
P R E D I C T I N G F I R E B R I G A D E I N C I D E N T S

jeffrey de deijn (2516200)

Research Paper BA

MSc. Business Analytics
Department of Mathematics

Faculty of Sciences
VU Amsterdam

January 25, 2017

mailto:2516200@student.vu.nl


Jeffrey de Deijn: Predicting fire brigade incidents
Research Paper BA, c© January 25, 2017

supervisors:
Prof. R.D. van der Mei (university)
G. Legemaate MSc (research company)

location:
VU Amsterdam
Faculty of Sciences
De Boelelaan 1081a
1081 HV Amsterdam

research company:
Brandweer Amsterdam-Amstelland
Karspeldreef 16

1090 AD Amsterdam



P R E FA C E

The Research Paper BA is a compulsory part of the curriculum of
the MSc. Business Analytics at the VU Amsterdam. The goal of this
6 ECTS (formally taking one month full-time) research is to demon-
strate the student’s ability to successfully go through the process of
doing an individual research, to report on this in a clear and con-
cise way and to clearly present it to all supervisors and expert man-
agers.

Thanks to my supervisor from the VU, Prof. Rob van der Mei, I
got into contact with Guido Legemaate of fire brigade Amsterdam-
Amstelland. He is a pioneer on data intelligence and analytics in the
fire brigade society of the Netherlands and he gave me the following
research question:

Can we make a good forecast on the number of incidents that each fire station
in Amsterdam-Amstelland has to handle? And in particular, can we make
good use of weather forecasts in doing this?

I found this a very interesting topic to investigate and I am grateful
to Guido that he entrusted me this task. Also, I want to thank him
for supplying me such nice and clean data and for inviting me to
the fire brigade headquarters to work on my research. Finally, I also
want to give a big thanks to Rob for getting me in contact with Guido
and for supporting me during the whole research with interesting
conversations and good advices.

Jeffrey de Deijn, January 25, 2017

iii



A B S T R A C T

goal & approach The main goal is to make a forecast on the
total number of fire trucks needed per day for each fire station. Most
incidents need only one or just a few trucks, so we treat big incidents
separately. If we define an incident as ‘big’ when it needs six or more
trucks, then we can model the incident-arrival process as an (inho-
mogeneous) Poisson process: big incidents then occur with a slightly
decreasing frequency (currently less than four times per week on aver-
age) and with independent and exponentially distributed interarrival
times.

modelling Analysis on the small incidents shows that New Year’s
days should be treated separately as well. Together with some big
storms, they form the main outliers in our dataset. For the remaining
small incidents we need to correct for both the weekday and the time
of the year (based on a Loess-smoothed function of the correction fac-
tors per weeknumber). After these corrections, we implement a linear
regression model (LM), an LM with cross-term effects (GLM) and a
random forest algorithm (RF), using four weather conditions (wind,
temperature, rain and visibility) as explanatory variables. We create a
different model for each type-cluster (we need clusters because some
incident types do not occur frequently enough) and then divide the
prediction among all fire stations based on average ratio’s.

results & conclusions In general, GLM performs best in terms
of (weighted) mean absolute percentage error ((w)MAPE), but RF is
better in predicting ‘busy’ days. After some experimenting, it turns
out that ensemble averaging (EA = 0.2 ·RF+0.8 ·GLM) yields the best
results (wMAPE = 0.1860 for daily totals). Rain and wind typically
have a strong linear influence, while temperature mainly has non-
linear influences. Besides some exceptions, most fire stations typically
need only one fire truck. All stations have sufficient capacity.

recommendations The main improvements in future research
can be made by investigating the approach of first aiming at a forecast
per region. In addition, improvements may be made by reconsidering
the clustering of incident types and by adding a trend correction be-
fore implementing RF.
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1
I N T R O D U C T I O N

1.1 fire brigade amsterdam-amstelland

Fire brigade Amsterdam-Amstelland helps improving and securing
the safety in region Amsterdam-Amstelland. This region consists of
six municipalities with a total of about one million inhabitants. The
fire department is driven by 1100 men and women who intervene
mainly in case of fire or other ‘regular’ incidents, but also in case
of big disasters and crisis situation [1]. Amsterdam-Amstelland has
nineteen fire stations with varying sizes; Each station has at least one
fire engine available and some have even two of these and possibly
also one rescue-, emergency- and/or water vehicle in addition. But
what they all have in common is that all fire stations have people
standing by 24 hours per day, ready to take action when they are
needed.

1.2 problem and goal

For the fire brigade, the question here is how many people have to
be stand-by at each station at each time of the day. Having too many
people stand-by costs a lot of money, but the fire brigade can’t afford
having too few people stand-by as well. How can this be optimized?
Note that we cannot say anything about this without knowing how
many incidents we may expect to happen. Therefore, the main ques-
tion of this research is

Can we make a good forecast on the number of incidents that each fire
station in Amsterdam-Amstelland has to handle?

Depending on the size and the type of an incident, the number of fire
trucks (next: trucks) needed to handle this incident may vary from
one or just a few to several dozens. Also the type of trucks needed
varies among different incidents. However, in this study we will just
treat any truck the same rather than making a distinction between
different types.
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2 introduction

1.2.1 Previous research

This question has been investigated in previous research, where the
solutions are mainly based on multiplicative models containing cor-
rection factors for the weekday and the time of the year [2]. The main
contribution of this research is to investigate the influence and pre-
dictive power of different weather conditions in the categories wind,
temperature, rain and visibility. It would be great if the predictions
can benefit from weather forecasts in the near future.

Previous attempts to make a separate prediction per district (27 in
total) encountered the problem that there is too little data left after
splitting it like this. This is due to the fact that each fire station has
to deal with less than two incidents per day on average. Also in this
research, dealing with the low number of incidents will be a challeng-
ing factor.

1.3 structure of the paper

In the following, we will start by exploring the incident data sup-
plied by the fire brigade. In Chapter 2 we will make a distinction
between big and small incidents and discuss how we can handle
the big ones. Chapter 3 then includes an analysis of the small inci-
dents. Here, we first pay special attention to outliers in the data, after
which we deepen into analysing trends, seasonal patterns and the
influence of several weather conditions. Chapter 4 starts with a dis-
cussion on the different type of incidents and how we can use these in
our model. Four different models for forecasting the daily number of
trucks needed per fire station will be implemented and their results
will be given along the way. Finally, Chapter 5 introduces a differ-
ent approach, opening doors for future research and Chapter 6 gives
some conclusions and recommendations for fire brigade Amsterdam-
Amstelland. All analysis, modelling and forecasting in this research
have been done in R.



2
B I G I N C I D E N T S

incident data The available data contains one row for each inci-
dent that happened in region Amsterdam-Amstelland from January
2008 up until April 2016 (exactly 100 months, more than eight years).
The most interesting information includes the incident’s start- and
end time, location and type as well as the concerned fire station and,
last but not least, the number of fire trucks used.

The first choice we have to make is whether we want to make a fore-
cast based on the number of incidents or on the total number of trucks
used for these incidents. Since the size of incidents also matters for
the amount of people you need, the most obvious choice here is to
forecast the number of trucks needed. Hence, this is the first attribute
to focus on. Figure 2.1 shows a histogram of the number of trucks per
incident.

Figure 2.1: Histogram of the number of fire trucks per incident, including a
zoom-in on the incidents with more than ten trucks.

3



4 big incidents

2.1 defining ‘big’

As we can see, the vast majority of the incidents require only one or
otherwise just a few trucks. Therefore, the question arises if it is con-
venient to make a difference between ‘big’ and ‘small’ incidents. And
if so, how can we determine the most suitable boundary? In order
to explore the characteristics of ‘big’ incidents, suppose for now that
an incident is considered big if it requires at least 11 trucks (so that
we get the zoomed-in histogram of Figure 2.1). Looking at the fre-
quencies, such incidents seldom occur. More specifically, only 0.3%
of the incidents can then be called big, which comes down to about
two big incidents every three weeks on average. Incidents with more
than 50 trucks are rare. The biggest incident in the dataset (in terms
of how many trucks are used) corresponds to a big fire at an indus-
trial terrain in Amsterdam-Noord. The fire started at Leenbakker, hit
the surrounding buildings and 80 trucks were needed to control it.
Actually, over 80% of the incidents with more than ten trucks were
big fires. Incidents like this are due to coincidents that are impossible
to predict. Specifically, they do not rely on bad weather conditions
or a particular time of the year, as for example with forest fires in
countries with a tropical climate. This arouses the expectation that
big incidents can be modelled as a Poisson process. In order to check
if this is indeed valid, we have to check if the interarrival times (the
time duration between consecutive big incidents)

1. have an exponential distribution;

2. and are independent in time.

Check 1: exponentiality

We see in Figure 2.2a that the interarrival times seem to resemble the
fitted exponential density very well. In fact, the Kolmogorov-Smirnov
(KS) test does not reject that it is exponential (approximate p-value =

0.5291). This indicates that we can indeed assume the interarrival
times to be exponential.

Check 2: independency

The Pearson’s product-moment correlation test does not reject that
the true correlation between the interarrival times and their order
statistics is zero (p-value = 0.9709, sample correlation = −0.002). To

1 This p-value is not computed in an exact way by using the regular one-sample KS-
test. Since the exponential distribution to which it is compared has been fitted to the
data, the resulting p-value would then be too high. Instead we have to use bootstrap-
ping methods to approximate the correct p-value by simulation.



2.2 optimizing the definition 5

(a) Big when >11 trucks (b) Big when >6 trucks (c) Big when >1 trucks

Figure 2.2: Histogram of the interarrival times between big incidents where
‘big’ is defined differently in each plot. The red lines represent
maximum-likelihood fitted exponential densities.

illustrate this, Figure 2.3 shows that there does not seem to be any
change in trend. However, there is a significant ‘clustering’ of interar-
rival times (p-value < 10−15), meaning that two consecutive interar-
rival times typically deviate less from each other than when they are
farther apart in time. But, since the sample correlation is only 0.031,
we can safely assume that also the independency holds.

Figure 2.3: Plot of the interarrival times between ‘big’ incidents (with at least
11 trucks needed). The linear trend line is shown in red.

Conclusion 2.1 If we define incidents as ‘big’ when the assistance of
at least 11 trucks is required, then we can model the occurrence of big
incidents as a Poisson process.

2.2 optimizing the definition

What if we now redefine when we call an incident ‘big’? If we shift
the boundary, the histogram of the interarrival times keeps looking
exponential at first sight, even if we define all incidents as being ‘big’
(see Figure 2.2c). However, the KS-test allows us to make a clear dis-



6 big incidents

tinction: if we define an incident as ‘big’ when at least six trucks are
used, then the KS-test does not reject exponentiality of the interarrival
times (approximate p-value = 0.429). This also holds for any bound-
ary above six. However, for lower boundaries the KS-test doubts (or
rejects) this exponentiality (approximate p-value = 0.073 and 0.002
for ‘big’ when at least five respectively four trucks used). Hence, ac-
cording to this we wish to set the boundary at six.

Check independency

The remaining question now is whether the independency still holds
in this case? Concerning the clustering issue, we can use similar ar-
guments as before (sample correlation = 0.051). However, Figure 2.4
shows that the interarrival times seem to increase in time now we
added incidents with six to ten trucks. More specifically, the trend
line indicates that the average interarrival time has increased by 17.35

hours over the full time span of the data, which is an increase of over
50%! Apparently, the fire brigade succeeded in improving the fire
safety such that those intermediate incidents occur much less, while
the real big incidents are still hard to prevent. If we now correct for
this trend, the dependency becomes insignificant again (p-value =

0.5404), while the exponentiality is still not rejected as well (approxi-
mate p-value = 0.462).

Figure 2.4: Plot of the interarrival times between ‘big’ incidents (with at least
six trucks needed). The linear trend line is shown in red.

Conclusion 2.2 We will define incidents as ‘big’ when the assistance
of at least six trucks is required. This is the boundary case for which we
can still model the occurrence of big incidents as an (inhomogeneous)
Poisson process. Consequently, all incidents that require at most five
trucks will be referred to as ‘small’.



