ denotes the standard univariate normal distribution function and @, denotes the joint

(2.13)

distribution function of X. When there are only two random variables X, and X, in

consideration, we write Cffa, with p = p(X,, X,) - the correlation coefficient.

Il. t-Copula

We can use the same reasoning to derive an implicit copula from any other multivariate

with continuous margins. For example the d -dimensional t -copula is the following:
C‘E,P (u)= tv,P (t;l(u1)v ----- ’t;l(ud ) (2.14)

where t, is the distribution function of a standard univariate t-distribution, t, , is the joint

distribution function of the vector X ~t,(v,0,P) and P is the correlation matrix.
C. Explicit copulas

The Gauss and t-copula are copulas implied by well-know multivariate distribution
functions and do not have a simple closed forms. Nevertheless, we can derive a number of

copulas which do have simple closed forms:

. Gumbel copula

€5 (u,2) = exp( ~((-Inuy)” + (-Inu,)" ) | l<f<w (215

11



If the parameter & =1 we obtain the independence copula as a special case, and the
limit of C;' as @ — oo is the two-dimensional comonotonicity copula. Therefore the Gumbel
copula interpolates between independence and perfect dependence and the parameter &

represents the strength of the dependence.
Il.  Clayfon copula
CO (uy.u,) = (U” +uy” —1)7 0<fO<o  (216)

The Clayton copula approaches the independence copula as 6 — 0, and the 2-

dimensional comonotonicity copula as 8 — «.

.  Frank copula

1+ (exp(—éul) —1)(6Xp(—ﬁ,lz) _1)
exp(-6) -1

. 1
C, (uy,u,) = _Eln( J feR (2.17)

V. Symmetrized Joe-Clayton Copula (SJC)

The SJC copula is a modification of the so-called BB7 copula of Joe (1997). It is defined

as
Coc (U V] 4,,4)=05x(Cyc(u,v] A, 4)+Cre@-Ul-V]| A, 4)+u+Vv-1) (2.18)

where C,.(u,v|4,,4,) is the BB7 copula (also known as Joe-Clayton copula), which is defined

as

1/k

Ci(uv|i,4) =1—(1_[(1—(1—U)k>_r +(1—(1_V)k)_r _JMJ (2.19)

with k =1/log,(2—-4,), r=-1/log,(4,) and A, €(01), 4 €(01). A, and 4, are called the
(upper and lower) coefficients of tail dependence and are explained in the next section. The

SCJ copula is symmetric when A, = 4,.

Gumbel, Clayton, Frank and Symmetrized Joe-Clayton Copula copulas belong to the so-

called Archimedean copula family.

12



2.5 Dependence Measures

In this section we will discuss the differences between three kinds of dependence
measures — the usual Pearson /inear correlation, the rank correlations and the coefficients of tail
dependence. All these measures yield a scalar measurement for a pair of random variables

(X4, X,), but they differ in nature and properties.
2.5.1 Linear Correlation.

The standard linear correlation is a measure of linear dependence that takes values in

[-1 1]. If X, and X, are random vectors than their linear correlations is defined by

Cov(X,, X,)

p(X,X,)= JVar(Xl) *War(Xl)

If X, and X, are independent, then p =0, but the converse is false: if X, and X, are

uncorrelated, this does not imply that they are independent.

A disadvantage of linear correlation is that it is not invariant under non-linear strictly
increasing transformations. It is invariant only under strictly increasing linear transformations. If
T:R—>R is a strictly increasing function then, in general, po(T(X,),T(X,))= p(X,,X,).
Another obvious, but important, remark is that correlation is only defined when the variances of
X, and X, finite. The restriction to finite-variance models is not ideal for a dependence

measure and can cause problems when we work with heavy tailed distributions.

Next we present two incorrect assumptions usually made in financial risk management
when modeling a multivariate risk-return factors. Both these statements are true only if we
restrict ourselves to elliptically distributed risk factors (e.g. normal distribution), but are false in

general.

Assumption 1. The marginal distributions and pairwise linear correlations of a random vector

determine its joint distribution.

13



Assumption 2. For given univariate distributions F, and F, and any linear correlation value
p in [-1,1] it is always possible to construct a joint distribution function F with margins F, and

F, and correlation p .

2.5.2 Rank Correlations.

Rank correlations, on the other hand, are simple scalar measures of dependence that
depend only on the copula of a bivariate distribution and not on the marginal distributions, unlike
linear correlation which depends on both. The standard empirical estimators of rank correlations
may be calculated by looking at the ranks of the data alone, hence the name. In other words, we
only need to know the ordering of the sample for each variable of interest and not the actual

numerical values.

Kendall’s Tau

Kendall's rank correlation is a measure of concordance for bivariate random vectors. Two
points in the real plane, denoted by (X,,X,), and (X,,X,) are said to be concordant if
(%, = X,)(X, —=X,) >0 and to be discordantif (x, —X;)(X, —X,) < 0. Let us denote Kendall’s tau
for a random vector (X,,X,) by p.(X,,X,) and let (X,,X,) be an independent copy of
(X,,X,) i.e. a vector with the same distribution but independent of (X, X,). Kendall's rank

correlation is then simply the probability of concordance minus the probability of discordance:

p. (X, X,) =P((X, - )Zl)(xz - )Zz) >0)-P((X, - >-(~1)(X2 - Xz) <0) (2.20)

We can also define Kendall's tau as an expectation:

p. (X, X,) = E(Sign((xl - >—Zl)(x2 - 522))) (2.21)
where (X, X,) is an independent copy of (X,, X,)

14



Spearman’s Rho

Let X, and X, be two random variables with marginal distribution functions F, and F,.

Then Spearman’s rank correlation is given by:

ps (X1, X,) = p(F (X)), F (X)) (2.22)

In other words, Spearman’s rho is simply the linear correlation of probability transformed
random variables, which for continuous random variables is the linear correlation of their unique

copula.
Properties

Kendall’s tau and Spearman’s rho have many common properties. They both take values
in [-11] and both are symmetric dependence measures. For independent random variables
both p_ and pg give the value 0, although, like linear correlation, a rank correlation of 0 does
not imply independence. For comonotonic (perfectly positive dependent) random variables both
p, and pg give the value 1 and for countermonotonic (perfectly negative dependent) they give

the value -1.

The most important property of rank correlations however, is the fact that both Kendall's
tau and Spearman’s rho are invariant under non-linear strictly increasing transformations. In

contrast, linear correlation is only invariant under strictly increasing /ineartransformations.

Now for two random variables X; and X, with continuous marginal distribution functions

F, and F, and unique copula C, we can express p, and pg only in terms of C:
1 el
p. (X1, X,) =4[ | Cluy,u,)dCluy,u,) -1 (2.23)

1 el
25 (X1, X,) :12J‘0 _[0 (C(u,,u,)—u,u,)du, du, (2.24)

15



2.5.3 Coefficients of Tail Dependence.

Let X, and X, be two random variables with continuous marginal distribution functions
F, and F,and unique copula C. Similar to the rank correlations, the coefficients of tail
dependence are measures of tail dependence that depend only on the copula of X; and X, .
The importance of those coefficients is that they provide measures of exfremal dependence. In
other words, they measure the strength of dependence in the tails of bivariate distribution. The
coefficients we describe here are defined in terms of limiting conditional probabilities of quantile

exceedances.

The coefficients of tail dependence are of two kinds — upper and lower tail dependence.
In the case of upper tail dependence we look at the probability that X, exceeds its q-quantile,
given that X, exceeds its (-quantile and then consider the limit as q — . Obviously X, and

X, are interchangeable. The formal definition is the following:

Let X, and X, be random variables with distribution functions F, and F,. The coefficient of

upper tail dependence of X, and X, is
Ay = 2 (X, X,) = im P(X, > B (@)1 X, > R (). (2.25)
provided a limit A, €[01] exists. If 1, € (0], then X, and X, are said to show upper tail

dependence or extremal dependence in the upper tail; if A, =0 they are asymptotically

independent in the upper tail.
Analogously, the coefficient of lower tail dependence is
Iy = 3y (X3, X5) = lim P(X, < B (@) | X, < R (@), (2.26)
provided a limit A, € [0,1] exists.

Now if F, and F, are continuous distribution functions and F is the joint distribution
function of X; and X,, we can derive simple expressions for A, and 4, in terms of the unique

copula C of the bivariate distribution function. Using that

16



CUy Uy ) = FFS (U, F (Uy)) (2.27)

we get:

4, = lim P(X, <F (@) X, <F(a))

40" P(X, <F,(a))
_im ©(0,9) (2.28)
q—0" q

In the same way, for upper tail dependence we get:

ﬂ“u = lim C(l_qll_Q): lim C(q,Q)

g1 1- q q—0" q (2.29)
where C is the survival copula of C, i.e. é(ul,uz) =1-C(u,,u,)
Examples
Let éf“ denote the Gumbel survival copula, then
_ C%(1-gl- . C%(g,q)-1
PRI o BN e GX:) 230
-1 1-q a1 1-q
and using the fact that CS" (u,u) = u?", we get:
A, =2— 2110 (2.31)

for the upper tail dependence of the Gumbel copula. In other words, provided that & >1, the

Gumbel copula has upper tail dependence.

