
Vrije Universiteit

Research Paper

Business Analytics

Sample-Efficient Optimizers:
Bayesian Optimization vs. CMA-ES

Author:
Daan Crebolder

Supervisor:
Prof. Dr. A.E. Eiben

December 17, 2018

Abstract

In the application of evolutionairy robotics, robots need to learn to locomote in as few trials
as possible. Therefore, a suitable optimization strategy is one that causes big improvement in
as few iterations as possible, but not necessarily finds the global optimum in the long run. This
paper compares the sample-efficiency of Bayesian Optimization (BO) and Covariance Matrix
Adaptation Evolution Strategy (CMA-ES). Both strategies are tested on a set of noise free
and noisy black-box optimization functions. This research concludes that BO outperforms
CMA-ES on this criterion, but is less reliable and computationally more intensive.

Contents
1 Introduction 2

2 Background 2
2.1 Bayesian Optimization . 2

2.1.1 Initial design . 3
2.1.2 Construction the surrogate . 3
2.1.3 Acquisition functions . 4

2.2 CMA-ES . 5

3 Methods 5
3.1 Test suite . 5

3.1.1 Noiseless Functions . 6
3.1.2 Noisy Functions . 7

3.2 Experimentation . 8

4 Results 9

5 Discussion 13
5.1 Combining methods . 13
5.2 Future work . 13

1

Guszti VU

1 Introduction
In recent years, evolutionary computing has expanded, from simulations, into the domain actual
robot babies. The robots’ morphologies are physically constructed and their fitness is evaluated by
measuring the distance they are able to locomote in, say, a minute. In this process, each morphology
is unique, as is its controller. Therefore, the robots need to learn to locomote themselves, i.e.
optimize their controller.

Compared to running an evolutionary algorithm by simulation, the process of evaluating phys-
ical robots is time consuming and expensive. Therefore, the learner/optimizer of the robots’
controllers should prioritize efficiency over efficacy. In other words, we would prefer an optimizer
that makes the robots learn to move decently as soon as possible, over one that takes more time but
makes makes the robot move perfectly eventually. We will call such an optimizer sample-efficient.

In this paper we compare the sample-efficiency of two optimizers: Bayesian optimization (BO)
and CMA-ES. We also compare their resilience to noise, and discuss which would be best suited
for robotics.

Their performances are not tested on real robots but on a test-suite consisting of a selection
of noiseless and noisy black-box optimization functions. The problem that needs to be solved can
simply be written as

min
x∈[−5,5]d

f(x)

where f(x) is an unknown objective function, x the input vector, and d the dimension of the input
vector for which we will use {2, 5, 10, 20, 40}.

This paper first gives a brief overview of the two optimizers and the test-suite and then discusses
which of the two we find best suited for evolutionary robotics.

2 Background

2.1 Bayesian Optimization
The fundamental characteristic of Bayesian Optimization is that it uses all the prior knowledge
available to estimate which next point is most suitable for evaluation. If, for example, an unknown
objective function f(x) is evaluated at multiple points x, it guesses the shape and the uncertainty
of f(x) at not evaluated points. Based on this prior distribution on f(x), also called the surrogate
model, it chooses at which point the function is evaluated next, taking into account the expected
value and the uncertainty.

Figure 1 shown an illustration of the algorithm on a case with a one dimensional input value.
The algorithm starts with d + 1 randomly chosen evaluated points, what we will call the initial
design. The dashed line is the unknown objective function f(x). The black dots are previous
evaluations. The solid black line and the blue area represent the mean of the surrogate and
its uncertainty. The next point to be evaluated, the red dot, it chosen at some combination of
minimum value and high uncertainty. This combination is quantified by an acquisition function,
represented by the green line. At every iteration t en new point is evaluated, a new surrogate and
acquisition function are constructed and a next point is chosen to evaluate in t + 1. The prior of
iteration t+ 1 can be seen as the posterior of iteration t.

2

Bayesian Optimization

Figure 1: An illustration of Bayesian Optimization[1]

The next sections will discuss the initial design, the construction of the prior using a Gaussian
process and possible acquisition functions.