2.3 dealing with big incidents 7

2.3 dealing with big incidents

Using the definition from Conclusion 2.2, 1.72% of the incidents are
big (for histogram of interarrival times, see Figure 2.2b), which comes
down to around four big incidents every week (still most of these are
big fires). One may say that this is quite frequent, but their occurrence
is very hard to predict. Therefore we probably cannot do much better
than modelling them as a Poisson process. If we want to account
for the trend found in Figure 2.4, we have to use an inhomogeneous
Poisson process with a decreasing rate. However, the change is such
slow that using a regular homogeneous Poisson process is fine as well.
We can use this if we want to do simulations. Here we can also use
the distribution of big incidents amongst all fire stations as illustrated
in Figure 2.5.

Figure 2.5: Plot of the locations of all big incidents. The size of a point cor-
responds with the size of the incident and its colour with the
fire station responsible for tackling it. The ten ‘Overig’ (English:
‘other’) big incidents fall outside the plotted area (two of them in
France, one in Purmerend, one in Velsen and six in Soest).
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2.3.1 Results for the final model

For computing confidence intervals for the number of trucks needed
per station, we can only use the information given in Table 2.1. It will
probably be a good idea for each station to account for big incidents
by adding up this 95%-quantile (or similar quantiles) to the number
of fire trucks needed for small incidents. Note that these quantiles are
just an indication of what to add up for each station. Finally, one may
choose to use quantiles that decrease a little every day along with the
decreasing rate of the Poisson process. The difference in results will
be very small though.

Table 2.1: Statistics of the number of trucks used for big incidents per day
per fire station.

Station % Trucks Avg SD 95%-quantile

Hendrik 14.8% 0.74 2.9 2.82

Teunis 10.0% 0.50 2.5 1.91

Osdorp 9.6% 0.48 2.8 1.82

Nico 8.9% 0.45 2.1 1.69

Anton 7.8% 0.39 2.3 1.48

Pieter 7.6% 0.38 2.2 1.45

Aalsmeer 5.6% 0.28 1.9 1.06

Dirk 5.0% 0.25 1.5 0.96

IJsbrand 4.9% 0.25 2.4 0.93

Victor 4.9% 0.24 1.7 0.93

Amstelveen 4.4% 0.22 1.7 0.84

Willem 4.4% 0.22 1.6 0.84

Duivendrecht 3.4% 0.17 1.3 0.64

Uithoorn 3.0% 0.15 1.6 0.57

Zebra 2.9% 0.15 1.2 0.56

Diemen 1.5% 0.07 0.9 0.28

Overig 0.5% 0.03 0.5 0.10

Landelijk Noord 0.3% 0.02 0.4 0.07

Ouderkerk aan de Amstel 0.2% 0.01 0.3 0.04

Driemond 0.1% 0.01 0.2 0.03

Total 100% 5.0 8.0 19

Conclusion 2.3 In our final model, we will use quantiles such as the
ones in Table 2.1 in order to determine the capacity needed for big inci-
dents.



3
S M A L L I N C I D E N T S

3.1 new year’s eve

The small incidents are probably easier to predict, since for example
bad weather conditions often cause many small incidents to happen
(like fallen trees, water damage or police/ambulance assistance at
traffic accidents). To illustrate this, we take a closer look at the outliers
observed in Figure 3.1. It is notable that there are always (17 days in
total, either December 31 or January 1) many incidents around New
Year’s Eve. Figure 3.2 indicates that this is mainly caused by acci-
dents involving firework. These conditions do not occur in the rest of
the year, so it seems logical to analyse these days separately. For this
purpose, we can take the regular forecast for these days (based on
weekday/weather/etc.) and subtract this from the number of trucks
per hour on the 17 ‘New Year’s days’. If we then assume that the
resulting data concerns firework incidents, we can analyse the char-
acteristics of such incidents (which may be very different from that
of the ‘average’ incident). For instance, firework incidents may be
more/less prone to bad weather conditions than other incidents. We
will check this later, when the regular forecasts are available. In the
following, all big incidents as well as all incidents on December 31

and January 1 are omitted.

Figure 3.1: Plot of the total number of trucks used for small incidents per
day. Almost 99% of the days less than 100 trucks were needed,
but there were some big outliers. On the other hand, there were
no days on with extraordinary few trucks were used (the mini-
mum is 17). Most of the days around 50 trucks were needed.

9



10 small incidents

(a) Before 2014/2015

(b) From 2014/2015

Figure 3.2: Plot of the average number of trucks used for small incidents
per hour around New Year’s Eve. The relation with firework is
obvious; Until New Year’s Eve 2014/2015, it was allowed to use
firework from 10am on December 31 until 2am on January 1.
Since then the starting time changed to 6pm. Also, the difference
between before and after the change of regulations is striking,
but it is unclear whether this is just a matter of chance or not.

Conclusion 3.1 Due to firework incidents, there are extremely many
incidents on December 31 and January 1 and also the daily pattern of
incidents differs on these days. It is therefore wise to treat these days
separately from the rest.

3.2 other outliers

To begin further analysis, it is important to note that not all outliers
in Figure 3.1 are New Year’s days. However, the only five days that
could compete with these outliers (i.e. with more than 138 trucks used
for small incidents) are days with severe weather conditions. On the
five peak days in Table 3.1, only 0.46% (instead of the average 1.72%)
of the incidents is big. There is no reason to assume that the occur-
rence rate of big incidents is lower on these days. So apparently - if
the difference is not just a matter of chance - there are certain circum-
stances that cause many, especially small incidents to happen.
Therefore the question arises whether we can predict incidents of a
certain size? For instance, do incidents with one truck have different
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Table 3.1: The weather conditions on the five days that could compete with
the New Year’s days in terms of number of trucks used. Appar-
ently, wind and rainfall can have a big impact.

Highest windspeed (km/h) Total rainfall (mm)
Date (day) Trucks Worst hour Overall Worst hour Overall

28/10/2013 (Mon.) 345 79.2 111.6 3 10.7
24/12/2013 (Tue.) 147 64.8 111.6 2.3 6.8
28/07/2014 (Mon.) 179 28.8 43.2 12.6 60.5
31/03/2015 (Tue.) 174 64.8 100.8 3.8 7.9
25/07/2015 (Sat.) 355 72 100.8 5.8 19.7

characteristics than those with two trucks? This does not sound very
promising, but it becomes better if we look at it from another perspec-
tive. It may be the case that a certain type of incident typically needs
only one or two trucks while another often needs a few. For instance,
in 96.6% of the cases only one truck is needed to free a person that is
stuck in an elevator. Also, in 96.1% of the cases exactly two trucks are
needed for an ‘Afhijsen spoed’ incident and in 85.4% of the cases at
least three trucks are needed for an inside fire (‘Binnenbrand’). Since
different types of incidents may very well have different characteris-
tics, we can probably distinguish them to improve our forecast.

Conclusion 3.2 The outliers in Table 3.1 indicate that the weather
probably is important in predicting especially certain types of incidents.

3.3 structural trends

Before we dig into incident types and the weather, let’s start with
an overall analysis of the small incidents. First, Figure 3.3b does not
show a clear structural trend. Although the pattern is remarkable,
no explanation for this can be found in the yearly development per
month in Figure A.2.

(a) In average trucks per day (b) In % trucks above average

Figure 3.3: The yearly development of the average trucks per day. In calcu-
lating the percentage for 2016, we correct for only having data
up to and including April.



12 small incidents

July may be the only exception, having a steep growth in the last two
years. This growth is unlikely to continue, but it may partly be ex-
plained by the current climate change. Lenderink et al. [4] conclude
that the global warming can explain the increase of extreme rainfall,
especially during the summer. In this context, recall the heavy rainfall
in especially the two days in July in Table 3.1 and also note that all
weather outliers occurred in the last years of our dataset. In addition,
Figure 3.4 illustrates the positive trend in the amount of rainfall in
July. Also Pearson’s product-moment correlation test confirms that
the true correlation between rainfall in July and time (in years) is
positive (p-value = 0.007; sample correlation = 0.364). These are all
signs that the fire brigade may consider accounting for the increas-
ing chance of extreme weather conditions by acquiring enough fire
trucks across the board to be able to encounter such outliers as in
Table 3.1.

Figure 3.4: Plot of the yearly rainfall in July. The linear trend line (in red)
indicates a growth of 1.259mm per year.

The argument of climate change forces us to double-check if we really
don’t need to account for this in our model. Figure 3.5 shows that the
empirical linear trend line indeed has a positive slope. And again, the
Pearson correlation test confirms that also the true slope of this line is
positive (p-value < 10−5 and sample correlation between trucks per
day and time in days is 0.081). Unless the growth is very weak, we
may therefore include a trend component in our models. Note that
only 16.4% of the small incidents is due to fire, so we cannot conclude
that the actions to improve fire safety failed for small fires. In fact, as
for the big fires (see Section 2.1), the number of trucks used for small
fires decreased, namely by 16.7% over the regarded time span.
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Figure 3.5: Plot of the total trucks per day (excluding the New Year’s days).
In order to see more detail, the peaks of the five outliers from
Table 3.1 are not shown. The linear trend line (in red) indicates a
growth of 0.001465 trucks per day (∼0.535 trucks per year).

Conclusion 3.3 There is a very weakly increasing trend in the number
of incidents. We may consider accounting for this in our models, but it
will probably not have a major effect.

3.4 seasonal patterns

Besides a trend, the number of trucks also shows specific patterns
throughout each year, week and day. The plots in Figure 3.6 illustrate
this. We will have to include all these patterns in our model later on.
For now, we must note that the day pattern in Figure 3.6c is most
striking. It is important to know if this pattern is always and every-
where the same. Therefore, we plotted the day pattern per weekday
and region (cluster in this case) in Figure A.3. From this we can con-
clude that no problems arise here. We can just use the average day
pattern in our model for all days and regions.
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(a) Year pattern: higher during summer and winter.

(b) Week pattern: peak at Friday.

(c) Day pattern: low at night, high at midday.

Figure 3.6: Seasonal patterns of trucks used for small incidents (New Year’s
days excluded). The given percentages represent relative differ-
ences with respect to the average (in blue).
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The pattern in Figure 3.6a can be included in the model in a more
subtle way than taking factors per month. The problem here is that,
for instance, the differences between the beginning and end of Jan-
uary are considerable. Instead of factors per month, we can therefore
better use factors per week as shown in black in Figure 3.7. However,
the degree of fluctuation of this graph does not agree with our ex-
pectations. We would expect that the real pattern is much smoother,
so therefore the red graph represents a smoothed variant. This al-
ready looks much more realistic, so this is the one we will use in our
model.

Figure 3.7: The year pattern per week (in black) together with its Loess-
smoothed variant (α = 0.3). The week numbers used are slightly
different than the regular week numbers to avoid problems with
week 53.

Interpreting the patterns

Our common sense tells us that everything happens for a reason.
Small fluctuations can occur randomly, but not the general patterns.
The challenge now is therefore to explain why certain patterns look
the way they do. The pattern in Figure 3.6c is still easy. It illustrates
the activity cycle that an average person goes through every day of the
week (recall Figure A.3a). This pattern is also nearly the same at any
time of the year, even during the summer holidays (see Figure A.4a).
And where there is more activity, there is more risk for incidents to
happen. No further causes have to be searched for here. However, the
bigger the time span becomes, the more likely it is that circumstances
change. This makes it harder to know which factors influence these
patterns, and to what extent. For example, Figure A.4b shows that
the week pattern from Figure 3.6b looks a little different throughout
the year. The differences are not frightful, but how can we explain
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them? The weather cannot be blamed. Why would it be relatively
bad on Saturdays in July? Although in July the fraction of incidents
that is due to storm and water damage is somewhat higher (11.7%
vs. 6.1%), the differences regarding the types of incidents are small.
This is not surprising, since we have seen in Table 3.1) that the biggest
outlier is a Saturday in July. This raises the question whether or not
the differences we observe between the weekdays are just a matter
of chance. Therefore, we use two-sample t-tests to test if the average
number of trucks differs significantly on different weekdays. Using
a significance level of 5%, these tests yield a significant difference
only between Friday and the four days that are below average. How-
ever, the differences are too big to ignore, so we will include them
in our model. Also because the differences are even bigger when we
consider incidents of a particular type. For example, an inside fire
(‘Binnenbrand’) will occur 13.3% more often during the weekend, be-
cause more people are at their homes then. In this case, the weekday
factors will probably be very important.