In a similar way we can show that the coefficient of lower tail dependence for the Clayton

copula is:

4, =271 (2.32)

Proof: see McNeil, Frey & Embrechts - “Quantitative Risk Management — Concepts, Techniques and Tools”

17



2.6 Value at Risk

Today, the most widely used risk measure in financial institutions is Value-at-Risk (VaR).

It also plays a significant role in the Base/ I/ Capital-adequacy framework.

Let us consider a portfolio of risky assets and a fixed time horizon A, and let us denote
the distribution function of the corresponding loss distribution by F (1) =P(L<I). We want to
define a statistic based on F_, which measures the severity of the risk of holding our portfolio
over this time period. An obvious candidate is the maximal possible loss; however, in most
cases the possible loss is unbounded so that the maximal loss is simply infinity. Moreover, if we
use the maximal loss we neglect any probability information contained in the specific distribution
function F . Value-at-Risk takes these disadvantages into account. It is a straightforward
extension of the maximal loss and stands for “maximal loss which is not exceeded with a given

high probability”. This probability is predetermined and is called confidence level.

Definition 2.5.1 (Value-at-Risk): The Value-at-Risk of a portfolio at a certain confidence
level « is given by the smallest number | such that the probability that the loss L exceeds | is

not larger than (1— &) . Mathematically:

VaR, =inf{le R:P(L>1)<1-a}=inf{leR:F (I)>a} (2.33)

In statistical terminology, VaR is simply a quantile of the loss distribution. Typical values
of the confidence level @ are ¢ =0.95, o =0.99 or a =0.999. The time horizon A is different
depending on the particular portfolio and types of risk factors in consideration. Usually in market
risk management the VaR is calculated for short time horizons — 1 or at most 10 days, and in

credit and operational risk management the time horizon A is usually 1 year.

18



2.7 Standard methods for measuring Market Risk

There are three standard methods used in the financial industry for measuring market
risk over short time intervals (i.e. methods for calculating VaR of a portfolio of risky assets):

Variance-Covariance Method, Historical Simulation Method and Monte Carlo Simulation Method.

In market risk managements, we are interested in estimating VaR for the distribution of a

loss L, =1,;(X,,), where X, is the vector of risk-factor changes from time t to time t+1

and I[t] is the loss operator based on the portfolio at time t.

2.7.1 Variance-Covariance Method

The main characteristic of the method is the assumption that the risk-factor changes X,,;
have a multivariate normal distribution. The notation is X ~ N, (x,X), where u is the mean
vector and X is variance-covariance matrix of the distribution. The method also assumes that
the linearized loss is a sufficiently accurate approximation of the actual loss. In this way the

(X.p) . with | defined in (2.6).

problem is simplified to considering the distribution of L;, = I[f]

Then the linearized loss operator will be a function with the following structure
I (X) = —(c, +b;x) (2.34)
with some constant ¢, and a constant vector b, , which are known at time t_

The idea is to use the fact that a linear function (2.34) of a multivariate normal distribution
has a univariate normal distribution. Using the rules of mean and variance of linear combinations

of random vectors we get that

Lo = I[?](le)) ~ N(-¢c, —biu, biZb,) (2.35)

t+1

Value-at-risk can then be easily calculated for this loss distribution by

VaR, =y, +0,07(a) (2.36)
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where x4, and o, are mean and variance of the linearized the loss distribution, ® denotes the

standard normal cumulative distribution function and ® () is the « -quantile of @ .

2.7.2 Historical Simulation Method

The method tries to estimate the distribution of the loss operator under the empirical
distribution of the data X, .,,..., X,. We construct a univariate dataset by applying the loss
operator to each of our historical observations of the risk-factor changes and we get a set of

historically simulated loses:
{L =14(X,)is=t-n+1..} (2.37)

The values ES show what would happen to the current portfolio if the risk-factor change on day
S was to reoccur. We can now use these historically simulated losses to make inference about

the loss distribution and the VaR.

There are a number of ways we can use the historically simulated loss data. In practice it
is common to estimate VaR using the method of empirical quantile estimation, where theoretical
quantiles of the loss distribution are estimated by sample quantiles of the data. Let us denote the
ordered values of the dataset (2.37) by I:n'n <..< El’n. Then a possible estimator of VaR is

the nx(1—«)-th largest value in (2.37). For example if n=1000 and a =0.95 we would

estimate VaR by the 50-th largest historically simulated loss.

2.7.3 Monte Carlo Simulation Method

The term Monte Carlo Method is a rather general name for any approach that uses a
number of simulations under an explicit parametric model. In risk management the idea is to

simulate a large number of risk-factor changes and apply the loss operator on them.

The first step is to choose of the model and to calibrate this model to fit the historical risk

factor data X X, . It should be a model from which we can easily simulate, because in the

t-n+1reee
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second stage we generate m independent realizations of risk-factor changes for the next time

period. Let us denote those realizations by X&,....X ™.

Just like in the case of historical simulation method, we can now apply the loss operator
to these simulated risk-factor changes and we obtain a number of simulated realizations
{LO =1,(X2):i =1,...,m} from the loss distribution. Again we can estimate VaR by simple
empirical quantile estimation. An important feature of Monte Carlo method is that we are free to
chose the model and the number of replications m. Generally, m can be chosen to be much

larger than n, so that we will obtain more accurate estimate of VaR than is possible in the case

of historical simulation.

Since all three methods have their advantages and disadvantages, we cannot say which
VaR estimate is the most accurate one. None of the methods is generally considered better than

the others.

The model we use in this paper to estimate VaR is the following: we are considering a
pair of risk factor changes together. The marginal distribution of each single risk-factor is
approximated by its true empirical distribution and the joint distribution of the two risk-factors is
modeled by the ‘best fit' bivariate copula. Our goal is not to fit the best model to the marginal
distributions; we focus only on the dependence structure between the risk factors. That is why
we take the historical empirical distribution for the marginals. In the next section we present the

data and we discuss the results of our research.

3. Data and the Discussion of Results

3.1 Data

We use daily data from DataStream for the period 20.10.2000 to 17.11.2008. We are

considering seven countries in Central and Eastern Europe — Bulgaria, Romania, Poland, Czech
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Republic, Hungary, Slovakia and Russia. As a representation of the stock market in each
country, we take the main stock exchange index of that country. The foreign exchange (FX)
rates are expressed in US dollars per local currency e.g. if BGN/USD = 0.647 this means that 1

Bulgarian Lev is traded for 0.647 US Dollars (i.e. the ‘price’ of 1 BGN in §)

The following table summarizes the data we use:

Country Observations Main Stock Exchange Index FXratein $
Bulgaria 2107 SOFIX - Bulgarian Stock Exchange, Sofia BGN/USD
Romania 2107 BET - Bucharest Exchange Trading Index RML/USD
Poland 2107 WIG - Warsaw Stock Exchange Index PLZ/USD
Czech Republic 2107 PX - Prague Stock Exchange Index CZK/USD
Hungary 2107 BUX - Budapest Stock Exchange Index HUF/USD
Slovakia 2107 SAX - Bratislava Stock Exchange Index SKK/USD
Russia 2107 RTS - Russian Trading System Index RUR/USD

For both stock index and exchange rate we are considering the daily logarithmic returns
of the raw data. The return series are labeled: R_SOFIX; R_BET; R_WIG; R_PX; R_BUX;
R_SAX; R_RTS, for each index respectively. The FX rate returns are labeled: R_FX_BGN;
R_FX_RML; R_FX_PLZ; R_FX_CZK; R_FX_HUF; R_FX_SKK; R_FX_RUR, respectively.

Tables 1 and 2 in the Appendix give an overview of the return series statistics. The tables
show that all the means of the returns are small relative to their standard deviations. The
standard deviations of stock returns are higher than the standard deviation of FX returns, which
indicates that stock markets are more volatile that FX markets. All the return series have
skewness different from 0 and all, except Bulgarian and Slovakian FX rate returns, are skewed
to the left. Skewness, Kurtosis and Jarque-Bera Statistic clearly show that the returns are not
normally distributed. Jarque-Bera test rejects the null hypothesis (that data is normally

distributed) at 100% level for all the return series.
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3.2 Dependence structure of Equity and FX rate

Table 3 shows the linear correlations between each country’s stock return and foreign
exchange return. We can see that the correlations are all positive, but relatively small. This
shows a very small positive dependence between stock and FX rate in each country. The linear
correlation is the largest for Poland (0.121), indicating that the increase (decrease) of the local
stock market is associated with (around 12% on average) appreciation (depreciation) of the local
currency. Romania and Russia also show a bit larger linear correlations, which is a sign of again
small (8% and 9% on average) positive dependence between stock market and FX market.
Slovakia has the smallest (and insignificant at 10% level — p-value > 0.1) linear correlation. This
indicates that Slovakian stock market and foreign exchange market are not dependent from
each other.