2.1.1 Initial design

In order to construct a prior, first, at least d points have to be known, or evaluated. These points
can be drawn randomly form the domain of the function, or quasi randomly to avoid the points
being close together. Maximin LHS, for example, maximizes the minimal distance between the
points. It randomly creates a large number of designs, like in figure 2.1.1, and chooses the one
satisfying the function:

M(x1,x2, ...,xn) = mini,j ‖ xi − xj ‖

2.1.2 Construction the surrogate

The prior, or surrogate, over the unknown objective function serves as an estimation the that
function. In the scope of this research the prior is made using a Gaussian Process (GP). For every
point of the objective function, the GP defines a normal distribution with a mean and variance.
Over the whole function the GP therefore gives a mean function and a covariance function k.

3

f(x) ∼ GP (µ(x), k(f(x), f(x)′))

A covariance function assigns the covariance of points ∈ [0, 1] depending on how close they are
together. At nearby points the values of the objective function are assumed more similar than at
distant points. There are multiple choices for the covariance function. A simple and popular one
is the squared exponential function:

k(xi,xj) = exp(−1

2
‖ xi,xj ‖2)

A more flexible one is the Matèrn function:

k(xi,xj) =
1

2ζ−1Γ(ζ)
(2
√
ζ ‖ xi − xj ‖)ζHζ(2

√
ζ ‖ xi − xj ‖)

with Γ() the Gamma function, Hζ the Bessel function and ζ a parameter. Note that as ζ → ∞,
the Matèrn function goes to the squared exponential function. If ζ = 0.5 it is the unsquared
exponential function.

As explained in Brochu et al. (2010)[1], the prior can be constructed as follows. If the kernel
matrix K is defined as

K =

k(x1,x1) . . . k(x1,xt)
...

. . .
...

k(xt,x1) . . . k(xt,xt)

at iteration t the function value ft+1 at a next unknown point xt+1 given the information on

previously evaluated function values f1:t can be estimated as[
f1:t
ft+1

]
∼ N

(
µ,

[
K k
kT k(xt+1,xt+1)

])
where k = [k(xt+1,x1), k(xt+1,x2) . . . k(xt+1,xt)]

Which can be derived to

P (ft+1 | D1:t,xt+1) = N (µt(xt+1), σ2
t (xt+1))

Noise can be accounted for by simply adding σ2
noiseI to K which results in

P (ft+1 | D1:t,xt+1) = N (µt(xt+1), σ2
t (xt+1)) + σ2

noise

2.1.3 Acquisition functions

After a prior is constructed, a next point xt+1 has to be chosen where the objective function will
be evaluated in the next iteration. In this choice there is a trade-off between exploitation and
exploration. Exploitation in this process entails that we prefer a point where the mean of the GP
is minimal, the black line in figure 1, where we expect to find a low function value. Exploration
entails a preference for a point where the covariance of the GP is high, or where the blue area
in figure 1 is tall. An evaluation at such a point will give us a more informative posterior. An
acquisition function, the green line in figure 1, contains a mixture of low mean and high covariance
of the GP. It should be maximized to find xt+1.

An example of an acquisition function is the Lower Confidence Bound (LCB). For maximization
problems this is called the Upper Confidence Bound.

xt+1 = arg min
x

(µt(x) + κσt(x))

the parameter κ ∈ [0,∞) controls the exploration/exploitation trade-off. This parameter can
change during a run of the algorithm, as it might be useful to focus on exploration in the first few
iteration and more on exploitation in later iterations.

4

2.2 CMA-ES
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is an algorithm that adapts the
covariance matrix of a multi-variate normal search distribution. It is well suited for optimizing
real-valued complex functions [2]. It is designed to perform well for small populations and might
therefore be considered sample-efficient. Each iteration, a population is drawn form a distribution
which maximized the likelihood of solutions with a high fitness value. This distribution is updated
every iteration by adapting its covariance matrix. This strategy is meant to converge quickly while
preventing premature convergence.

Figure 2 shows an illustration of the algorithm for a two-dimensional problem. Each generation
the distribution from which the points are sampled move towards the global optimum.