Conclusion 3.4 The day pattern is quite standard, so we will just make
forecasts per day. The week pattern differs per type of incident and has
to be included in our model. The year pattern can best be corrected for
by using a Loess-smoothed function over the factors per week.

3.5 weather influences

Besides the time dependent components, we want to know which
weather variables we must include in our model. Therefore, we use
again the Pearson correlation test to determine which weather condi-
tions have a significant influence on the number of trucks we need for
small incidents. The results of these tests are summarized in Table 3.2.
We can see from this that the minimum visibility and the average
temperature both have no significant (direct) influence. However, if
we consider a variable indicating whether it was on average freezing
on that day, then this does have predictive value. Obviously, we also
have to include some variables indicating the amount of rainfall and
wind. However, the variables within these categories are highly corre-
lated (sample correlation around 0.9) and therefore we may exclude
some of them to simplify our model. Probably, including the maxi-
mum wind gust and total rainfall will be satisfactory, but we will do
some tests for this in the next chapter.
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Table 3.2: Results of Pearson’s product-moment correlation tests between
some weather variables and the number of trucks used for small
incidents per day. All tests are one-sided, except from the daily
mean temperature, for which we had no clear hypothesis about
the sign of the correlation.

Category Variable P-value Sample correlation

Wind
Average windspeed (FG) < 1012 0.132

Maximum hourly mean windspeed (FHX) < 1015 0.177

Maximum wind gust (FXX) < 1015 0.189

Temperature
Average temperature (TG) 0.6897 0.007

Boolean: 1 if average > 0 (TG>0) < 108 0.105

Rainfall *
Rainfall duration (DR) 0.0004 0.061

Total rainfall (RH) < 1015 0.151

Maximum hourly rainfall (RHX) < 1012 0.132

Visibility **
Minimum visibility (VVN) 0.2217 -0.014

Boolean: 1 if minimum < 200m (VVN<2) 0.2893 0.010

* In 0.1 mm and -1 for <0.05 mm; ** On 0-89 scale, where 0: <100 m, 89: >70 km.

Influences per incident type

The choice of which variables to include depends also on the charac-
teristics of different types of incidents. For example, on rainy/windy
days there will typically be less outside fires, but more incidents due
to storm and water damage. Moreover, it may be the case that some
incidents occur more often when it’s cold and others when it’s warm,
balancing the overall effect of the average temperature. These type
characterizations will turn out to be useful in modelling. We will
come back to this in Section 4.1. A final note here is that the data
from the New Year’s days are excluded in the computations of Ta-
ble 3.2. This causes only a tiny loss of data and enables us (later on)
to analyse the weather influences on the firework incidents separately.

Conclusion 3.5 Wind and rainfall have a clear positive correlation
with the number of incidents. However, each type of incident responds
differently to certain weather conditions. It is important to capture this
in our model.



4
F O R E C A S T P E R F I R E S TAT I O N

Before we start off modelling, let’s have a short recap of what our
objective is and what we have learned from the previous chapters. As
our first approach, we will create a model that predicts directly the
number of trucks that each fire station needs. In Chapter 2 we have
seen that big incidents (with at least six trucks needed) are very hard
to predict and that we can best model them by an (inhomogeneous)
Poisson process. Then, Chapter 3 showed that the daily pattern of
the number of trucks used for small incidents is quite standard. So if
we know for some day how many trucks are needed in total, we can
quite accurately extract from this how many trucks are needed per
hour. Therefore, we will try to forecast the number of trucks needed
per day per fire station. We will do this based on

1. the number of trucks that each fire station needed in the past;

2. the (expected) weather conditions;

3. and the characteristics of each type of incident.

4.1 type characteristics

In total we have 29 different incident types in our dataset, some
of which occur much more/less often than others. The question is
whether they are all relevant enough to make a forecast for. In Ta-
ble B.1 in the appendix, we see that some incident types do not occur
frequently enough to be able to make a good forecast. This is not a big
problem, since we can just ignore these incident types. They would
hardly increase the predictions anyway. This holds at least for most
types in the lower block of Table B.1. For types 23-26 in this table, we
can quite confidently state that these types are mapped to other types
from some date onwards by looking at the patterns in Figure A.1. Ta-
ble 4.1 summarizes which transitions have been made. From this we
can conclude that we can safely ignore all incident types in the lower
block of Table B.1. Moreover, we have to take into account that there
are some breaks in the data of the types in the lower block of Ta-
ble 4.1. In order to prevent incorrect inference, we therefore can only
use the data of incident type ‘Hulpverlening algemeen’, ‘Assistentie
Ambulance’ and ‘Assistentie Politie’ from 2014/06 onwards, the data

18
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of incident type ‘Reanimeren’ from 2012/07 onwards, and the data of
incident type ‘Hulpverlening Dieren’ from 2012/03 onwards.

Table 4.1: Overview of the type transitions that (probably) have been done.
From To When Reversed

Interregionale bijstand Assistentie ambulance 2012/03 -
Hulpverlening algemeen dieren Hulpverlening dieren 2012/03 -
Afhijsen spoed Hulpverlening algemeen 2012/03 -
Beknelling / bevrijding Hulpverlening algemeen 2013/06 -

Reanimeren Assistentie ambulance 2012/03 2012/07

Assistentie ambulance (partly) Hulpverlening algemeen 2013/06 2014/06

Assistentie politie (partly) Hulpverlening algemeen 2013/06 2014/06

Type-clustering

We now still have some incident types that we don’t want to ignore,
but which do not occur on a daily basis. Therefore, we may think of a
way to cluster the incident types such that each ‘type-cluster’ occurs
frequently enough to make a reasonable prediction for it. Since we
want to predict on weather data, it may be a good idea to base the
clustering on this. Two types are put in the same cluster (manually)
when they have similar correlation with respect to the weather vari-
ables. After some experimentation, the most suitable clustering seems
to be such as in Table 4.2. For each cluster, we also show the corre-
lation with respect to one variable of each four weather categories
(recall Table 3.2). We choose in each case the variable to which the
cluster has on average the highest absolute correlation (no variable
is chosen when this highest correlation is less than 2.5%). Looking to
these correlations in detail, we can conclude that these are often in
line with our expectations. For instance, high windspeed and rainfall
obviously increase the number of incidents due to ‘storm and water
damage’ (type-cluster 9) and decrease the likelihood of ‘outside fires’
occurring (type-cluster 1).

Conclusion 4.1 Table 4.2 gives a type-clustering such that each type-
cluster occurs on a daily basis and contains types with similar charac-
teristics with respect to the weather. Due to the transitions in Table 4.1,
we can use the data of type-cluster 2 only from 2012/03 onwards and
the data of type-clusters 6, 7 and 8 from 2014/06 onwards.
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Table 4.2: Type clustering and their correlation with respect to windspeed,
temperature, rainfall and visibility. In addition, the average num-
ber of small incidents per day is given for each cluster (note: al-
ways > 1). Here, we have taken into account the date from which
we can use the data of each type-cluster. New Year’s days are ex-
cluded from this analysis.

Cluster Type Wind Temp. Rain Visib. # p/day

1 Buitenbrand -0.135 0.09 -0.193 0.075 3.46

2

Dier te water -0.088 0.134 -0.058 0.013

1.65

Hulpverlening dieren -0.072 0.129 -0.088 0.069

Persoon te water -0.041 0.056 -0.023 0.009

Buitensluiting -0.006 0.159 -0.043 0.062

3 Meten / overlast / verontreiniging - -0.228 0.038 -0.111 2.52

4

Liftopsluiting - -0.088 0.021 -0.015

8.16OMS / automatische melding - -0.069 0.051 -0.037

5

Brandgerucht / nacontrole - -0.103 - -
3.57Binnenbrand - -0.038 - -

Hulpverlening water algemeen - -0.019 - -

6 Assistentie politie 0.048 -0.062 0.026 - 1.34

7

Assistentie ambulance - -0.065 - -0.039

8.55Voertuig te water - -0.042 - -0.025

Reanimeren - -0.086 - -0.008

8 Hulpverlening algemeen 0.063 0.079 0.057 0.052 2.28

9 Storm en waterschade 0.319 0.028 0.279 - 2.10

4.2 small incidents : modelling and results

The first intention was to predict the number of trucks needed for
small incidents separately for each fire station/type-cluster combina-
tion. However, for most of these combinations it turned out that there
are way too few incidents to make an accurate forecast. This is already
implied by the last column of Table 4.2 and confirmed by Table B.2
in the appendix. We will therefore just make a separate forecast for
each type-cluster, and then share this forecast among all fire stations
according to the percentages in Table B.3. We don’t lose too much
information with this, since the characteristics of type-clusters do not
differ much between different fire stations. If for fire station X some
type-cluster occurs more on Mondays or when it rains, then this is
very likely to hold also for other fire stations. So in short, we will
estimate, for each type-cluster t, a model that predicts the number of
trucks used for small incidents yt,d on date d, i.e.

yt,d = ft,dgt,dxt,d. (1)

Here, ft,d is a correction factor for the week number based on a Loess-
smoothed function as in Figure 3.7, and gt,d is a weekday factor as
in Figure 3.6b. Both are computed separately for each type-cluster. Fi-
nally, the term xt,d contains all remaining information. This includes
the average level, dependencies on the weather, a possible trend and
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dependencies on all other variables that we are currently not consid-
ering, but which do exist in reality.

We will consider three different ways of modelling xt,d, after which
we compare their performances. We will do this by splitting the avail-
able data into a training set (on which we estimate our models) and a
test set (for which we make forecasts using the estimated models). Re-
call that for some type-clusters we can only use the data from 2014/06

onwards and that we have data up until 2016/04. Since it is desirable
to have at least one year of data in our training set, we take here
all data up until 2015/06

1. Note that for the type-clusters without
any restriction, the training set contains the data from 2008/01 up
until 2015/06. Therefore, the quality of the predictions for these type-
clusters may be a lot better then for the type-clusters for which the
training set only contains one year of data.

Performance measure

The test sets contain all data from 2015/07 onwards. This holds for all
type-clusters, so all test sets contain exactly nine months of data and
the quality of the forecasts can therefore be compared easily. We will
measure the quality of a forecast using the Mean Absolute Percentage
Error,

MAPE =
1

n

n∑
t=1

∣∣∣∣yt − ŷtyt

∣∣∣∣ (yt>0)=
1

n

n∑
t=1

|yt − ŷt|

yt
, (2)

as well as its weighted version, i.e.

wMAPE =

∑n
t=1

|yt−ŷt|
yt

yt∑n
t=1 yt

=

∑n
t=1 |yt − ŷt|∑n
t=1 yt

. (3)

Here, yt is the true value in time period t and ŷt is the prediction.
Note that the last equality in Equation 3 does not hold when yt = 0

since division by zero is not defined. However, it is common practice
to compute it like this, so we will do this as well.

Conclusion 4.2 After a correction for the weeknumber and weekday,
we will use four different methods for modelling the daily number of
trucks needed for small incidents. Then, we will add up the results for
the big incidents (recall Table 2.1), define a rule to determine the needed
capacity per day for each fire station, and also analyse the firework inci-
dents.

1 After documenting all results I noticed that I could have taken 2015/05 here, but
since this is not really a problem anyway, I left it like this.
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4.2.1 Linear regression model

The first attempt to model xt,d from Equation 1 is by means of the
linear regression model (LM)

xt,d = β0 +β1 · d
+β2 ·windspeedd
+β3 · temperatured
+β4 · rainfalld
+β5 · visibilityd
+ εt,d,

(4)

where εt,d is assumed to have expectation zero and some finite vari-
ance. Its distribution does not resemble a normal distribution, be-
cause it has a fat right tail. It therefore looks more like a shifted
log-normal distribution. However, we will not deepen into this, be-
cause we actually do not need a fitted distribution. Later on, we will
see that we can compute prediction intervals for the test set using the
empirical distribution of the residuals in the training set.