Tables 4 and 5 represent Kendall’'s Tau and Spearman’s Rho correlations for each
county’s stock return and FX return. Kendall’s tau measures the difference between the
probability of the concordance and the probability of the discordance and Spearman’s Rho
measures the rank correlation between variables. We can see that both rank correlations are
consistent with each other and with the linear correlation (except for Czech Republic and
Hungary, where the very small negative rank correlations are insignificant at 10% level — p-value
is much larger than 0.1). Just like with linear correlation — rank correlations are a bit higher for
Poland (p, =0.059 and p, =0.088), followed by Russia and Romania. Both linear correlation
and rank correlations show no indication of significantly large dependence between equity
market and foreign exchange market, for all seven countries in consideration.

Next we will take a look at the tail dependence of stock market and FX market. To see
the dependence structure from the data we build a frequency table. To do this, we first rank the
pair of return series in ascending order and then we divide each series evenly into 20 bins. Bin 1
includes the observations with the lowest values and bin 20 includes observations with the
largest values. In other words bin 1 contains all the values that are smaller than or equal to the
5%-quantile (of the Empirical Distribution) of the return data and bin 20 contains the values that
are larger than the 95%-quantile. We want to know how the values of one return series are
associated with the values of the other return series, especially whether lower returns in stock
market is associated with lower returns in FX market. In other words, we are interested in the
empirical probability that one return series is in its i-th bin, given that the other return series is in

its j-th bin. Let the two return series in consideration be X, and X,. The cell(i, j) of the
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frequency table shows the number of times series X, is in its i-th bin, given that series X, isin
its ] -th bin.

Obviously we will concentrate our attention to cell (1,1) and cell (20,20), because they
will represent the extreme (lower and upper) tail dependence. The information we can obtain
from the frequency table is as follows: if the X, and X, are perfectly positively correlated, we
would see most observations lie on the main diagonal; if they are independent, then we would
expect that the numbers in each cell are about the same; If the series are perfectly negatively
correlated, most observations should lie on the diagonal connecting the upper-right corner and
the lower left corner; If there is positive lower tail dependence between the two series, we would
expect more observations in cell (1,1) ; If there exists positive upper tail dependence, we would
expect a large number in cell (20, 20) .

Tables 6 through 12 in the Appendix show the frequency tables for each country’s stock
return and FX return. As we can see there is no indication of upper or lower tail dependence for
Bulgarian Index and FX rate. This can be partly explained by the fact that Bulgaria has been in a
situation of Monetary Board for the last 10 years and its currency is bound to the Euro.
According to our results there is some small lower tail dependence for Romanian stock index
and FX rate. This asymmetric dependence indicates that Romanian equity and currency are
more likely to depreciate together then to appreciate together. The frequency tables for Czech
Republic, Hungary and Russia show similar dependence structures as the one for Romania.
There is no indication of upper or lower tail dependence for Slovakian stock index and currency.
Only the frequency table for Poland shows signs of upper tail dependence, although it is still
asymmetric because the lower tail dependence is stronger than the upper tail dependence.

The frequency tables’ analysis shows consistent results to linear and rank correlation
analysis: there is no indication of dependence between stock return and FX rate return for
Bulgaria and Slovakia; there is some lower tail dependence between Romanian, Czech,
Hungarian and Russian stock markets and local FX rates and there is some lower and upper tail

dependence for Polish stock return and FX rate.

3.3 Dependence structure between Equity markets

We are now going to perform the same analysis but this time for all the pairs of stock

exchange returns of the countries in consideration. We want to analyze the co-movements of
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equity markets. We are not going to consider the FX rate of each country but only the return on
its main stock exchange index. The goal is to see if Central and Eastern European Equity

markets are dependent on each other.

Again we start our analysis with linear correlation. Table 13 shows the linear correlations
between the stock returns of each country. As we see all the pairs show significant positive
correlation, except for Slovakian stock return which seems to be uncorrelated with the others.
The correlations are highest for the pairs — Poland-Czech Republic (0.5743) ; Poland-Hungary
(0.5634) and Czech Republic-Hungary (0.5699) , which indicates strong dependence between
those three equity markets. An increase (decrease) of one of those three stock markets is
associated with (more than 56% on average) increase (decrease) of the other two. Russian
stock returns are also highly correlated with Polish, Czech and Hungarian stock returns. Such
high linear correlation indicates that Polish, Czech and Hungarian equity markets are highly
dependent on the Russian market (as the largest financial market in consideration). Bulgarian
equity market is also positively dependent on the others, although the correlations are relatively
lower. The highest correlations are with Romanian (0.1318), Czech (0.1478) and Russian
(0.1473) markets. Romanian stock returns are also positively correlated with the others — the

highest is the correlation with Czech stock returns - 0.3415.

Tables 14 and 15 represent the rank correlations for each pair of stock returns. We can
see that the result is consistent with linear correlation (although Kendall’s Tau is relatively
smaller). Again Polish, Czech and Hungarian stock returns are highly correlated with each other
and with Russian stock returns. Equity returns in Slovakia seem completely uncorrelated with
the rest of the equity markets in consideration. Bulgarian stock returns do not show high rank
correlations with any other stock returns. Romanian stock market indicates relatively high rank

correlations with Czech and Polish stock markets.

Let us now examine the frequency tables of all the pairs of stock markets. Tables 16 to
37 represent the frequency tables. Again we find that Slovakian stock return shows no tail
correlation with any other stock return in consideration. Bulgarian stock returns show lower tail

dependence with all the other returns (except Slovakia). This indicates that Bulgarian stock
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market tends to fall together with Central European stock market and Russian stock market.
Again, Poland, Czech Republic and Hungary show high lower and upper tail dependence
between each other. This finding indicates that those three stock markets crush and boom
together. Nevertheless, the dependence is asymmetric because the lower tail dependence is
much higher than the upper tail dependence. Our analysis shows again that these three stock
markets are also highly dependent on the Russian stock market. We find evidence of lower and
upper tail dependence between Russian stock returns and all the three Polish, Czech and
Hungarian stock returns. Here again the lower tail dependence is higher than the upper tail
dependence. Romanian stock returns show relatively weaker but almost symmetric tail
dependence (upper and lower almost the same) with Polish, Czech, Hungarian and Russian

stock returns.

4. Model Estimation and Value-at-Risk

4.1 Model and Optimal Copula

As mentioned above, in this paper we are not trying to create a model for the univariate
return series, we are only interested in their dependence structure. Therefore when modeling the
behavior of a specific pair of return series we will use the empirical distribution for the marginals
and we will try to find the copula that best describes the co-movements (dependence) of the

series in consideration.

Let us look again at the dependence structure of stock returns and FX returns in each of
the seven countries. With the help of Andrew Patton’s Copula toolbox for Matlab® [10] we are
able to find the best fitting copula for all the pairs of return series. The toolbox uses Maximum
likelihood Estimation to find the optimal copula (the one that best fits the empirical data). The
results are presented in table 38. We can see that for all countries, except Poland, student-t is

the optimal copula. Student-t Copula is a symmetric copula (shows both upper and lower tail

26



dependence), but the estimated coefficients of tail dependence we get are very small (weak or
no tail dependence) which is consistent with our preliminary findings. Only for Poland the optimal
copula is the so called Rofafed Gumbel Copula, which is derived from the Gumbel copula in the

following way:
CgeufRotated (U,V) _ CHGU (1_ ul- V)

The Gumbel Copula has upper tail dependence and no lower tail dependence. On the
other hand the Rotated Gumbel Copula is exactly the opposite — it has lower tail dependence
and no upper tail dependence. This again is consistent with the result of the frequency table

where Polish stock and FX return showed stronger lower tail dependence.

In the same way in table 39, we present the optimal copula and the estimated
coefficients of tail dependence for all the pairs of stock returns of the countries in consideration.
We can see that the coefficients of tail dependence are consistent with the frequency tables,
previously discussed. The highest coefficients of tail dependence are between Poland, Czech
Republic and Hungary, also relatively high are the dependences between these three stock
markets and the Russian stock market. Student-T copula and Symmetrized Joe Clayton copula

turn out to be very good descriptions of the dependence structure for most of the pairs.

We can now use this optimal copula to simulate 5000 random risk-factor changes and

use those in the Monte Carlo Simulation method to calculate Value-at-Risk.