Figure 2: Six generations of a CMA-ES optimization of a two-dimensional problem.

3 Methods

3.1 Test suite
The optimizers will be evaluated with the COCO (Comparing Continuous Optimizers) platform,
which has been used for the Black-Box-Optimization-Benchmarking (BBOB) workshops during
GECCO conferences in several years, as well as for the Congress on Evolutionary Computation
(CEC) in 2015. We will use the nine BBOB benchmark functions described in this chapter, as
presented by Flinck et al (2009) [3][4]. The numbering of the functions (e.g. f12) corresponds to
the BBOB numbering.

In choosing these nine functions we mainly aim to create a diverse test suite, meaning that
the functions are of differing complexities and have varying shapes. The types of noise and noise
intensities are also meant to vary. The noisy functions each have a noiseless counterpart, in order
to analyze the effect of the noise. Because the test suite consists of diverse functions, the behavior
of the optimizers can be better understood.

The nine functions are plotted in figure 3 with a dimensionality of 2. With more dimensions
they become harder to visualize but their distinctive features remain. Note that the f -axes are
upside down. All function are to be minimized, so the optima are peaks.

5

At each instance of any of the functions, it is randomly shifted in both the x-space and the
f-space. This causes the location and the value of the optimum to be unpredictable.

• fopt : optimal function value.

• D = [10, 20, 30, 40, 50] , search space dimensionality.

• The domain of all functions is RD and they have their optimum on [−5, 5]D.

• fpen : RD → R, x 7→
∑D
i=1max(0, |xi| − 5)2 , a penalty for solutions outside the domain.

• ∧α is a diagonal matrix in D dimensions with the ith diagonal element as λii = α
1
2

i−1
D−1 , for

i = 1, ..., D.

• Q and R are orthogonal matrices.

• On simpler functions a non-linear transformation is applied to make them less regular: T βasy :

RD → RD, xi 7→ x
1+β i−1

D−1

√
xi

i if x > 0.

3.1.1 Noiseless Functions

f1 Sphere Function The unimodal sphere is a simple function whose optimum is probably
quickly found. Still, including it in our test suite could be useful for obtaining the optimizers
optimal convergence rate. This result can be compared with more complex functions.

f1 = ||z||2 + fopt

z = x− xopt

f8 Rosenbrock The Rosenbrock or banana function is interesting, especially in larger dimen-
sions, because the slope leading to the optimum changes direction D-1 times.

f8(x) =

D−1∑
i=1

(100(z2i − zi+1)2 + (zi − 1)2) + fopt

z = max(1,
√
D
8)(x− xopt) + 1 zopt = 1

f17 Schaffers F7 The Schaffers F7 function has many peaks of varying density and intensity.
Since the frequency and amplitude of the modulation vary, with this function it can be tested how
well an optimizer can distuinguish the global optimum from local optima.

f17(x) =

(
1

D − 1

D−1∑
i=1

√
si +

√
si sin2

(
50s

1/5
i

))2

+ 10fpen(x) + fopt

z = ∧10QT 0.5
asy(R(x− xopt))

si =
√
z2i + z2i+1 + ... for i = 1, ..., D

f21 Gallagher’s Gaussian 101-me Peaks Each instantiation of Gallagher’s Gaussian 101-
me Peaks consists of 101 randomly chosen peaks. With this function it can be tested how the
optimizers deal with functions without any global structure.

f21(x) = Tosz

(
10− 101

max
i=1

wi exp

(
− 1

2D
(x− y1)TRTCiR(x− yi)

))2

+ fpen(x) + fopt

wi = 1.1 + 8 i−299 for i = 2, ..., 101 and wi = 10 for i = 1

Ci = ∧αi/α
1/4
i

6

f23 Katsuura The Katsuura function has an obvious pattern with local optima equally spaced
from each other. This function is highly rugged and highly repetitive, so it has multiple global
optima.

f23(x) =
10

D2

D∏
i=1

1 + i
3∑
j=1

2
|2jzi − [2jzi]|

2j

10/D1.2

− 10

D2
+ fpen(x)

z = Q ∧100 R(x− xopt)