Note that this model includes an intercept (β0), a linear trend (β1 · d)
and (at most) four weather variables. For each type-cluster, we will
use the same weather variables as in Table 4.2. This implies that we
exclude those variables that have almost no effect on that type-cluster.

Model estimation

It will be interesting to see the estimated parameters of the model.
The question is whether the weather variables that have high corre-
lation to some type-cluster also have high predictive power. We can
say that a variable has predictive power if its estimated parameter is
significantly bigger/smaller than zero. Therefore, we will conduct a
two-sided t-test to test the null hypothesis H0 : βj = 0 against the
alternative H1 : βj 6= 0. The smaller the p-value of this test, the more
certain we are that βj is truly unequal to zero, or equivalently, that
variable j has predictive power.

The estimated parameter values can be found in Table B.4 in the ap-
pendix. However, instead of the exact values, it is more interesting to
see how significant a parameter is on a 1 to 5 scale, as in Table 4.3.
Here, we assign 1 when the p-value < 0.001 (very significant) until 5

when the p-value > 0.1 (not significant). Comparing this to Table 4.2,
we observe that when a weather variable has significant predictive
power for some type-cluster, then their mutual correlation is relatively
high as well. This is a nice result, but unfortunately the reverse is
not true. For instance, type-cluster 3 is highly correlated with one of
the temperature variables, but this variable does not have predictive
power for this type-cluster, which is surprising.
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Table 4.3: Significance on a 1-5 scale of the parameters of the estimated linear
models. Remember that a different model is estimated for each
type-cluster. The scale is based on the p-value of two-sided t-tests.

Type-cluster
Variable 1 2 3 4 5 6 7 8 9 Avg

Intercept 1 1 1 1 1 4 1 1 1 1.33

Trend 1 5 1 4 3 5 5 5 5 3.78

Windspeed 1 5 5 3 5 5 5 5 1 3.89

Temperature 3 4 5 1 2 5 5 5 5 3.89

Rainfall 1 3 5 5 5 5 5 4 1 3.78

Visibility 5 4 5 4 5 5 5 5 5 4.78

Scaling: 1: p<0.001, 2: p<0.01, 3: p<0.05, 4: p<0.1, 5: p<1

If we look at Table 4.3 in more detail, it stands out that several type-
clusters have no weather variables with significant predictive power.
Opposed to type-cluster 3, this is not surprising for type-clusters 6

and 7, since their correlations to the weather variables are relatively
low as well. On the other hand, type-clusters 1 and 9 are well pre-
dicted by the amount of wind and rainfall, which is intuitively ex-
plainable as well (recall the example at the end of Section 4.1).

Performance per type-cluster

Now we want to know of course how good this model is at predicting
the required number of trucks. Since we created a different model for
each type-cluster it is at first interesting to make a prediction per day
for each type-cluster. For some days in the test set, there were zero
small incidents in reality, so note that the MAPE does not work here.
Table B.8 shows the wMAPE for each type-cluster. If we compare this
to Table 4.3, we conclude that it is in general not the case that the more
weather variables with predictive power a type-cluster has, the more
predictable it is. For instance, type-cluster 7 it best predictable, while
it has no weather variables with significant predictive power. On the
other hand, we know that wind and rain have a huge effect on the
number of incidents of type ‘storm and water damage’ (type-cluster
9). The explanation for this can be found by looking at the amount of
variation in the real data. We therefore added to Table B.8 a column
with the Coefficient of Variation (CoV; the standard deviation divided
by the average). We observe that the number of trucks used for small
incidents is most stable for type-cluster 7, which is why this type-
cluster is easier to predict. The CoV of type-cluster 9 is maybe even
more striking. We have already seen that the biggest outliers in our
dataset are due to severe weather conditions (recall Table 3.1). Most
incidents on these days are from type-cluster 9, so it is no surprise
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that its CoV is so high. If we correct the wMAPE by dividing it by the
CoV, we actually see that we are doing a very good job in predicting
type-cluster 9. A much bigger part of its variation can be explained
than for the other type-clusters.

Performance per fire station

Instead of a prediction per type-cluster, it may be more interesting for
the fire brigade to look at the prediction per fire station in Table B.9.
At first sight, the wMAPE does not look very good for many fire
stations. However, if we compare it to the average number of trucks
used for small incidents per day for each fire station, we can con-
clude that it is very hard to accurately predict the number of trucks
when the average is very low. For instance, when we predict 2 when
it turns out to be 1 in reality, then we already make an error of 100%.
However, the question is how bad this really is in this case. In any
case, it is unlikely that an error of one truck will have a disastrous
impact in real life. Moreover, when the average is such low as for
some fire stations, then the majority of the days will have no inci-
dents at all. Since we look at the weighted MAPE, these days have
no weight. In other words, on these days we only get punished for
making an error, but we are not rewarded at all for being close (re-
call Equation 3). In order to clarify the relationship with the average
number of trucks used for small incidents per day, Figure 4.1 shows a
scatter plot where each point represents a fire station. Obviously, the
wMAPE quickly becomes worse when the average number of trucks
approaches zero. Hence, the performance of the linear model is not
as bad as the wMAPE implies in some cases. However, how good it
then really is, is hard to say.

Figure 4.1: Scatter plot of the wMAPE of the linear model versus the average
number of trucks used for small incidents per fire station.
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Overall performance per day

Finally, we also look at the total daily number of trucks used for small
incidents (over all fire stations and type-clusters). This enables us to
compare all models through one value. Since we have no day in the
test set on which there were no incidents at all in the whole region
Amsterdam-Amstelland, we can compute both the MAPE and the
wMAPE. This yields

MAPE(LM) = 0.1886 and wMAPE(LM) = 0.1924. (5)

Since the wMAPE is higher, we can conclude that the LM is not very
good at predicting relatively busy days (compared to predicting av-
erage days). However, the fire brigade is of course more interested
in when they have busy days. They are prepared for average days
anyway. We will therefore try to find another model that is better in
predicting those busy days.

Conclusion 4.3 Most weather variables which we expected to have pre-
dictive power for particular type-clusters confirmed our expectation, but
not all of them. In judging the performance, it is important to account
for the predictability of certain type-clusters or fire stations by looking
at the CoV and the daily average number of trucks used.

4.2.2 Generalized linear model

The idea for a generalized linear model (GLM) arises from an obser-
vation from Table 3.1. Here, we see that the largest outlier neither has
the highest windspeed nor the most rainfall among those five outliers.
However, the combination of wind and rainfall yet causes this day to
be the largest outlier. It may therefore be a good idea to include also
those cross-effects in our model, i.e.

xt,d = β0 +β1 · d
+β2 ·windspeedd
+β3 · temperatured
+β4 · rainfalld
+β5 · visibilityd
+β6 ·windspeedd · temperatured
+β7 ·windspeedd · rainfalld
+β8 ·windspeedd · visibilityd
+β9 · temperatured · rainfalld
+β10 · temperatured · visibilityd
+β11 · rainfalld · visibilityd
+ εt,d.

(6)
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Here, εt,d is again a residual term with zero expectation and some
finite variance. Note that this is not a GLM as one may know from
the literature. The only feature that causes it to be generalized is that
it now also handles the cross-term relations between the weather vari-
ables. We could have called it an expanded linear model as well.

Model estimation

Note that this model is an expanded version of the linear model in
Equation 4, so it should be at least as good. The question is how much
value it adds to the linear model. It will therefore be interesting to
investigate the estimated parameters for the cross-term variables, as
well as to compare the performance of both models. Therefore, we
first look at the predictive power of all GLM variables in Table 4.4
(the exact parameter values are given in the appendix in Table B.5).
Compared to that of LM in Table 4.3, we observe that in general the
single weather variables have lost some importance in favour of cross-
term variables they partition in. Type-cluster 1 is an excellent example
for this. Here, temperature had some predictive power in the LM, but
now it turns out that it is mainly the combination with the amount
of rainfall that matters. In addition, also windspeed and rainfall turn
out to be less predictive on their own then the LM indicated. It is
really their cross-term effect that is important. Looking at the average
column on the right, we see that also the intercept has lost some
importance. Apparently, a bigger part of reality can be modelled by
the weather after adding some cross-term variables. Of all weather
variables, it is even the case that two cross-term variables have most
predictive power (on average).

Performance

Noting the influence of the cross-term variables, we expect that the
performance of the GLM is better than that of the LM. However, Ta-
ble B.8 shows that this is only the case for type-clusters 1 and 9. This
is not surprising in the sense that these are the only type-clusters that
have one or more cross-term weather variables with very significant
predictive power (scale 1 or 2). It is disappointing though that it does
not make any difference for the other type-clusters. Also if we judge
it per fire station it hardly makes any difference (see Table B.9). Fortu-
nately, if we compute the results for the totals per day, we get

MAPE(GLM) = 0.1865 and wMAPE(GLM) = 0.1880. (7)

Still, the wMAPE is somewhat higher than the MAPE, but compared
to their equivalents of the LM (see Equation 5) they are slightly better
(about 2%).
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Table 4.4: Significance on a 1-5 scale of the parameters of the estimated gen-
eralized linear models. Remember that a different model is esti-
mated for each type-cluster. The scale is based on the p-value of
two-sided t-tests.

Type cluster
Variable 1 2 3 4 5 6 7 8 9 Avg

Intercept 1 2 1 1 1 5 1 2 3 1.89

Trend 1 5 1 4 3 5 5 5 5 3.78

Windspeed 3 5 5 5 5 5 5 5 1 4.33

Temperature 5 5 5 3 2 5 5 5 4 4.33

Rainfall 5 3 5 5 5 5 5 5 1 4.33

Visibility 5 5 4 5 5 5 5 5 5 4.89

Wind*Temp. 5 5 5 5 5 5 5 5 5 5.00

Wind*Rain 3 3 5 5 5 5 5 5 1 4.11

Wind*Visib. 5 3 5 4 5 5 5 5 5 4.67

Temp.*Rain 2 3 5 5 5 5 5 5 1 4.00

Temp.*Visib. 5 5 5 5 5 5 5 5 5 5.00

Rain*Visib. 5 5 5 5 5 5 5 3 5 4.78

Scaling: 1: p<0.001, 2: p<0.01, 3: p<0.05, 4: p<0.1, 5: p<1

Conclusion 4.4 GLM performs better than LM, because it turns out
that sometimes it is specifically the combination between variables that
is important, especially rain in combination with wind and temperature.

4.2.3 Random forest

The random forest (RF) algorithm is a machine learning algorithm
that can be used for both classification and regression tasks. Com-
pared to LM and GLM it has a large computation time, but RF is
often used in practice since it generally has great performance. It will
therefore be worth a try to implement this algorithm for our regres-
sion problem.

How the algorithm works

As input, the algorithm needs a T × (K+ 1)-matrix with K explanatory
variables (can be both numeric and categorical) and one observation
variable (in this case xt,d), all of sample size T . In the first iteration
of the algorithm, a sample of size T (in our case) is drawn with re-
placement from the input matrix. On this sample, a decision tree (DT)
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algorithm is executed. DT starts off with a root node containing the
complete sample. Then this sample is cut into two subsamples in
such a way that the reduction in total (weighted) standard deviation
is maximal. For us, this means that the days within each subsam-
ple have more similar characteristics between each other than with
respect to those in the other subsample. For instance, one subsam-
ple may include all days from the sample in which the total rainfall
was more than 5mm, so that xt,d is typically larger/smaller in this
subsample than in the other one. This splitting into subsamples con-
tinues until no splitting is possible anymore. A criterion here is that
each so-called leaf node must contain a subsample of size at least 5

(in our case). If now a new sample comes in, we can check to which
leaf node it belongs and then predict its value xt,d by taking the aver-
age of the observations in this leaf node. This procedure is repeated
N times, yielding N decision trees (that’s why it is called a forest).
When a new sample comes in, we can take all N predictions for this
sample (one from each decision tree) and average these to get the fi-
nal prediction. We will see later how big we must takeN as to balance
the computation time opposed to the quality of the prediction.