4.2 Value-at-Risk

Now we are going measure the market risk associated with each financial market in
consideration. First we will focus on the pairs of stock return and FX rate return for each country.
We will compute Value-at-Risk of a hypothetical portfolio of 100 million US Dollars invested
100% in the given county’s stock market and we will consider two risk-factors changes — the

stock returns and the FX rate returns of the particular country.
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We are considering the following situation: today (17/11/2008) we invest the $100M in
the market portfolio of each country (represented by the main stock exchange index) and we are
interested for the VaR (in $) for the next day i.e. the 1-day VaR at 95%, 99% and 99.9%
confidence levels. We use the three methods discussed above — Variance-Covariance, Historical
Simulation and Monte Carlo Simulation (with copulas and the model we gave in the previous
section). The results are presented in tables 40, 41 and 42 for the 95%, 99% and 99.9% VaR,

respectively. All values are in $.

We can see that in the case of Slovakia the Value-at-Risk is the lowest, indicating that
this financial market is less risky than the others in consideration. Russian stock market appears

to be the most risky one. The other countries show similar values of VaR to each other.

The results also show that, in the case of 95% VaR, Variance-Covariance method gives
higher estimates than Historical Simulation and Monte Carlo Simulation. In the case of 95%
confidence level the Variance-Covariance method overestimates the tail of the loss distribution.
On the other hand when we consider higher quantiles — 99% and 99.9% we see that Variance-
Covariance method underestimates the true loss distribution and gives VaR much lower than
Historical Simulation and Monte Carlo simulation, especially in the case of 99.9% confidence
level where the difference is really significant — Variance-Covariance VaR is sometimes almost
twice lower than Historical Simulation. This difference can be explained by the non-normality of
the data. We saw already that none of the return series in consideration is close to being
normally distributed and moreover - the joint distribution of the risk factors is not the multivariate

normal distribution — which is the main and crucial assumption of Variance-Covariance Method.

We also note that Monte Carlo method gives VaR estimates which are very close to
Historical simulation. This makes sense, because the model for the Monte Carlo simulations
uses empirical distribution of the univariate risk-factors and describes their dependence with the
optimal copula, which turns out to be a very good approximation of the true multivariate

distribution of the risk-factors.
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Now let us look at pairs of countries together. We will again compute Value-at-Risk of a
hypothetical portfolio of $100M, but this time it is equally invested in the markets of the two
countries in consideration - $50M in one stock market and $50M in the other. Here we will
consider only the returns of the stock markets as risk-factors and not the FX rates of the two
countries. Situation is as follows: today (17/11/2008) we invest $50M in one stock market and
$50M in the other. We assume that the FX rates do not change for 1 day and we do not consider
them as risk factors. Again, we are interested in the 1-day VaR at 95%, 99% and 99.9%
confidence levels. We expect that VaR is lower than if we invest $100M in one market only,

because of the diversification effect. The actual results are summarized in tables 43, 44 and 45.

Results are consistent with the VaR for a portfolio invested in one market only — again for
95% confidence level Variance-Covariance Method gives VaR higher than the other two
methods. But when we consider higher quantiles Variance-Covariance method underestimates
the tail of the loss distribution. The Value-at-Risk calculated with Monte Carlo Simulation Method
is very close to the one calculated with Historical Simulation. This again indicates that the copula
approach gives a very good approximation of the true multivariate dependence structure of the
risk-factors. We have to note that VaR is lower for the pairs of countries that include Slovakia. As
we already found out — Slovakian market has very low correlation with the others which makes it

a very good diversifier in a given portfolio.

One more thing worth mentioning is that none of the methods for estimating VaR is
generally considered ‘better’ than the others. In practice, risk managers take all of them into
account. But the most important result of our research is that the ‘best fit' copula is a very good

description of the true dependence structure of the risk-factors.

5. Conclusion

The goal of this paper was to analyze the dependences across financial markets in
Central and Eastern Europe. We focused our attention on two kinds of dependences — the

relation between stock returns and FX rate returns for each country and the co-movements of
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stock markets. We considered the following seven countries: Bulgaria, Romania, Poland, Czech
Republic, Hungary, Slovakia and Russia.

Our results showed no indication of any dependence between stock returns and FX rate
returns for Bulgaria and Slovakia. We also found some lower tail dependence between the stock
markets and FX rates of Romania, Czech Republic, Hungary and Russia and some lower and
upper tail dependence for Polish stock returns and FX rate returns, but all those dependences
were relatively small. The conclusion is: there is no evidence of significantly large dependence
between equity market and foreign exchange market, for all the 7 countries in consideration.

On the other hand we found significant correlation between stock returns of Poland,
Czech Republic and Hungary. Our results show high lower and upper tail dependence between
each of these countries, indicating that those three stock markets tent to crush and boom
together. There is also evidence that Polish, Czech and Hungarian stock markets are strongly
correlated with the Russian stock market. Russian stock market has significant tail dependence
with all of the others stock markets in consideration (except Slovakia). This dependence is again
stronger in the lower tail than in the upper tail — meaning that a crush in Russian stock returns is
likely to cause crushes in the other Central and Eastern European markets. Slovakian stock
returns show no correlation with any other stock return in consideration, a property that makes
Slovakian stock market attractive for investors because of the good diversification effect.
Bulgarian stock returns show lower tail dependence (although relatively weaker) with all the
other returns (except Slovakia), indicating that Bulgarian stock market tends to fall together with
Central European stock market and the Russian stock market.

We then turned our attention to modeling these relations and co-movements across
financial markets. We focused on the copulas of the risk-factors. For each pair of risk-factors in
consideration we fitted the optimal copula and we calculated Value-at-Risk based on the three
most common methods - Variance-Covariance, Historical Simulation and Monte Carlo
Simulation. Our results show that for the case of 95% confidence level Variance-Covariance
method actually overestimates the tail of the loss distribution and produces higher values of VaR
than the other two methods. But if we consider higher confidence levels — 99% and 99.9% we
find that Variance-Covariance method gives much lower estimates of VaR than the other two
methods — an indication that, in this case, the assumption of normally distributed risk-factors is
inadequate. An important result of our research is that copula approach gives a very good

description of the true dependence structure of risk-factors.
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Appendix

Table 1. Descriptive statistics of the daily logarithmic returns of stock exchange indices.

R_SOFIX R_BET R_WIG R_PX R_BUX R_SAX R_RTS
Mean 0.00061 0.000829 | 0.000234 | 0.000222 | 0.000177 | 0.000624 | 0.000528
Std. Dev. 0.018579 | 0.016365 | 0.012933 | 0.015077 | 0.015319 | 0.011098 | 0.022245
Skewness -0.609329 | -0.27997 -0.32598 -0.70406 | -0.322879 | -0.042637 | -0.736228
Kurtosis 31.57748 | 10.11759 | 5.946227 | 20.39308 | 12.01723 9.47241 16.3606
Jarque-Bera 71827.43 | 4475.061 | 799.3698 | 26732.73 | 7174.993 | 3678.415 | 15861.65
Probablllt_y of 0 0 0 0 0 0 0
Normality
Observations 2107 2107 2107 2107 2107 2107 2107
<Back to text
Table 2. Descriptive statistics of the daily logarithmic returns of foreign exchange rates.
R_FX_BGN | R_FX_RML | R_FX_PLZ | R_FX_CZK | R_FX_HUF | R_FX_SKK | R_FX_RUR
Mean 0.000192 | -8.63E-05 | 0.000218 | 0.000345 | 0.000184 | 0.000367 1.02E-05
Std. Dev. 0.006116 | 0.006531 | 0.007967 | 0.007317 | 0.008549 | 0.006955 | 0.002658
Skewness 0.103095 | -0.184091 | -0.703651 | -0.094485 | -0.539868 | 0.002654 | -1.123123
Kurtosis 4771448 | 11.31232 | 10.52722 | 8.434286 | 9.074085 | 4.165953 | 27.03313
Jarque-Bera 279.225 6077.841 | 5148.058 | 2595.751 | 3341.381 | 119.3506 | 51150.67
Probablll'fy of 0 0 0 0 0 0 0
Normality
Observations 2107 2107 2107 2107 2107 2107 2107
<Back to text
Table 3. Linear correlation between each country’s stock index return and FX rate return.
Linear . . . . .
. Bulgaria | Romania Poland Czech Republic | Hungary | Slovakia Russia
Correlation
Index vs. FX 0.04441 | 0.080073 | 0.121418 0.039181 0.058398 | 0.018678 | 0.093028
P-value (0.0416) (<0.001) (<0.001) (0.0155) (<0.001) (0.24) (<0.001)

&Back to text

Table 4. Kendall’s Tau rank correlation between each country’s stock index return and FX rate return.