(a) f1 unimodal sphere (b) f8 Rosenbrock (c) f17 Schaffers F7

(d) f21 Gallagher’s Gaussian 101-
me Peaks

(e) f23 Katsuura (f) f102 Sphere uniform noise

(g) f110 Rosenbrock Gaussian noise (h) f124 Schaffers seldom Cauchy
noise

(i) f128 Galagger’s Gaussian noise

Figure 3: Plots of the bbob functions used in the test suite with D=2 [3]

3.1.2 Noisy Functions

Three noise models are used: uniform (UN), Gaussian (GN) and Cauchy (CN).
The uniform noise model multiplies the function with noise as shown in the equation below.

We will set strength parameters α to 0.01(0.49 + 1/D) and β to 0.01, as recommended by Flink

7

et al (2009)[4] for creating moderate noise. Because the noise strength depends on the value of f ,
optimal regions will be noisier. Compare, for example, figure 1 (a) with figure 1 (f).

fUN (f, α, β) = f × U(0, 1)β max

(
1,

(
109

f + ε

)αU(0,1))
The Gaussian noise Model multiplies a function by log-normally distributed noise. We will set

the noise strength parameter β to 1. See for example figure 1 (g) and figure 1 (i).

fGN (f, β) = f × exp(βN (0, 1))

The Cauchy model adds noise only to a few part of the function values, resulting in occasional
large outliers, like in figure 1 (h).

fCN (f, α, p) = f + αmax

(
0, 1000 + 1{U(0,1)<p}

N (0, 1)

|N (0, 1)|+ ε

)
The selected noisy functions are the same as the multimodal functions, except that noise is

applied to them.

f102 Sphere with moderate uniform noise

f102(x) = fUN

(
||z2||, 0.01

(
0.49 +

1

D

)
, 0.01

)
+ fpen(x) + fopt

f110 Rosenbrock with Gaussian noise

frosenbrock(x) =
D−1∑
i=1

(100(z2i − zi+1)2 + (zi − 1)2)

f110(x) = fGN (frosenbrock(x), 1) + fpen(x) + fopt

f124 Schaffers F7 with seldom Cauchy noise

fschaffer(x) =

(
1

D − 1

D−1∑
i=1

√
si +

√
si sin2

(
50s

1/5
i

))2

f124(x) = fCN (fschaffer(x), 1, 0.2) + fpen + fopt

f128 Gallagher’s Gaussian peaks, 101-me with Gaussian noise

fgallagher(x) = Tosz

(
10− 101

max
i=1

wi exp

(
− 1

2D
(x− y1)TRTCiR(x− yi)

))2

f128(x) = fGN (fgallagher(x), 1) + fpen + fopt

3.2 Experimentation
The experiment was run in R using the ’mlrMBO’ package. It creates the initial design, computes
the Gaussian process surrogate model and and creates and maximizes the acquisition function.
On every function in the test suite and for every dimension d ∈ [2, 5, 10, 20, 40], the BO algorithm
was run 30 times for 100 iterations. Every run was started with an initial design acquired by the
Maximin LHS function, because we want these points to be spread out over the objective functions’
domain as much as possible. The Matèrn covariance function with ζ = 3/2 was used to construct
the priors as this showed to have a preferable degree of smoothness in similar experiment [5]. The
squared exponential function with κ = 0.5 was used as acquisition function to create a balance
between exploration and exploitation. The results were scaled to their objective function’s mean
and optimum to make the results comparable over all the objective functions.

The noise was added to or multiplied by the objective function as described in the test suite
section. Afterwards, the points at which the noisy functions were evaluated, were evaluated again
on the function without the noise. This was done because the noise is meant to mimic measurement
error, and if an evaluation is one good due to the measurement error, it should not be considered
a good evaluation.