Implementation

Since computation time plays a much bigger role here than with
the LM and GLM, we will implement RF first with only the single
weather variables (as in LM). Then, we will implement it again for
both the single and cross-term weather variables (as in GLM). The
first question of interest here is how much longer the computation
time is for the second implementation and how much better the per-
formance becomes. Secondly, we want to compare of course the per-
formance of both implementations to that of the LM and GLM.

Settings

including cross-term variables We will run the algorithm
under different settings in order to determine which settings are most
suitable. The first question is whether we should include the cross-
term weather variables in the input matrix of the algorithm. Unlike
the linear models, RF should be able to capture some of the cross-term
relationships without including those specific variables. Running the
algorithm both with and without the cross-term variables yields that
the running time differs by almost a factor 2. Moreover, the difference
in MSE is indeed negligible, so we can safely exclude the cross-term
variables from the input matrix.
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number of decision trees Second, we want to determine what
number of trees (N) to use. Figure 4.5 shows the decrease in Mean
Squared Error (MSE) when we execute the algorithm for the first
type-cluster. Initially, we used N = 2723, which equals the number
of days in the training set. Apparently, the MSE reduces fast in the
beginning, but this reduction stabilizes quickly as well. On the other
hand, after some experimenting it turns out that the running time of
RF is approximately linear in the number of trees it computes, which
is not surprising regarding the way the algorithm works. This means
that RF runs more than 5 times faster when we limit the number of
trees to 500, while we then lose only about 0.4% in MSE. In this case
the additional running time is not worth it, so we will use N = 500

in our implementation. Under these settings, the RF algorithm runs
in less than ten seconds per type-cluster, so this is very acceptable. In
future implementations, using (say) N = 100 trees would be fine as
well, but much less is not recommended.

Table 4.5: Table of the MSE reduction in the random forest algorithm for the
third type-cluster (the pattern is comparable for all type-clusters,
only the scale differs). The reduction goes along with computing
more decision trees, but after some time, adding more trees is not
very rewarding anymore.

# Trees 1 2 5 10 20 50 100 250 500 2723

MSE 15.33 14.22 12.35 10.69 9.49 8.94 8.68 8.48 8.45 8.42

variable selection The only variables we use are exactly four
weather variables. An intercept is not needed here and a trend vari-
able is not useful in this algorithm. Note that for the linear models,
we can define a trend variable for the training set by just taking a vec-
tor from 1 to Ntraining and for the test set by a vector from Ntraining + 1

toNtraining +Ntest. However, the decision trees in the RF algorithm are
build just on the training set. So these will treat all trend values from
the test set the same, since they are all bigger than the maximum
trend value in the training set. Hence, adding a trend variable will
rather have a negative than a positive effect on the forecasts, so we
better not do this. Furthermore, since RF is able to capture non-linear
relationships and correlation is a linear measure, we cannot say that
very low correlations in Table 4.2 indicate that we can leave out that
particular weather variable from our model. Therefore, we do always
choose one variable from each of all four categories. The reason to not
include all variables is to keep the running time low. Now, before dis-
cussing the results, realise that the RF algorithm involves generating
random samples, so the results may slightly differ among consecutive
runs (even when using the same settings). The following results are
taken from just one of these runs for each type-cluster.
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Results

We will first dive into the predictive power of the variables again.
Different from the previous models, the RF algorithm does not esti-
mate a parameter for each variable. We therefore have to find another
measure for the importance of each variable. We will consider two
options, which we will call ‘RSS-ranking’ and ‘root-ranking’.

rss-ranking Remember that in each decision node, the algorithm
splits the remaining sample based on a decision rule on the variable
that reduces the standard deviation most. In other words, it tries to
improve the fit of the model to the training data as much as possi-
ble, i.e. the biggest decrease in residual sum of squares (RSS) between
the fitted model and the observation data in the training set. Hence,
we can measure the importance of a variable based on the total de-
crease in RSS from splitting on this variable. Therefore, Table B.6 in
the appendix gives these numbers for all variables, but what is most
interesting for us is the ranking of the variables based on these num-
bers as in Table 4.6. As in the previous models, visibility is often the
least important variable. However, the biggest difference is that in
this case the temperature is remarkably important.

Table 4.6: The importance of variables according to a ranking based on the
total decrease in RSS from splitting on each of these variables.
Here, 1 indicates the most important variable for each type-cluster.

Type-cluster
Variable 1 2 3 4 5 6 7 8 9 Avg

Windspeed 4 2 4 1 3 2 2 4 1 2.56

Temperature 1 1 1 3 2 1 1 1 3 1.56

Rainfall 3 4 3 2 1 4 4 3 2 2.89

Visibility 2 3 2 4 4 3 3 2 4 3.00

root-ranking For the second importance measure, we will look
at the root node of each of the 500 decision trees created by the al-
gorithm. In Table B.7 in the appendix, we show the number of times
each variable has been the decision variable in the root node of a deci-
sion tree. A ranking based on these counts is given in Table 4.7. This
ranking surely resembles the previous one on a bigger scale. However,
if we look at both rankings in detail, there are some obvious differ-
ences. First, the root-ranking seems to resemble better the relative
importance of the variables from Table 4.3. Second, the RSS-ranking
gives a more subtle ranking in the sense that it just ranks from one to
five. The root-ranking assigns a five to multiple variables when they
both are never used as decision variable in the root node. Moreover,
the root-ranking attempts to find the most important variable in every
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decision tree, but it does not explicitly regard the ranking below the
most important one. So in short, the RSS-ranking theoretically seems
to be more subtle, but in practice the root-ranking seems to make
more sense in this case.

Table 4.7: The importance of variables according to a ranking based on the
frequency of being the decision variable in the root node of a de-
cision tree in the random forest algorithm. Here, 1 indicates the
most important variable for each type-cluster.

Type-cluster
Variable 1 2 3 4 5 6 7 8 9 Avg

Windspeed 4 4 1 4 4 1 1 2 1 2.44

Temperature 4 1 2 2 2 2 2 1 2 2.00

Rainfall 1 2 4 3 1 4 4 3 4 2.89

Visibility 4 3 3 1 3 3 3 4 4 3.11

Performance

Now it is time to compare the results of RF to the previous models.
Therefore, we look again at Table B.8 and see that in general, RF gives
the worst results. Is all the effort we put in this model for nothing?
Maybe not, because RF has the best wMAPE for type-cluster 9, which
may be an indication that this algorithm is better in predicting busy
days. This is confirmed by the plot of the predictions for type-cluster
9 of both GLM and RF in Figure 4.2. Obviously, the RF algorithm
recognizes much better than GLM when the weather conditions are
risky and likely to cause many incidents to happen (look at the big
outlier in July).

Finally, the results for the totals per day are

MAPE(RF) = 0.2006 and wMAPE(RF) = 0.2019. (8)

Although the results are slightly worse than for the previous models,
it is hopeful that the results for type-cluster 9 are better. We will try
to use this fact in the next section.

Conclusion 4.5 Overall, RF performs worse than both linear models,
but it is better in predicting busy days. Furthermore, it turns out that
temperature has very specific (non-linear) predictive power, which could
not be captured by the linear models.
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(a) Generalized linear model

(b) Random forest

Figure 4.2: Forecasts (in blue) of the number of trucks used for small inci-
dents of type-cluster 9, including the upper bound of its 95%-
prediction interval (in red).

4.2.4 Ensemble averaging

From the previous sections, we can conclude that GLM gives the best
results when we look at the totals per day, but it is worse in predicting
busy days than RF. If we can combine both models in such a way
that we capture the good features from both worlds, than this may
improve our forecasts. We will try to do this by applying a form of
so-called ensemble averaging (EA). In our case, we will take a weighted
average of the forecasts of RF and GLM, i.e.

EA = γ ·RF + (1− γ) ·GLM, (9)

for some constant γ ∈ [0, 1].
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Performance

We have to find out which value of γ to use in order to get the best
results. Since GLM initially gives the best results and we only need
RF to be able to predict the busy days a bit better, we may expect
that we have to put more weight on GLM, i.e. that γ < 0.5. Table 4.8
confirms this expectation. Both the MAPE and the wMAPE take their
minimum in γ∗ = 0.2 (which is hence better than GLM individually;
compare with γ = 0). Using this value for γ, we can also compare the
results if we look at the predictions per type-cluster (Table B.8) or per
fire station (Table B.9). Note that its performance is not always better
than for the other models. However, we still prefer this EA method,
because it is a good balance between accurately predicting average
days and being able to foresee busy days. Therefore, we will also use
the predictions from this model in the following sections.

Table 4.8: Results of ensemble averaging when looking at totals per day, us-
ing EA = γ ·RF + (1− γ) ·GLM

γ MAPE wMAPE

0 0.1865 0.1880

0.1 0.1854 0.1863

0.2 0.1853 0.1860

0.3 0.1858 0.1865

0.4 0.1868 0.1876

0.5 0.1880 0.1889

0.6 0.1895 0.1905

0.7 0.1915 0.1926

0.8 0.1942 0.1954

0.9 0.1973 0.1985

1 0.2006 0.2019

Conclusion 4.6 As our final model for the small incidents, we will
use ensemble averaging with γ = 0.2, i.e. EA = 0.2 ·RF + 0.8 ·GLM.
Using this model, we do better in predicting both regular and busy days
than any of the considered models could do on its own.

4.3 firework incidents

Now that we have forecasts for the number of trucks used for small
incidents per day, we can finally have a closer look on the New Year’s
days (recall Section 3.1). Note that the models we used in the previ-
ous sections are all based on the data without both the big incidents
and all incidents on every December 31 and January 1. If we now
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use these models to make a forecast for these New Year’s days, then
this forecast is based only on ‘normal’ days in that time of the year,
the weekday and the weather conditions. However, we already con-
cluded that these days are not ‘normal’ because the use of fireworks
causes many extra incidents to happen. What we will do now is make
a forecast for all New Year’s days based on the EA method and sub-
tract this from the real number of trucks used for small incidents
on these days. We will make the assumption that the result approxi-
mates the number of firework incidents, so that we can analyse them
separately.

Results

First, we look at the correlations with the weather variables in Ta-
ble 4.9. Apparently, people use more firework on cold New Year’s
days with not too much wind and rain, which sounds plausible. In
any case, more incidents seem to happen under these weather condi-
tions.

Table 4.9: Correlation between weather variables and firework incidents.
Variable Correlation p-value

Windspeed (FG) -0.679 0.003

Temperature (TG) -0.667 0.003

Rainfall (DR) -0.575 0.016

Visibility (VVN) -0.407 0.104

Note though that we only have 17 New Year’s days in our dataset.
Moreover, recall from Figure 3.2 that in 2014/2015 the allowed time
interval for using fireworks has been changed. Therefore, we only
have two years in our datasets that are completely representative for
future New Year’s days. Hence, putting much effort in modelling
these firework incidents is not really worth it for now, so we will
only implement a simple linear model with just an intercept and four
weather variables. The results of estimating the model on all New
Year’s days are given in Table 4.10. None of the weather variables
have significant predictive power, which may also just be because of
the lack of data. If we estimate the model just on the first twelve New
Year’s days and leave the last five for testing, then we get a MAPE of
0.349. But again, this does not say much since we have too few days
to make a good forecast. However, this is the only way we can deal
with the different patterns on New Year’s days, so we will model it
like this anyway.
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Table 4.10: Parameter estimates of a linear model for the firework incidents,
including p-values of two-sided t-tests to test the null hypothesis
that the true parameter equals zero.

Variable Estimate p-value

Intercept 219.158 0.000

Windspeed (FG) -0.607 0.352

Temperature (TG) -0.565 0.198

Rainfall (DR) 0.041 0.941

Visibility (VVN) -0.405 0.519

Conclusion 4.7 It seems that more people use firework on cold New
Year’s days with not too much wind and rain, but none of these weather
variables have significant power in predicting (what we assumed to be)
firework incidents. Because of the little data on New Year’s days, we will
just use a simpel LM for predicting firework incidents.