Kendall's Tau Bulgaria Romania Poland | Czech Republic | Hungary | Slovakia Russia
Index vs. FX 0.01701 0.023215 | 0.05961 -0.003867 -0.00118 | 0.018527 | 0.02598
P-value (0.2438) (0.0643) | (<0.001) (0.7212) (0.9065) | (0.0844) | (0.0243)

&Back to text
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Table 5. Spearman’s Rho rank correlation between each country’s stock index return and FX rate return.
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Table 7. Frequency table for Romania
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Table 6. Frequency table for Bulgaria
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Table 12. Frequency table for Russia
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Table 13. Linear Correlations between Equity market returns

c():::f;:on R_SOFIX | R_BET | R_WIG R_PX RBUX | RSAX | R_RTS
R_SOFIX 1 0.1318 0.075 0.1478 0.0861 0.0263* 0.1473
R_BET 0.1318 1 0.2395 0.3415 0.2462 0.01* 0.2269
R_WIG 0.0750 0.2395 1 0.5743 0.5634 0.0153* 0.4598
R_PX 0.1478 0.3415 0.5743 1 0.5699 0.0153* 0.5241
R_BUX 0.0861 0.2462 0.5634 0.5699 1 -0.0041* 0.4440
R_SAX 0.0263* 0.01%* 0.0153* 0.0153* -0.0041* 1 —0.0101*
R_RTS 0.1473 0.2269 0.4598 0.5241 0.444 -0.0101* 1
*-insignificant at 10% level (p-value much larger than 0.1)
<Back to text
Table 14. Kendall’s Tau Rank Correlations between Equity market returns
Kendall's Tau | R_SOFIX | R_BET R_WIG R_PX R_BUX R_SAX R_RTS
R_SOFIX 1 0.0467 0.0301 0.051 0.0219 0.041 0.0572
R_BET 0.0467 1 0.1054 0.1341 0.0917 0.0032* 0.0758
R_WIG 0.0301 0.1054 1 0.3533 0.3762 0.0006* 0.2772
R_PX 0.051 0.1341 0.3533 1 0.3533 0.0266 0.2889
R_BUX 0.0219 0.0917 0.3762 0.3533 1 0.0108* 0.238
R_SAX 0.042 0.0032* 0.0006* 0.0266 0.0108* 1 0.0097*
R_RTS 0.0572 0.0758 0.2772 0.2889 0.238 0.0097* 1
*-insignificant at 10% level (p-value much larger than 0.1)
£Back to text
Table 15. Spearman’s Rho Rank Correlations between Equity market returns
Spearman's Rho | R_SOFIX | R_BET R_WIG R_PX R_BUX R_SAX R_RTS
R_SOFIX 1 0.0687 0.0443 0.0758 0.0326 0.0598 0.0854
R_BET 0.0687 1 0.1549 0.1949 0.1353 0.0052* 0.1116
R_WIG 0.0443 0.1549 1 0.5011 0.5298 0.0005* 0.398
R_PX 0.0758 0.1949 0.5011 1 0.4981 0.0384 0.4098
R_BUX 0.0326 0.1353 0.5298 0.4981 1 0.015* 0.3437
R_SAX 0.0598 0.0052* 0.0005* 0.0384 0.015* 1 0.0142*
R_RTS 0.0854 0.1116 0.398 0.4098 0.3437 0.0142 1

*-insignificant at 10% level (p-value much larger than 0.1)
<Back to text
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Table 23. Frequency table Romania — Czech Republic

(R_BET vs. R_PX)
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Table 22. Frequency table Romania — Poland

(R_BET vs. R_WIG)
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Table 26. Frequency table Romania — Slovakia

(R_BET vs. R_SAX)
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Table 24. Frequency table Romania — Hungary

(R_BET vs. R_BUX)
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Table 30. Frequency table Poland — Slovakia

(R_WIG vs. R_SAX)

HEESNEEBE SN BENEESEENRNE
SENENEENEEEEEENEEBRED
NN NEEENENEBENEENEEENR
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RN EENEENEEE LN EEEER
SR EEEENENENENAEEBESNEREE
n|~Nlols[~Nslo]o]o[a[un[v[v]o[v][~lv]=]<]wn
NN EENEEEEEEENEEEERNEE
a|vn|unlo[~Nolv[aNun]a]olololo[wvn]o[]m
NN E PRI R RN E RN REER
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NN RRERERENRERE RN R
NEEDNENEEEEEHEENEN N EHEEE
EEEEEEEENENNEEERNENENE
S| nfolololo|—s]o]n]|o~N[~]n]uv]vn]~]n]w
Ooln]unfo|[~No]o[o]t|a]n]o[m]o]s[o|[~N[un]<]©
ofnfofmfoJofg|s[s[m[s[g[wn][e[~[e]m[~[m
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Table 29. Frequency table Poland — Hungary

(R_WIG vs. R_BUX)

Table 32. Frequency table Czech Republic — Hungary

(R_PX vs. R_BUX)

52(19] 6| 5] 7| 2| 2| 1)1] O} 1] 1] Of3] O] 1} 1f O] 1] 3

10]16]15| 6] 7{ 9| 9| 6[4] 4] 4] 3] 5|2| 2f 0] 0] 1) 0] 2

8|10j11{12f 7{10f 8 7(3) O] 5] 5] 3|1| 4| 1] 2] 1] 6] 2

6| 8|12| 9] 8[11]10] 7{6f 1] 1] 6| 2|5] 2| 4f 3] 1] 2 1

5| 5] 7{10f of 7| 8[10[{7) 7] 2] 3] 1{4| 3| 8] 2| 3] 3] 1

4 6] 5| 9| 8| 5|10{ 3|4] 2|12 5] 7|4] 7{ 2] 6] 3| 4 O

4] 7] 3] 5)17] 6] 9] 6|6/ 5| 3| 8] 3|5] 2| 3] 5[ 3] 3] 2

3| 3] 4] 8| 6[10| 4f{11{4) 5] 8|11 47| 1| 4] 1] 8] 2] 1

4 3] 8| 7| 4] 6] 6[11]6] 3] 6] 4] 7|5] 7 4] 4| 4| 4] 3

3] 4] 5] 4] 1f 7| 3[ 1{9)39] 4] 6] 5|3| 1| 1] O] 4] 4] 1

Of 3] 2| 71 7] 4] 5] 2|6] 5| 6 5|11|2] 8 7| 7| 7| 7] 4

3| 4] 9] 5] 4| 5] 4] 57| 4] 8] 3| 7|3] 3] 8 8] 6] 4| 6

1{ 6| 4| 1]11] 3] 2| 6|6 4| 6 4|/15[6] 7| 4] 8] 6] 4] 1
2| 3] 6] 2 1f 5| 8| 3[6] 4] 6] 6] 6/8|10[ 7| 7] 7] 3] 5
0l O] 3| 4] 2| 6] 6] 3|7( 6] 7| 9] 7|9]11|{10[ 8 4| 1| 3
of 2] 1] 3| 2| 3| 3| 8|7| 3| 4 7| 6/9] 9[10] 5| 7[10] 6
1{ of 1| 4| 2| 2| o] 2|1 1f 7{ 7| 4[9]14] 8]10]J13] 9|10
0l 2| 1) 2] 1] 3] 3| 4|8| 3] 8] 3] 2|8 3| 8[15[ 9]10[13
O 2] 1) 1| O] o] 4f 8)4] 7| 4 5] 8|6] 8 7| 4|11[{15]10
0l 2| 2| 1] 1] 2| 1] 1{4| 2| 3] 5| 2|6] 4| 8 9f 8| 13[32

43|18[11] 6] 7| 4)5]1f 1] 2] Of 2] 1} 2] of O] 1] 1f 0] 1

14(12]| 15[ 14| 6| 8|4|6] 4| 2| 4| 5] 0] 2[ 2| 5| 1] 1] Of O

13 8|12{10] 6] 8|9]|6] 5| 2| 2] 4| 3] 6] 2| 2] 1f 3] 2 2

4113[16]11] 6| 7|9|6] 7] 1] 5[ 1] 2| 4] 5] 2| 2| 2| 1] 1

7112] 5| 5{14] 5[5]2|10] 2 6] 5[ 6] 2| 5] 5] 2 3] 1f 3

5| 7] 3] 9{11] 9[8|8| 6] 3 4] 8 8] 3| 2| 0] 5[ 2| 3| 2

4 5| 3] 9| 6] 5|8]7{10f 1{12 6| 5]10f 4f 4| 1f 2| 2 1

1{ 5] 6 5] 9 9|8[4] 8 4] 8| 4|/10] 5[ 5] 6| 1] 2| 4| 1

2| 5| 7| 6[12)10[3])6] 3] 4f 9] 3[ 7] 7| 4] 3] 5[ 4] 4] 2

1| 3 2f 3| 3| 4[{1|5] 4]43] 3] 4] 4] 5] 3] 4] 3] 3] 3] 4

5| 3| 3] 5[ 2] 5[9]4]| 3|16 7] 7{ 5] 4| 4] 5] 5[ 2] 9] 2

1{ 5] 5] 3] 5| 6/4{7] 6] 3] 5] 5] 9] 8 7] 9| 8 5| 2| 3
2| 3] 1] 2{ 3] 7{5]8] 6] 3 5]/10{ 9] 9] 7| 2| 5[ 9] 6] 3
1{ 2] 4| 4] 2| 3|5[{6] 7{ 3] 6]11] 9] 8 9] 2| 6] 9| 4| 4
0] 2| 3] 3 6] 4[{2|5] 9] 2 7] 5] 8] 6|10 9] 8| 8] 5] 4
2| O 2| 3[ 2| 4{5]4] 3] 3| 3|11 6] 6] 9]11j12[ 8] 5] 6
0] 1] 2| 3[ 4] of7|5] 5] 2f 5] 2f 5] 5] 7] 9]11[{14] 9] 9
0] 1] 3] 3{ 1] 2[3]6] 2| 7{ 9] 5] 2] 3|10] 7|10 9]13[10
1{ o] 3[ 1] O] 3|4{4] 4| 1] 1] 4] 4] 5] 7]14f 8|11] 9|21
Of O] 0] O] O] 3[1f5[ 3] 1] 4| 4| 2| 5] 4] 6]10| 8[23|27

Table 31. Frequency table Poland — Russia

(R_WIG vs. R_RTS)

39/ 10| 8|10] 4] 8| 4] 1| 1] 2f{1f O] 3[5{2f 2] 3] 1] 1] 1

18| 13]11] 7| 6| 3| 8] 4] 2] 33| 3] 2|6|5] 3| 1f 2| 4] 1

8|14] 7|12|10| 5| 2| 6] 5] 4|3]11] 2|3[1| 4| 2 6] 1] O

8| 8]11|10] 6] 5] 6] 7] 6| 3|5] 4] 4|1|9] 4] 4] 2] 1] 1

4]111)12f 6] 5] 5] 3] 5] 7| 5/8| 6] 3|4|6] 5| 4] 2| 2| 2
4] 7| 6| 8[11] 7| 4] 5] 9] 6|7] 4] 6]7|1] 2| 3] 4] 3] 2
3] 3] 7| 4] 5]10] 3| 6] 8| 9]7] 4] 7|5|5] 5] 6] 4] 2| 2
2] 3] 5| 4 9| 5[ 8 9] 9] 7|4] 5] 7|5[{4| 6| 6] 5] 1] 1
4l 3] 3| 9] 2| 6] 4| 4| 8|11|7| 7| 6[6[6] 5| 4] 4] 2| 5
3] 6] 4] 1] 4] 4] 5/10] 6[12]9] 5] 6]4|3] 1] 5] 7] 4| 6

2| 4] 7] 3| 3| 6[10] 6] 8] 7]4] 7| 6]7{5 5 2 7| 3] 3
1] 3] 5] 9] 5] 1] 8| 1| 2| 6[7] 8| 9[4|8] 8] 9] 4| 5] 3
3] 2] 6] 1] 8| 8 2f 5] 6] 3]6] 6] 6|5[6] 9[10f 2| 5] 6
1] 3] 4] 3] 8] 8] 7| 4| 1f 5{7| 5| 6[7|5] 7]10] 4| 4| 6
1] 5| 0] 4| 1] 2| 7]11]j11] 6]6] 2| 2|3]|9] 2| 7] 7{13] 7
0] 3] 2| 1] 6] 6 5] 3] 4] 5]4] 6] 6]9{8]10[ 9 5] 8] 5
2] 1) 4] 2| 71 5| 5] 6] 5] 2|5] 5] 5/6[7| 3| 6[13] 5|11
1] 3] 1] 5| 3] 8| 6] 4] 4] 3|3] 4/11]|8]6] 9| 4] 8| 5]10
2| 2| o] 3] 1} 3| 3] 6] 2| 4|5] 6] 4|88 7| 5] 7[18]11
0] 1] 3] 3] 1} 1f 5] 2| 2] 2]4] 8] 4]2[{2| 8| 5[12]|18]23
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Table 34. Frequency table Czech Republic — Russia

(R_PX vs. R_RTS)

43111] 9| 5| 4| 7{ 3] 1] 1 2{4[2| 1] 1j1] 2] 2| 3| 1] 3

21{12f 9] 9] 7] 8| 3[ 5] 3] 3|5|1] 3[ 5{2] 3] 1] 1] 2| 2

8|15| 8| 6| 6] 5[ 8| 5[ 7| 6[4|4| 3| 6[4] 4] 1] 1| 1] 4

6/ 10| 7|10 13|10| 5| 5| 4| 6|3[2] 1] 3|3 5[ 5[ 3| 1] 3

2(11{11) 8)13| 7| 8 4] 3] 4|6(5| 1| 5|4 3| 3| 4| 2| 1

2 8[13] 4] 8| 9[10] 3] 6] 3|8[3| 6] 4|3] 6] 2| 4| 2| 2
2{ 3] 3] 5] 7| 4[10{11] 8] 7|6[7| 6] 6]8] 2| 4| 3| 1] 2
3| 3] 4] 5| 6] 7[ 5| 6] 8] 3[3|6]12] 9|6] 4 7] 5| 3] O
1| 6|10 4] 5] 2| 2| 6] 7[10]9|5] 2| 5[3| 5] 4] 6] 9] 5

3| 4] 3] 7] 4] 4| 5[ 8| 3]14)7|5] 2| 5[2] 6] 9] 4] 6| 4
3| 2] 5] 3] 6| 8 3] 3j11] 3|5[9| 9| 8|8] 5| 3| 5 4] 2
2 Of 1) 6] 2| 7[ 6] 9] 7] 5|8[7| 3[11]9] 3| 8| 4| 5] 3

1[ 6] 7{ 6] 4] 4] 8| 6 6] 1{4|6] 7| 8|8] 9| 5] 3| 2| 4
3] 4] 1] 6] 2| 5| 2| 7|12 4|4|7] 5| 8|9| 6| 6| 8| 4| 2
0| 2| 2| 4| 5] 6[10| 6| 3| 4|5|8| 6] 6|8| 4| 6]/11] 5| 5

Of 2{ 1] 3] 4] 2| 6| 4| 3] 4)6]7] 6 5[9]12] 9] 3] 9/10
2{ 1f 0] 3] O] 3| 6] 3] 3]10]5[4|10| 3]6|11] 6[12{12] 5

1{ 0] 4| 5] 3| 5] 4| 4| 3] 4|6]|7|14] 1]6| 4|10] 8| 10| 7

1| 3| 6 4| 1| 3| 1f 6 3| 6]5|6] 5[ 3|3] 7| 7|10]|11]|14
2| 2| 2| 2| 5| Of O] 3| 5] 6[2|5] 3| 3|4]| 4| 7| 8|15]|28

Table 36. Frequency table Hungary — Russia

(R_BUX vs. R_RTS)

41|10 47| 57| 0|5] 2| O] 4| 5|2|5] 10| 3] 1| 2| 2

19114| 8|9| 7{1| 5|8| 8| 2| 3| 2|2|6] O[3] 3] 1] O] 4

8|10 11|6] 5[9| 6|5] 1| 1|11 7|5]2] 4|{3] 7] 2| 2| 1

8| 8| 3|8| 6]6]10|6] 3| 2| 8| 3|9|5] 5|2 1| 4| 5] 3

7110] 5|5/16|8| 5|6 4| 5| 4| 4|4{4| 3[4] 3] 4| 3] 1

4110 8[5{ 7|7] 7{9] 3| 3| 3] 4[6]9] 3|3] 7| 2| 1f 5

2| 4| 5|4| 5]1]12|5] 9] 9] 9| 3|6|8| 3|4| 4] 4| 5| 3

3] 2| 7|9] 5|4] 5|2 7| 4] 5| 8|6[7|11[7] 4| 4| 3| 2

4] 2| 5[6f 5|6] 6[8| 5|14] 6] 5[3|6] 5|6] 1| 9] 2 2

5| 4| 4|6| 4|6| 4]4] 5| 7] 9] 5|5]|5| 93| 4| 6| 6| 4

2| 5|10|8| 2|6| 7|4] 6| 7| 6] 5|9]5| 3|7| 4| 1| 4| 4

0] 3| 3|4| 6]4] 6|5|11] 4] 5] 3|4]|8] 8|9] 6] 9] 5] 3

0|l 4| 5|2| 4]7| 8|5] 3| 5] 1] 3|6|8| 4|8 8| 5|12| 7

0l 2| 2|5| 3|9| 5|4| 7|10] 5| 5|7|5| 4|4| 9|12 2| 5

0l 2| 7|8] 7{2| 5|6] 5| 4] 5] 7|6]2] 8|6] 8] 3| 9] 6
0|l 1| 3|7| 4|6| 3|3] 5| 8| 3| 6|7|4| 6|8 4|10|10| 7
0] 2| 6|2| 4|5| 1|4| 8| 4] 7|10|3]|5| 7|7| 6] 8| 8| 8
0] 5| 4|2| 44| 4]6] 4] 5] 9]10|8]4] 9|7 7| 4| 6] 4
1] 3| 1j0] 48| 117] 2| 7] 1] 4]7]3]10{9|11] 9| 6|11
2| 4| 5|2| 2|0| 5|3| 8| 4] 1] 7|0]4] 3|5| 5| 8| 14|24