4.4 needed capacity fire stations

Now that our forecasts are complete, it is interesting to extract from
this the capacity we expect each fire station to need each day. For this,
we want to have some certainty that the capacity is satisfying for that
day. Different from a confidence interval, which only measures the
uncertainty of the forecast, a prediction interval includes in addition
the variability of the number of incidents in real life. We can therefore
use the upper bound of the prediction interval to ensure that the pre-
dicted capacity will be satisfactory with, for instance, 95% certainty.
But how can we compute such intervals for GLM and RF?

Prediction interval for GLM

The standard function in R to make a prediction interval for the (mul-
tiple) linear regression model

y = Xᵀβ+ ε

assumes that all elements of ε = (ε1, . . . , εn) are independent and
follow an identical normal distribution, i.e. εt ∼ N(0,σ2) for all t
independently. Then, the 100(1−α)%-prediction interval for a future
observation y0 can be computed as

ŷ0 ± t
(1−α/2)
n−k

√
V̂ar(Xᵀβ+ ε) = ŷ0 ± t

(1−α/2)
n−k σ̂

√
x
ᵀ
0(X

ᵀX)−1x0 + 1,

(see [5]) where
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• ŷ0 is the predicted value for y0;

• t(1−α/2)n−k is the (1−α/2)-quantile of the t-distribution with n−k

degrees of freedom;

• n is the number of samples in the training set;

• k is the number of variables in the model;

• and Var(Xᵀβ+ ε) includes both the uncertainty of the predic-
tion (Var(Xᵀβ), i.e. the confidence interval part) and the vari-
ability of the observations (Var(ε)).

We can write the prediction interval in a compact way like this (using
±), because the tn-distribution is symmetric around zero. A more
general way of denoting the same interval is[
ŷ0 + t

(α/2)
n−k σ̂

√
x
ᵀ
0(X

ᵀX)−1x0 + 1, ŷ0 + t
(1−α/2)
n−k σ̂

√
x
ᵀ
0(X

ᵀX)−1x0 + 1

]
.

Now, recall that for n → ∞ the tn-distribution converges to a stan-
dard normal distribution. Hence, σtn then converges to a N(0,σ2)-
distribution, which is the distribution of εt according to the standard
assumption in R. But in our case, this assumption does not hold (re-
call Section 4.2.1). Instead of trying to fit another distribution for εt,
we will just assume that the residuals in future observations will have
the same distribution as the residuals of our fitted model on the train-
ing set. Then, we can use the quantiles of these residuals (denoted by
qα) and compute the prediction interval of GLM as[
ŷ0 + qα/2

√
x
ᵀ
0(X

ᵀX)−1x0 + 1, ŷ0 + q1−α/2
√
x
ᵀ
0(X

ᵀX)−1x0 + 1

]
.

Prediction interval for RF

Remember that the RF algorithm computes N decision trees, which
all yield one prediction for each future observation. The variability
of these N individual predictions captures the uncertainty of the fi-
nal prediction (the average of the individuals). In order to capture
the variability of the observations, we need again our assumption on
the residuals. In this case, we will use this by adding to each of the
N individual predictions a random value, drawn from the empirical
distribution of the residuals in the training set. Then, the resulting N
values include all the variation we need. Their (α/2)- and (1− α/2)-
quantiles together directly form the desired prediction interval.
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Results

Now, we have to combine all previous results. If we want to be sure
that the capacity suffices with 100(1 − α)% certainty, we need (of
course per day and per fire station) the following ingredients:

A. The upper bound of the 100(1− 2α)%-prediction interval of the
EA forecast for small non-firework incidents.

B. The upper bound of the 100(1− 2α)%-prediction interval of the
LM forecast for small firework incidents.

C. The (decreasing) (1−α)-quantiles for the big incidents.

Then, we can determine the needed capacity by

(A+B+C) · maximum hour ratio
24

,

where the maximum hour ratio is approximately 1.21 (recall Fig-
ure 3.6c). Table 4.11 gives the needed capacity for each fire station.

Table 4.11: The capacity needed per day for each fire station if it wants to
have the given certainty that the capacity suffices that day. In our
test set (2015/07–2016/04) no fire station ever needed a capacity
of more than two trucks.

Avg cap. needed % of days 2 needed Available
Fire station 90% 95% 99% 90% 95% 99% cap. 1?

Aalsmeer 0.14 0.17 0.27 0.0% 0.0% 0.0% No
Amstelveen 0.44 0.53 0.80 0.0% 0.3% 3.3% No
Anton 0.40 0.48 0.73 0.0% 0.0% 0.3% No
Diemen 0.12 0.15 0.25 0.0% 0.0% 0.0% No
Dirk 0.34 0.41 0.64 0.0% 0.0% 0.7% No
Driemond 0.04 0.05 0.10 0.0% 0.0% 0.0% Yes
Duivendrecht 0.17 0.20 0.30 0.0% 0.0% 0.0% No
Hendrik 0.59 0.71 1.07 0.7% 1.7% 67.7% No
IJsbrand 0.19 0.24 0.38 0.0% 0.0% 0.0% Yes
Landelijk Noord 0.04 0.06 0.11 0.0% 0.0% 0.0% Yes
Nico 0.35 0.42 0.64 0.0% 0.0% 0.3% No
Osdorp 0.42 0.51 0.77 0.0% 0.0% 1.0% No
Ouderkerk a/d Amstel 0.06 0.08 0.13 0.0% 0.0% 0.0% Yes
Pieter 0.41 0.50 0.75 0.0% 0.0% 1.7% Yes
Teunis 0.28 0.34 0.53 0.0% 0.0% 0.0% No
Uithoorn 0.12 0.15 0.25 0.0% 0.0% 0.0% No
Victor 0.28 0.34 0.51 0.0% 0.0% 0.0% No
Willem 0.30 0.36 0.55 0.0% 0.0% 0.0% No
Zebra 0.23 0.28 0.44 0.0% 0.0% 0.0% Yes

From this we can conclude that, on an average day, (almost) all fire
stations only need a capacity of one truck. Only if we want to be 99%
sure that the capacity suffices, we need a capacity of two trucks at sta-
tion ‘Hendrik’ on an average day. More specifically, with this certainty
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Hendrik needs a capacity of two trucks on more than two thirds of
the days. Even when only a certainty of 90% is required, then there
are some days on which Hendrik needs two trucks. If the required
certainty is increased to 95%, then Amstelveen joins the club of sta-
tions who need a capacity of two on some days. If we finally increase
the required certainty to 99%, the only station that gets in trouble is
Pieter. Then, on 1.7% of the days the available capacity of Pieter does
not meet the desired certainty of being sufficient (see in red). How-
ever, recall that the demand is slowly decreasing. Moreover, even on
these ‘critical’ days the capacity does ensure to be sufficient with at
least 95% certainty, so there is no reason to panic. Note that we can say
‘at least’, because in reality we need to round up to ensure the desired
certainty for an integer capacity. However, since the needed capacity
is often (if not always) just 1 or 2, this rounding up may cause the
achieved certainty to be much higher than initially asked for.

Conclusion 4.8 If we want to be 99% certain that the capacity suffices,
then only fire station ‘Pieter’ is not able to meet this criterion on 1.7%
of the days. Even on these days, Pieter does have at least 95% certainty
of having sufficient capacity. So we can conclude that no fire station in
Amsterdam-Amstelland has to expand its capacity.
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F O R E C A S T P E R R E G I O N

In this final chapter, we will briefly discuss a second approach of
modelling. In the previous chapter, we computed a different model
for each type-cluster and then divided the total prediction among the
fire stations. This is the easiest way to obtain a forecast per fire station.
However, this is not the most intuitive way of predicting incidents,
because incidents happen at a certain place in a certain region, and not
at a certain place where (at that moment) a truck of fire station X was
closest by. It would therefore be more logical to make a forecast per
region and then allocate the demand among all fire stations. A benefit
of this approach is that we can more accurately use the characteristics
of regions. For example, a region with many (big/old) trees may be
risky on stormy days. Or, a region with a high density of houses may
be more prone to inside fires. It is outside the scope of this paper to
fully implement this approach in detail, but in this chapter we will
briefly discuss how this can be achieved.

5.1 modelling and results

In this research, we first created a model for each type-cluster and
then divided the prediction over all fire stations. We can try to cap-
ture some of the region characteristics by first dividing our prediction
per type-cluster over all regions according to the percentages in Ta-
ble B.10. When we use the LM of Section 4.2.1, then the results per re-
gion are as illustrated in Figure 5.1 (exact results given in Table B.11).
In this plot every point represents a region, so we can again conclude
that the less incidents happen, the harder it is to make a good forecast
in terms of wMAPE. Comparing these results to those in Table B.9,
then we observe that the predictions per region are better (except for
‘Buiten regio’), but that this is only due to the size of the groups we
created. For the totals per day, we get

MAPE(LM2) = 0.1887 and wMAPE(LM2) = 0.1919,

which is comparable to the previous results of LM (see Equation 5).
This is not surprising since we used exactly the same models for the
type-clusters first. The biggest challenge for future research is to come
up with a model that can be applied separately to each region, while
it still accounts for all different incident types. If such a model can be
made, then we may expect it to yield better results than achieved in
this research.

39
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Figure 5.1: Scatter plot of the wMAPE of the linear model versus the average
number of trucks used for small incidents per region.

5.2 allocation over fire stations

Having a prediction per region, the remaining question is how we can
divide this prediction over all fire stations. After all, this is what is
most interesting from the fire brigade’s point of view. The allocation
rule must of course be based on the average response time of fire
station x when an incident happens in region y. Because the response
times are not known, we will use the average distances d(x,y) here
instead. The most simple allocation rule may be

s(x,y) =
d(x,y)−1∑
i d(i,y)−1

, (10)

where s(x,y) denotes the share of fire station x in the prediction of
region y. We need inverse distances to achieve that shorter distances
result in higher shares. The numerator is just a normalization to make
all shares for each region sum up to one. Unfortunately, this rule
yields an allocation that it very different from the allocation based
on the data (compare Tables B.13 and B.14). Instead of searching for
another allocation rule, we will just use the percentages as given in
Table B.14. Then, the results per fire station are as given in Table B.12.
These show that the results are slightly better on average, although
the difference is small. Nevertheless, it gives good hope that this al-
ternative approach may yield better results when it is executed in a
more advanced way.

Conclusion 5.1 In future research, improvements can be aimed for by
trying to capture region characteristics while still accounting for all
different incident types.
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C O N C L U S I O N S A N D R E C O M M E N D AT I O N S

6.1 conclusions

During this research, we tried to find an answer to the question:

Can we make a good forecast on the number of incidents that each fire
station in Amsterdam-Amstelland has to handle?

Here, special interest went to the influence of several weather con-
ditions and to the issue of dealing with the low number of inci-
dents.

Unless the main question is somewhat subjective, we can be satisfied
with the forecasts we created for the small incidents using ensemble
averaging (EA). Also the result that the big incidents can be modelled
by an inhomogeneous Poisson process is quite nice. We found that the
incident types are very useful in predicting the small incidents, but
since some of them do not occur frequently enough, we had to split
the relevant types into nine clusters. Here, we ensured that each type-
cluster contained at least one incident per day. Because of a lack of
data, we could not make a separate model for each type-cluster/fire
station combination. This issue was partly solved by only modelling
each type-cluster separately and then dividing the predictions over
the fire stations. Concerning the weather, (the combination of) rain
and wind on average had most influence in the linear models and
temperature appeared to contain mostly non-linear relations with the
number of incidents. As expected beforehand, the visibility had the
least predictive power among those four weather variables.

In the end, the linear model with cross-term effects of the weather
variables (GLM) turned out to yield the best results in terms of weighted
mean absolute percentage error (wMAPE). On the other hand, the
random forest algorithm (RF) showed to be better in predicting busy
days, which is of course more interesting for the fire brigade. Tak-
ing an optimized weighted average between these two models (EA =

0.2 ·RF+ 0.8 ·GLM) finally seemed to capture the best of both worlds
(wMAPE = 0.1860 for total number of small trucks per day). Using
the prediction intervals of this model, we finally concluded that the
available capacity of fire trucks suffices for all fire stations.
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6.2 recommendations

type-clustering The type-clustering we made in this research
was based on correlations with the weather variables. This turned
out not too bad, but there are several reasons why this clustering
may not be optimal. First, it is only based on linear relations to the
concerned weather variables while for example temperature showed
to have mainly influence in a non-linear way. Second, we saw for ex-
ample that inside fires occur more frequently during weekends and
that certain type of incidents typically require multiple trucks. We
can also include these kind of characteristics in determining a cluster-
ing. Furthermore, the weekday corrections were done per type-cluster
here, but it may be that there are types within one cluster that have
opposing weekday factors. It may therefore be wise to use different
clusterings, one for the corrections and one for the models using the
weather conditions. These are interesting topics to investigate in fu-
ture research.

random forest Another improvement that can be made is in
the RF algorithm. We discussed why we cannot include a trend in
the algorithm, but there is no reason why we cannot apply a cor-
rection for the trend before implementing the algorithm. For time
reasons, we did not implement this idea in this research, but it will
almost certainly lead to better results (although the difference may be
small).

forecast per region Finally, improvements can be made by in-
vestigating the opportunities raised by the approach in Chapter 5.
Already for my simple implementation, the results of first looking at
a prediction per region instead of per fire station showed that this
approach has a great potential.
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type characteristics

(a) Buitenbrand (b) Binnenbrand

(c) Brandgerucht / nacontrole (d) Hulpverlening water algemeen

(e) Dier te water (f) Persoon te water

(g) Voertuig te water (h) Reanimeren
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(i) Hulpverlening dieren (j) Hulpverlening algemeen dieren

(k) Meten / overlast / verontreiniging (l) OMS / automatische melding

(m) Liftopsluiting (n) Buitensluiting

(o) Assistentie politie (p) Assistentie ambulance

(q) Hulpverlening algemeen (r) Afhijsen spoed

(s) Beknelling / bevrijding (t) Storm en waterschade

Figure A.1: For each type with more than 100 small incidents in total a plot
of the number of trucks used for small incidents per day.
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extra figures for seasonal patterns

Figure A.2: For every month a plot of the yearly development of the number
of trucks used for small incidents per day.

(a) Per weekday. (b) Per cluster.

Figure A.3: Day patterns per weekday and per cluster. There are no signifi-
cant differences within each plot.

(a) Day pattern. (b) Week pattern.

Figure A.4: Day and week pattern throughout the year. The day pattern does
not really change, but the week pattern does seem to be slightly
changing.
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relevance incident types

Table B.1: The number of small incidents (excluding New Year’s days) per
incident type, together with their first and last occurrence. The
types in the lower block either occur only rarely or do not exist
any more. Note that there are 3026 non-New Year’s days in total,
so even some incident types in the upper block do not even occur
on a daily basis.

Incident type Freq. First date Last date

1 Assistentie ambulance 9552 01/01/2008 29/04/2016

2 Assistentie politie 4360 01/01/2008 28/04/2016

3 Binnenbrand 5407 01/01/2008 29/04/2016

4 Brandgerucht / nacontrole 5163 01/01/2008 29/04/2016

5 Buitenbrand 10459 01/01/2008 29/04/2016

6 Buitensluiting 2216 01/01/2008 09/04/2016

7 Dier te water 785 01/01/2008 01/04/2016

8 Hulpverlening algemeen 7092 01/01/2008 29/04/2016

9 Hulpverlening dieren 1048 19/01/2008 29/04/2016

10 Hulpverlening water algemeen 241 08/01/2008 19/04/2016

11 Liftopsluiting 7434 01/01/2008 29/04/2016

12 Meten / overlast / verontreiniging 7632 01/01/2008 29/04/2016

13 OMS / automatische melding 17266 01/01/2008 29/04/2016

14 Persoon te water 867 01/01/2008 26/04/2016

15 Reanimeren 5912 01/01/2008 29/04/2016

16 Storm en waterschade 6369 01/01/2008 26/04/2016

17 Voertuig te water 230 03/01/2008 31/03/2016

18 NVT 38 27/01/2008 01/07/2015

19 Herbezetting 25 28/03/2012 18/06/2015

20 Brandbare gassen 66 17/10/2012 16/04/2014

21 Regionale bijstand 12 14/07/2008 14/10/2013

22 Overige gevaarlijke stoffen 17 08/07/2008 06/09/2013

23 Beknelling / bevrijding 938 08/01/2008 23/05/2013

24 Afhijsen spoed 3262 01/01/2008 19/02/2012

25 Hulpverlening algemeen dieren 509 05/01/2008 19/02/2012

26 Interregionale bijstand 83 05/02/2008 16/02/2012

27 Brandbare vloeistoffen 2 09/09/2011 30/09/2011

28 Letsel eigen personeel 12 21/09/2008 22/05/2011

29 Buiten dienststelling 1 04/02/2011 04/02/2011
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fire station/type-cluster combinations

Table B.2: Average number of trucks needed for small incidents per month
for each type-cluster separated per fire station.

Station \ Type-cluster 1 2 3 4 5 6 7 8 9

Aalsmeer 2.3 0.7 1.3 4.5 2.0 0.4 5.8 2.1 2.0
Amstelveen 7.4 5.4 4.8 35.7 6.1 3.9 22.4 11.8 5.4
Anton 8.6 7.4 4.7 35.9 10.3 3.4 18.5 4.7 5.0
Diemen 2.5 1.7 1.6 5.3 2.1 0.9 5.6 1.3 1.6
Dirk 5.4 4.4 5.7 14.5 8.4 2.5 19.7 4.3 5.4
Driemond 0.2 0.5 0.1 0.0 0.1 0.0 0.4 0.1 0.1
Duivendrecht 2.4 1.4 1.0 16.1 2.1 0.5 3.4 0.6 0.8
Hendrik 7.3 10.4 13.1 20.3 15.7 5.7 40.4 5.3 10.1
IJsbrand 8.9 2.8 3.0 6.6 4.1 1.9 10.3 3.3 2.7
Landelijk Noord 0.2 1.2 0.0 0.1 0.1 0.0 0.0 0.1 0.0
Nico 5.7 7.1 5.1 21.4 8.1 3.3 18.2 3.3 4.7
Osdorp 13.4 6.8 7.2 18.6 9.7 3.9 24.9 7.4 5.1
Ouderkerk a/d Amstel 0.8 0.7 0.2 0.4 0.5 0.1 1.5 0.3 0.3
Overig 0.3 0.2 0.1 0.6 0.2 0.0 0.1 2.9 0.1
Pieter 10.5 5.1 7.6 20.4 9.6 2.9 21.3 7.2 5.0
Teunis 6.3 4.8 5.6 12.6 7.3 2.2 13.3 3.4 3.6
Uithoorn 2.2 1.6 1.4 5.3 1.6 0.7 5.0 1.8 1.7
Victor 5.7 4.9 5.6 8.6 8.0 2.7 17.1 2.0 3.3
Willem 6.9 4.8 5.2 11.1 7.0 3.1 18.9 3.4 3.8
Zebra 7.5 5.2 2.8 9.1 4.9 2.3 11.9 3.5 2.9

Table B.3: The share of each fire station in the number of trucks used for
small incidents per type-cluster.

Station \ Type-cluster 1 2 3 4 5 6 7 8 9 Avg
Aalsmeer 2.2% 0.9% 1.7% 1.8% 1.9% 1.1% 2.2% 3.0% 3.2% 2.0%
Amstelveen 7.1% 7.0% 6.3% 14.5% 5.7% 9.7% 8.7% 17.1% 8.5% 9.4%
Anton 8.2% 9.6% 6.1% 14.5% 9.5% 8.5% 7.2% 6.9% 7.8% 8.7%
Diemen 2.4% 2.2% 2.1% 2.1% 1.9% 2.2% 2.2% 2.0% 2.5% 2.2%
Dirk 5.2% 5.6% 7.5% 5.9% 7.8% 6.2% 7.6% 6.3% 8.5% 6.7%
Driemond 0.2% 0.6% 0.1% 0.0% 0.1% 0.0% 0.2% 0.2% 0.1% 0.2%
Duivendrecht 2.3% 1.8% 1.3% 6.5% 1.9% 1.2% 1.3% 0.8% 1.3% 2.1%
Hendrik 7.0% 13.5% 17.2% 8.2% 14.5% 14.0% 15.6% 7.6% 15.8% 12.6%
IJsbrand 8.5% 3.7% 3.9% 2.7% 3.8% 4.7% 4.0% 4.8% 4.3% 4.5%
Landelijk Noord 0.2% 1.6% 0.0% 0.0% 0.1% 0.1% 0.0% 0.2% 0.0% 0.3%
Nico 5.4% 9.2% 6.7% 8.6% 7.5% 8.3% 7.0% 4.8% 7.3% 7.2%
Osdorp 12.8% 8.8% 9.4% 7.5% 9.0% 9.6% 9.6% 10.7% 8.0% 9.5%
Ouderkerk a/d Amstel 0.8% 0.9% 0.3% 0.2% 0.5% 0.2% 0.6% 0.4% 0.5% 0.5%
Overig 0.3% 0.3% 0.1% 0.2% 0.2% 0.0% 0.1% 4.2% 0.1% 0.6%
Pieter 10.1% 6.6% 10.0% 8.2% 8.9% 7.2% 8.2% 10.4% 7.9% 8.6%
Teunis 6.1% 6.2% 7.4% 5.1% 6.8% 5.5% 5.1% 5.0% 5.6% 5.9%
Uithoorn 2.1% 2.0% 1.9% 2.1% 1.5% 1.7% 1.9% 2.6% 2.7% 2.1%
Victor 5.5% 6.3% 7.4% 3.5% 7.4% 6.7% 6.6% 3.0% 5.2% 5.7%
Willem 6.6% 6.3% 6.9% 4.5% 6.5% 7.6% 7.3% 4.9% 6.0% 6.3%
Zebra 7.1% 6.7% 3.6% 3.7% 4.5% 5.6% 4.6% 5.1% 4.6% 5.1%

Total 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
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estimated parameter values in linear models

Table B.4: Estimated parameter values of LM. A description of the variables
can be found in Table 3.2.

Type-cluster
Variable 1 2 3 4 5 6 7 8 9

β0 Intercept 5.961 2.669 3.113 12.342 10.686 1.173 13.648 5.381 -4.851

β1 Trend -0.0008 0.0003 0.0006 0.0002 -0.0003 0.0008 -0.0001 -0.0007 0.0002

β2

FG - 0.0037 - - - - - - -
FHX -0.0115 - - - - - - - -
FXX - - - - - 0.0011 - -0.0081 0.0542

β3
TG 0.0021 0.0023 -0.0003 - - - 0.0005 -0.0012 0.0011

TG>0 - - - -2.3572 -1.3497 0.2111 - - -

β4

DR -0.0165 -0.0070 -0.0015 - - - - - -
RH - - - - - - - 0.0078 0.0278

RHX - - - 0.0120 - 0.0020 - - -

β5
VVN 0.0019 -0.0081 -0.0043 -0.0075 - - - -0.0025 -
VVN<2 - - - - - - - - -

Table B.5: Estimated parameter values of GLM. A description of the vari-
ables can be found in Table 3.2. For the cross-terms, the same
variables are used as for the single variables. For instance, for
type-cluster 1, Wind*Temp. implies FHX*TG.