Table 33. Frequency table Czech Republic — Slovakia

9] 5| 5| 7|9] 6] 6] 5| 6| 0]4|7| 6] 3[6[3| 1|5/4| 9
7] 9110] 6]5] 1| 3| 4] 3| 3|5|4] 3] 5[3[7| 3|8|4[12
6/ 10| 8| 6]9] 5[ O] 4| 8| 0|6]4] 1| 7|4|6] 7]4|3] 8
71 6|11 7(4| 6| 8] 1| 6| 3]|4|5| 1| 2[5]|5| 5|2[7]|10
4 2] 8| 3|4| 6| 8| 6| 4| 5|6/4| 8] 8[5[9| 6]4|4| 1
7| 3| 3|1014] 6| 2| 4| 6| 3]|9|7] 6| 4|4|6| 8]|5|5| 4
71 5] 5| 714] 9| 6] 6| 8| 2|7|2] 6| 3|8|6[ 2|5|1] 6
3| 2] 2| 414 2| 3| 1] 4[29]|6]4] 5] 3[2[5] 8|4|7| 7
2| O] 3| 6[2| 3| 8] 2| 3|16]9]6| 7| 9[5]|8| 7|5[4]| 1
2| 5| 1] 66| 4| 4| 8| 8[13]|2]|3| 5] 5[7[5] 7|6|6[ 2

3|11] 3]10[{5| 6 4] 8] 4| 4]4]4] 7] 8|5|4] 6|2]4] 4
2| 4] 3| 5|8] 9| 6] 8| 3| 4]6]9] 4| 3|7|3| 7]7|7] O
6| 2| 3| 42| 6 4] 7] 7] 1]7]|8]10] 9|9]|3| 4|6]4| 3
2| 5| 5] 2[5 5[ 7] 9] 5| 4|4]|5] 3] 9|5|8] 5|7|5| 6
4] 6| 4| 3|7{ 4] 7] 5| 3| 2|5]|8] 6] 5[8[4]10[5]7] 2
3| 5| 8] 6[4] 3| 2[{10] 5] 3|3|7| 7]11|4|1] 1]9]|9] 4
3| 6] 7| 3|6]10[ 6] 6| 4| 2|4]|7] 7| 3|8|3| 4]6|7] 4
6] 5| 6] 16| 4[10] 5]10| 3|6|5] 7| 2|4]7] 3]|3]|7| 5
8| 6| 6| 2|4 4] 9] 4| 5| 4{4|3]| 4| 4|4[9] 6[8|6] 6

(R_PX vs. R_SAX)

15| 8| 5| 7[(7] 7 2| 2| 4] 4]4]4] 2| 2|3]|3] 5|5|4|12

Table 35. Frequency table Hungary — Slovakia

(R_BUX vs. R_SAX)

6556347200%467554659
7592865100”537792628
8248753000w735277864
4956371000m538574549
346375910%5847372844
743237500%0776433862
51660420“51744424151
64443581”01423958666
68397981m00390782915
44475550“01947246537
34455683000886554574
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Table 37. Frequency table Slovakia - Russia

(R_SAX vs. R_RTS)

s| 8] 7] 7[4a] 7] 6] S| 1] 1[18] 3] 3] 8] 4f4a] 1]1] 6] 7
10 7| 6| s8] 7| 7| 3| 3| 2| 8] s| 3| 2| s|s| s|e| 3] 5
4 a| 7| 2|2] s| 7| 2| 3| 2] s[10] 9of 5| 3|9 9|7 6| 4
3| 9| 6| 3[s| e|12] s| 1| 7] | 3| 7| 4] 2[s| 1|3] 4|10
6| 2| 6| a|9] 1| 5| 8| 6| 6| 7| 4| 6| 4] 4|6| 6|6 6 3
4| 2| 6| e|s| a| 7| 1| 4| 4] 3] s| 7[11] s[s|11]s] 6] s
s| 6] 3] 3[s| 8] 5| s|[1o] s| 3] 8] 6] 4] 3[7] s5[s] 1] 8
6| 3| 4| 7|9] s| 7| 3| s| 6| 2| 3| 6] 1] s[e] 7|8] 7] 5
13] of 7| 4|e|10] s[16]16] 5| 1| 1] 3] of of2] s|o] 2 1
1| 4] s| 3[3] 1| 2] 6] 2| 9of 9] 12| 3| 8|10[3]| 3]7] 5| 9
2| 4| s| s[7] 1| 3| 4] 3] 7| 6| 3| 7[10] 47| 3[7] 8] &
8| 3| 6| 3|s| 4] 1| 6| 8| 8| 3| s| s| 5| 7[3] 8|7 3] 5
4| 9| s| s|1] s| 3] 7| 3] of 2| s| 3| 6] 9fe| 6|3 2[12
3| 2] 3| 7|4] 8| s| 3| e|10] 4| of s| 4| 1|s| 7[a[12] 3
8| 4| s| s|3]| a| 3| 4| 3| s| 4] s[12] 6] 8[e| 2[8] 6] 5
4| 1] of13]e| 3| 6| a|11] 4| 4| 7| 6| 3] 9ofa| 7[a] 7| 2
6| 7| 4| a|7] 6| 5| s| 8| e 2| s| 3| 5| 9fs| 4|7 5| 2
4| s| a| a|7] 8| 7| 3| s| s| 4| 6| a| 5| 7[e| 5|8 5| 4
s| 10 10| 3[2] s| 6| s| 6| 3| s| 4| s| 8| 4|a] 6|5 6] 3
s| 6| 7| o|a| 8| 3[10| 2| 1| 8| 3| 2| 6| 7[a]| 45| 5| 7
<Back to Text

Table 38. Best fitting copula for stock returns and FX returns in each country

Estimated Coefficients of tail

Country Optimal Copula PEaS:aimz':(:s dependence

Lower Upper
R_SOFI)I? l\J,Lg.aRri_é:=x_|3.GN Student-t 552'22173 0.0126 0.0126
R_BETR‘Z""SS;;_RML Student-t ’; ;(F)'Ssliz 0.0088 0.0088

R_WIGPVZI_a;fFX_PLZ Rotated Gumbel? 6=1.099433 0.1267 0
R_C;;f,:_R:_pFl;(b_"chK Student-t P ch;(;'21443 0.0593 0.0593
R_BUXH\;I?ia_r:X_HUF Student-t r DZOF'ZG;SS 0.0383 0.0383
R_SAXS\II(:‘.ITRIii:X_SKK Student-t g;ff;; 0.0004 0.0004
R_RTS \zl.‘sRsiaFX_RUR Student-t pD:OOF.O=1;59 0.0128 0.0128

'DOF = degrees of freedom parameter of the t-distribution
?Rotated Gumbel Copula is given by: C ' F™ (y,v) =C* (1-u,1-V)

&Back to text
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Table 39. Best fitting copula between stock returns of each country

Copula | R_SOFIX R_BET R_WIG R_PX R_BUX R_SAX R_RTS
Student T Student T Student T Clayton Student T SJC
R_SOFIX . 7,=0.0386 | 7,=0.0243 | 7,=0.0419 | 7,=0.0015 | 7,=0.0004 | 7,=0.0721
7,=0.0386 | 7,=0.0243 | 7,=0.0419 7,=0 7,=0.0004 7,=0
Student T SJC Student T Student T Clayton SJC
R_BET 7,=0.0386 - 7,=0.1308 | 7,=0.1262 | 7,=0.0656 7,=0 7,=0.0665
7,=0.0386 7,=0.0111 | 7,=0.1262 | 7,=0.0656 7,=0 7,=0.0171
Student T SJC SJC Student T Student T SJC
R WIG | 7,=0.0243 | 7,=0.1308 . 7,=0.4465 | 7,=0.1706 7,=0 7,=0.3183
7,=0.0243 | 7,=0.0111 7,=0.2262 | 7,=0.1706 7,=0 7,=0.1852
Student T Student T SJC SJC Student T Student T
R_PX 7,=0.0419 | 7,=0.1262 | 7,=0.4465 . 7,=0.4215 | 7,=0.0088 | 7,=0.2393
7,=0.0419 | 7,=0.1262 | 7,=0.2262 7,=0.2734 | 7,=0.0088 | 7,=0.2393
Clayton Student T Student T SJC Student T SCJ
R_BUX | 7,=0.0015| 7,=0.0656 | 7,=0.1706 | 7,=0.4215 . 7,=0.001 | 7,=0.3015
7,=0 7,=0.0656 | 7,=0.1706 | 7,=0.2734 7,=0.001 | 7,=0.1264
Student T Clayton Student T Student T Student T Student T
R_SAX | 7)=0.0004 7,=0 7,=0 7,=0.0088 | 7,=0.001 ] 7,=0
7,=0.0004 7,=0 7,=0 7,=0.0088 | 7,=0.001 7,=0
SJC SJC SJC Student T SJC Student T
RRTs | 7,=0.0721 | 7,=0.0665 | 7,=0.3183 | 7,=0.2393 | 7,=0.3015 7,=0 ]
7,=0 7,=0.0171 | 7,=0.1852 | 7,=0.2393 | 7,=0.1264 7,=0

Note: SCJ stands for Symmetrized Joe-Clayton Copula, R-Gumbel for Rotated Gumbel Copula, 7, and 7,

are the estimated coefficients of lower and upper tail dependence, respectively.