Type-cluster
Variable 1 2 3 4 5 6 7 8 9

β0 Intercept 6.194 2.106 3.208 11.960 10.686 4.816 13.648 5.300 -1.814

β1 Trend -0.0007 0.0002 0.0006 0.0002 -0.0003 0.0008 -0.0001 -0.0001 0.0002

β2

FG - 0.0138 - - - - - - -
FHX -0.0161 - - - - - - - -
FXX - - - - - -0.0313 - -0.0097 0.0336

β3
TG 0.0007 0.0017 -0.0020 - - - 0.0005 -0.0016 -0.0117

TG>0 - - - -1.9873 -1.3497 -3.3523 - - -

β4

DR -0.0093 -0.0201 0.0050 - - - - - -
RH - - - - - - - -0.0158 -0.1175

RHX - - - -0.0947 - 0.9463 - - -

β5
VVN -0.0016 0.0202 -0.0082 0.0099 - - - 0.0170 -
VVN<2 - - - - - - - - -

β6 Wind*Temp. 0.0000 0.0001 - - - 0.0316 - 0.0000 0.0001

β7 Wind*Rain 0.0001 0.0003 0.0000 - - 0.0001 - 0.0001 0.0006

β8 Wind*Visib. 0.0000 -0.0006 - - - - - -0.0002 -
β9 Temp.*Rain -0.0001 -0.0001 - 0.1263 - -0.9522 - 0.0000 0.0004

β10 Temp.*Visib. 0.0001 -0.0001 0.0001 -0.0165 - - - -0.0001

β11 Rain*Visib. -0.0002 0.0003 -0.0001 -0.0005 - - 0.0007 -
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importance variables in random forest algorithm

Table B.6: The total decrease in RSS from splitting on each of these variables
in the random forest algorithm.

Total decrease in RSS per type-cluster
Variable 1 2 3 4 5 6 7 8 9

Windspeed 3204.8 2085.4 2548.6 19659.3 13163.6 219.1 3085.7 859.9 82536.9
Temperature 9052.1 2544.0 7477.3 12254.9 19352.9 250.8 3342.0 1920.8 21008.4
Rainfall 3947.2 1332.4 3334.7 17564.5 21784.0 8.2 1259.8 1045.9 25797.8
Visibility 5908.3 1713.2 5161.2 803.9 1053.7 16.9 2072.7 1268.3 106.9

Table B.7: The frequency of being the decision variable in the root node of a
decision tree in the random forest algorithm.

Type-cluster
Variable 1 2 3 4 5 6 7 8 9

Windspeed 0 57 302 13 86 370 327 149 496

Temperature 0 239 156 32 133 128 127 223 4

Rainfall 500 110 13 28 177 0 6 107 0

Visibility 0 94 29 427 104 2 40 21 0

Total 500 500 500 500 500 500 500 500 500

performance measures for all models

Table B.8: Quality of forecasts per type-cluster in terms of weighted mean
absolute percentage error (wMAPE), including a correction by the
coefficient of variation (CoV).

wMAPE CoV wMAPE / CoV
Type-cluster LM GLM RF EA* (SD / Avg) LM GLM RF EA*

1 0.585 0.576 0.645 0.571 0.795 0.736 0.724 0.811 0.719

2 0.757 0.764 0.784 0.764 1.018 0.743 0.750 0.770 0.750

3 0.542 0.541 0.539 0.532 0.681 0.796 0.794 0.792 0.780

4 0.315 0.316 0.331 0.315 0.410 0.769 0.770 0.809 0.768

5 0.454 0.454 0.518 0.459 0.570 0.796 0.796 0.908 0.806

6 0.721 0.733 0.745 0.724 0.892 0.809 0.822 0.835 0.811

7 0.299 0.299 0.325 0.302 0.383 0.781 0.781 0.848 0.789

8 0.636 0.661 0.719 0.668 0.835 0.762 0.792 0.861 0.800

9 1.144 1.037 0.959 0.983 5.249 0.218 0.197 0.183 0.187

Avg 0.606 0.598 0.618 0.591 1.204 0.712 0.714 0.757 0.712
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Table B.9: Quality of forecasts per fire station in terms of weighted mean ab-
solute percentage error (wMAPE), including the average number
of trucks used for small incidents per day.

wMAPE Avg #
Fire station LM GLM RF EA* of trucks
Aalsmeer 1.051 1.052 1.051 1.051 1.4
Amstelveen 0.565 0.565 0.565 0.564 4.5
Anton 0.521 0.521 0.519 0.520 4.8
Diemen 0.951 0.951 0.946 0.949 1.3
Dirk 0.611 0.609 0.617 0.606 3.7
Driemond 1.524 1.522 1.527 1.523 0.1
Duivendrecht 2.052 2.053 2.062 2.054 0.7
Hendrik 0.458 0.453 0.462 0.450 7.3
IJsbrand 0.720 0.715 0.724 0.714 2.1
Landelijk Noord 2.029 2.035 2.044 2.037 0.1
Nico 0.563 0.560 0.559 0.557 4.3
Osdorp 0.495 0.489 0.502 0.490 5.3
Ouderkerk a/d Amstel 1.732 1.734 1.757 1.739 0.3
Overig 2.464 2.532 2.593 2.544 0.1
Pieter 0.539 0.536 0.534 0.534 5.3
Teunis 0.671 0.670 0.674 0.670 3.0
Uithoorn 1.052 1.049 1.039 1.045 1.1
Victor 0.663 0.667 0.687 0.669 2.9
Willem 0.596 0.592 0.594 0.591 3.7
Zebra 0.710 0.705 0.713 0.703 2.3
Average 0.998 1.001 1.008 1.000 2.7

results second approach

Table B.10: The share of each region in the number of trucks used for small
incidents per type-cluster.

Region\Type-cluster 1 2 3 4 5 6 7 8 9 Avg

Buiten regio 0.8% 0.2% 0.0% 0.1% 0.1% 0.1% 0.3% 3.2% 0.2% 0.6%
Centrum 22.2% 28.9% 35.7% 21.1% 32.1% 29.8% 33.3% 26.5% 32.9% 29.2%
Haven 26.5% 15.5% 20.8% 14.7% 19.8% 20.6% 17.6% 20.0% 18.4% 19.3%
Noord 14.0% 22.1% 10.0% 11.8% 13.8% 14.1% 11.1% 12.3% 13.1% 13.6%
Oost 9.7% 8.8% 7.5% 14.9% 8.1% 7.0% 9.3% 8.4% 7.2% 9.0%
Zuidflank 10.6% 9.9% 10.3% 19.2% 7.0% 12.9% 11.9% 16.2% 12.7% 12.3%
Zuidoost 16.1% 14.4% 15.7% 18.2% 19.1% 15.4% 16.4% 13.3% 15.6% 16.0%
Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
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Table B.11: Quality of LM forecasts per region in terms of weighted mean
absolute percentage error (wMAPE), including the average num-
ber of trucks used for small incidents per day.

Region wMAPE Avg # trucks

Buiten regio 1.766 0.2
Centrum 0.321 16.2
Haven 0.371 10.2
Noord 0.414 7.3
Oost 0.634 4.2
Zuidflank 0.576 5.4
Zuidoost 0.370 9.0
Average 0.636 7.5

Table B.12: Quality of LM forecasts per fire station in terms of weighted
mean absolute percentage error (wMAPE) for the approaches of
Chapters 4 and 5 respectively, including the average number of
trucks used for small incidents per day. Fire station ‘Overig’ is
excluded here.

wMAPE Avg #
Fire station LM LM2 of trucks
Aalsmeer 1.051 0.999 1.4
Amstelveen 0.565 0.560 4.5
Anton 0.521 0.522 4.8
Diemen 0.951 0.956 1.3
Dirk 0.611 0.608 3.7
Driemond 1.524 1.549 0.1
Duivendrecht 2.052 1.854 0.7
Hendrik 0.458 0.457 7.3
IJsbrand 0.720 0.726 2.1
Landelijk Noord 2.029 2.248 0.1
Nico 0.563 0.562 4.3
Osdorp 0.495 0.496 5.3
Ouderkerk a/d Amstel 1.732 1.670 0.3
Pieter 0.539 0.541 5.3
Teunis 0.671 0.665 3.0
Uithoorn 1.052 1.024 1.0
Victor 0.663 0.651 2.9
Willem 0.596 0.600 3.7
Zebra 0.710 0.706 2.3
Average 0.921 0.915 2.9



52 tables

allocation tables

Table B.13: Allocation of prediction per region over all fire stations according
to the allocation rule in Equation 10.

Fire station\Region Buiten regio Centrum Haven Noord Oost Zuidflank Zuidoost

Aalsmeer 5.9% 2.1% 3.0% 1.7% 1.6% 5.2% 1.7%
Amstelveen 5.9% 4.7% 4.5% 3.6% 5.0% 11.3% 4.1%
Anton 4.5% 2.7% 3.1% 4.0% 4.7% 4.0% 9.9%
Diemen 4.4% 3.0% 3.4% 5.4% 5.4% 3.8% 10.5%
Dirk 5.8% 11.6% 7.0% 6.8% 7.2% 6.0% 4.6%
Driemond 3.6% 1.9% 2.3% 2.8% 2.5% 2.8% 4.6%
Duivendrecht 4.9% 3.8% 3.9% 5.7% 9.2% 4.7% 10.4%
Hendrik 5.8% 12.3% 8.5% 6.2% 5.0% 5.4% 3.8%
IJsbrand 5.1% 5.6% 7.3% 6.5% 3.7% 3.9% 3.5%
Landelijk Noord 3.7% 2.3% 2.9% 4.7% 2.9% 2.7% 4.4%
Nico 5.2% 6.6% 5.9% 10.8% 7.8% 4.7% 5.7%
Osdorp 7.1% 4.7% 9.0% 2.7% 2.4% 5.1% 2.2%
Ouderkerk a/d Amstel 5.5% 4.0% 3.9% 3.7% 5.8% 7.8% 5.1%
Pieter 6.8% 9.4% 8.4% 3.7% 3.7% 7.2% 3.0%
Teunis 5.9% 9.3% 10.0% 5.1% 3.8% 4.9% 3.3%
Uithoorn 5.6% 2.3% 3.1% 1.9% 1.9% 7.4% 2.1%
Victor 4.9% 4.8% 4.7% 9.1% 9.1% 4.5% 8.3%
Willem 5.3% 5.9% 5.1% 7.7% 14.3% 5.4% 7.2%
Zebra 4.2% 3.1% 3.8% 7.8% 4.0% 3.2% 5.5%

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Table B.14: Allocation of prediction per region over all fire stations according
to the empirical shares of the fire stations in each region.

Fire station\Region Buiten regio Centrum Haven Noord Oost Zuidflank Zuidoost

Aalsmeer 17.5% 0.0% 0.0% 0.0% 0.0% 9.1% 0.0%
Amstelveen 2.1% 0.9% 0.0% 0.0% 0.1% 75.4% 0.0%
Anton 19.2% 0.0% 0.0% 4.8% 0.6% 0.1% 50.3%
Diemen 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 12.4%
Dirk 0.0% 23.6% 0.0% 0.3% 2.2% 0.1% 0.0%
Driemond 0.0% 0.0% 0.0% 0.0% 1.0% 0.0% 0.1%
Duivendrecht 0.0% 0.0% 0.0% 0.0% 29.4% 0.0% 1.0%
Hendrik 0.0% 39.9% 0.8% 7.0% 0.0% 0.0% 0.0%
IJsbrand 4.2% 0.0% 20.4% 1.3% 0.0% 0.0% 0.0%
Landelijk Noord 3.1% 0.0% 0.0% 1.7% 0.0% 0.0% 0.0%
Nico 0.0% 0.5% 2.0% 48.5% 0.6% 0.0% 2.8%
Osdorp 19.2% 0.7% 46.7% 0.0% 0.0% 0.0% 0.0%
Ouderkerk a/d Amstel 0.0% 0.0% 0.0% 0.0% 5.2% 0.0% 0.0%
Pieter 33.2% 30.4% 1.0% 0.0% 0.2% 0.3% 0.0%
Teunis 1.0% 1.3% 29.0% 0.0% 0.0% 0.0% 0.0%
Uithoorn 0.3% 0.0% 0.0% 0.1% 0.0% 14.9% 0.0%
Victor 0.0% 0.0% 0.0% 0.8% 1.0% 0.0% 32.0%
Willem 0.0% 2.7% 0.0% 0.0% 59.8% 0.1% 1.3%
Zebra 0.0% 0.0% 0.0% 35.3% 0.0% 0.0% 0.0%

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
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