<Back to text
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Table 40. 1-day VaR 95% of a $100M portfolio invested in each country

43

VaR 95% Bulgaria Romania Poland Czech. Hungary Slovakia Russia
Republic
Variance- | ;539566 | 3089122 | 2761703 | 2872916 | 3120360 | 2276290 | 3753371
Covariance
Historical | ) Jc/ 06 | 2785286 | 2466410 | 2312066 | 2825292 | 1970513 | 3325392
Simulation
Monte
Carlo 2490821 | 2745866 | 2630856 2513852 2703344 | 2044879 | 3308839
<Back to Text
Table 41. 1-day VaR 99% of a $100M portfolio invested in each country
) . Czech . .
VaR 99% Bulgaria Romania Poland . Hungary Slovakia Russia
Republic
Varla.nce- 4690001 | 4338232 | 3887201 4039724 4398256 | 3178352 | 5286148
Covariance
HISto"?al 6242627 | 5193867 | 4545001 4 697 228 5157911 | 3536185 | 7285201
Simulation
Monte
Carlo 6103115 | 4854079 | 4676720 4 829 319 5428017 | 3582317 | 6852811
<Back to Text
Table 42. 1-day VaR 99.9% of a $100M portfolio invested in each country
. ] Czech . .
VaR 99.9% Bulgaria Romania Poland . Hungary Slovakia Russia
Republic
Varla.nce- 6203 700 5738356 | 5148767 | 5347595 5 830 646 4189 470 7 004 232
Covariance
HIStom.:al 11174188 | 9821534 | 9636634 | 10369590 | 10356865 | 5174726 | 13 469 366
Simulation
Monte
Carlo 18153204 | 8891851 | 8021753 | 11701903 | 11216860 | 7685648 | 18978 423
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Table 43. 1-day VaR 95% of a $100M portfolio invested equally in 2 countries

Var-Cov
Hist.Sim R_SOFIX R_BET R_WIG R_PX R_BUX R_SAX R_RTS
MC Sim.
2309132 2010470 2188493 2141058 1923652 2 664 340
R_SOFIX - 1669939 1604 025 1702992 1636947 1481499 2192224
1851184 1678283 1713414 1700754 1598713 2248 805
2309132 2010980 2223763 2158118 1779049 2 640 806
R_BET 1669939 - 1645129 1812121 1816610 1505458 2 133969
1851184 1719 060 1824 863 1701961 1559 356 2274075
2010470 2010980 2090734 2097 103 1497 802 2579475
R_WIG 1604 025 1645129 - 1846515 1893331 1372154 2297 705
1678283 1719 060 1823242 1834010 1314753 2337052
2188493 2223763 2090734 2254517 1635492 2769753
R_PX 1702992 1812121 1846515 - 1934113 1449201 2348 289
1713414 1824 863 1823242 2048 030 1422138 2384120
2 141 058 2158 118 2097 103 2 254 517 1632659 2712502
R_BUX 1636947 1816610 1893331 1934113 - 1460 854 2 326 237
1700754 1701961 1834010 2048 030 1413253 2343 624
1923 652 1779 049 1497 802 1635492 1632659 2 151460
R_SAX 1481499 1505 458 1372154 1449201 1460 854 - 1908 437
1598713 1559 356 1314753 1422138 1413 253 1802 729
2 664 340 2 640 806 2579475 2769753 2712502 2 151 460
R_RTS 2192224 2 133969 2297 705 2 348 289 2326237 1908 437 -
2248 805 2274075 2337052 2384120 2343624 1802729

The first value in each box represents the 1-day VaR 95% calculated by Variance-Covariance Method and

the second and third - by Historical Simulation and Monte Carlo Simulation, respectively.
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Table 44. 1-day VaR 99% of a $100M portfolio invested equally in 2 countries

Var-Cov
Hist.Sim R_SOFIX R_BET R_WIG R_PX R_BUX R_SAX R_RTS
MC Sim.
3206223 2808 316 3060742 2995534 2669543 3721067
R_SOFIX - 4451470 3739438 4142 946 4064 027 3142 647 4784 668
4 046 985 3353854 3748734 3627069 3459 448 4504 466
3206223 2800134 3101549 3010603 2 455950 3678701
R_BET 4451470 - 3290773 3800831 3434773 2501 687 4540137
4 046 985 3457 440 3599 666 3128 637 2 809 109 4478 208
2808 316 2800134 2938 064 2 948 969 2 082 839 3616619
R_WIG 3739438 3290773 - 3473311 3416301 2198526 4 598 798
3353854 3457 440 3567670 3114317 2278708 4719 290
3060742 3101549 2938 064 3172076 2278049 3886 205
R_PX 4142 946 3800831 3473311 - 3838 687 2391259 5103 499
3748 734 3599 666 3567670 3880622 2713687 4 882 819
2995534 3010603 2 948 969 3172076 2275939 3807131
R_BUX 4064 027 3434773 3416 301 3 838 687 - 2414 149 4 875 629
3627069 3128 637 3114317 3880622 2 543 685 5184104
2 669543 2 455950 2 082 839 2278049 2275939 2995111
R_SAX 3142 647 2 501 687 2198 526 2391259 2414149 - 3676680
3459 448 2 809 109 2278 708 2713687 2 543 685 3998 030
3721067 3678701 3616619 3 886 205 3807 131 2995111
R_RTS 4784 668 4540137 4598 798 5103 499 4 875 629 3676680 -
4 504 466 4 478 208 4719 290 4 882 819 5184 104 3998 030

The first value in each box represents the 1-day VaR 99% calculated by Variance-Covariance Method and

the second and third - by Historical Simulation and Monte Carlo Simulation, respectively.
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Table 45. 1-day VaR 99.9% of a $100M portfolio invested equally in 2 countries

Var-Cov
Hist.Sim R_SOFIX R_BET R_WIG R_PX R_BUX R_SAX R_RTS
MC Sim.
4211781 3702761 4038 448 3953352 3505614 4905 549
R_SOFIX - 8 505 447 7 745 184 9891520 7 356 687 6565629 | 10409479
8717601 8762 875 8590670 9985 620 6170463 9506 901
4211781 3684694 4085 456 3966 150 3214687 4842 073
R_BET 8 505 447 - 5588 450 7 305 200 8090401 5559241 | 10148789
8717601 6 776 659 7 674 009 6400 540 5423 847 9375731
3702761 3684 694 3887833 3903 822 2 738 605 4779151
R_WIG 7 745 184 5588 450 - 7 409 842 5799 496 3117238 8282772
8762 875 6 776 659 11448569 | 6779592 3977014 9960172
4038 448 4 085 456 3887833 4200564 2998 288 5137633
R_PX 9891520 7 305 200 7 409 842 - 8208974 5085 746 8628 102
8590670 7 674 009 11 448 569 8760 228 6188815 | 10493714
3953352 3966 150 3903 822 4200564 2 996 990 5034098
R_BUX 7 356 687 8090401 5799 496 8208 974 - 4978 258 9261 246
9985 620 6 400 540 6 779 592 8760 228 5166175 | 11517724
3505614 3214687 2 738 605 2998 288 2 996 990 3940757
R_SAX 6 565 629 5559241 3117238 5085 746 4978 258 - 6 597 707
6170463 5423 847 3977014 6 188 815 5166 175 6 265 081
4 905 549 4842 073 4779 151 5137633 5034 098 3940757
R_RTS 10409479 | 10148789 8282772 8628 102 9261 246 6 597 707 -
9506 901 9375731 9960172 | 10493714 | 11517724 | 6265081

The first value in each box represents the 1-day VaR 99% calculated by Variance-Covariance Method and

the second and third - by Historical Simulation and Monte Carlo Simulation, respectively.
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