8

4 Results
Table 1 shows the average, standard deviation and the best found solution of both algorithms after
100 evaluations, of 30 runs per function and dimension. The results are scaled to [0, 1] where 0 is
the optimum of the objective function and 1 the mean, or the expected value of a random function
evaluation. Averaged paths of progress during the runs are plotted in figure 4 per dimension. The
BO results (blue) for d = 20 shows a dip at evaluation 21 and for d = 40 at evaluation 41 because
the BO algorithm needs d observations to compute a prior. The progress made by evaluations
before those is due to the Maximin LHS initial design. The CMA-ES results show a step-wise
pattern because one iteration of the algorithm requires multiple evaluations.

Figure 4: Average results on the test-suite for different dimensionalities, BO in blue, CMA-ES in
green.

On average, the BO algorithm achieves a greater improvement in the first few evaluations than
CMA-ES. Even in the initial design phase BO outperforms CMA-ES. It looks like CMA-ES might
find better results beyond 100 iterations but we have no data on that. it also seems that these
differences between the two strategies is amplified for greater dimensions.

In figure 5 averaged results are plotted for the different objective functions for 40 dimensions.
While the BO seems to yield reasonable results for most objective functions, f21 and f128 find
almost no improvement at all, not even by the initial design. These functions are characterized by
not having any global structure. For Katsuura and Schaffer’s with Cauchi noise BO was not able
to make an informative prior that fit the objective function even remotely, causing it to get stuck
in one area. CMA-ES also has more trouble with some functions than with others, but works on
all of them, and keeps improving incrementally, even past 500 evaluations. It works especially well
on Schaffers F7 with and without noise.

Figure 6 shows the effect of noise on the results after 100 iterations. The results on the noiseless
functions (in green) are plotted alongside those of their noisy counterpart (in red). For BO t-tests

9

Figure 5: Averaged runs plotted per 40 dimensional objective function, left BO, right CMA-ES.

confirm that for four out of five functions, adding noise impacts the effectiveness of the algorithm
negatively. For CMA-ES the effect of noise is not clear.

Figures 7 and 8 show the effect of the different types of noise on the progress during runs. The
top left plots in both figures show the sphere function with and without uniform noise. The top
right plots show the Rosenbock function with and without Gaussian noise. the bottom right plots
show the Schaffer’s F7 function with and without seldom Cauchi noise. The bottom right plots
show the Gallaghers Gaussian 101-me Peaks function with and without Gaussian noise.

CMA-ES shows to be resilient to all types of noise tested in this research, as for each function
CMA-ES had runs with some progress toward finding the optimum. For BO, noise mostly effects
the results negatively, but could have no effect, or even be beneficial to the progress sometimes.
Gaussian noise seems to be beneficial to the initial design on the Rosenbrock function, where the
slope leading to the optimum changes direction D-1 times. Gauchi noise causes BO not to work
properly on Schaffer’s F7, which could be explained by the detrimental effect that an extreme
outlier has on making the prior function.

A big difference between BO and CMA is in the running time of the algorithm. All the tests of
CMA could have been run in in several seconds while BO took hours. Especially at 40 dimensions
one iteration of BO took on average 2.21 minutes on a 3.4GHz cpu.

10

Guszti VU

Figure 6: Boxplots comparing the noiseless functions (in green) with their noisy counterparts (in
red). he values shown are the best values found after 100 iterations.

BO
d 2 5 10 20 40

mean sd best mean sd best mean sd best mean sd best mean sd best
f1 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.052 0.012 0.029 0.205 0.028 0.162
f8 0.000 0.000 0.000 0.001 0.000 0.000 0.004 0.003 0.001 0.017 0.018 0.003 0.062 0.016 0.029
f17 0.001 0.001 0.000 0.035 0.015 0.012 0.031 0.007 0.012 0.057 0.010 0.036 0.186 0.016 0.161
f21 0.012 0.024 0.000 0.048 0.038 0.000 0.256 0.197 0.012 0.718 0.126 0.390 0.907 0.037 0.822
f23 0.080 0.045 0.016 0.182 0.058 0.069 0.248 0.059 0.128 0.338 0.064 0.229 0.458 0.072 0.234
f102 0.009 0.012 0.000 0.013 0.006 0.002 0.021 0.008 0.006 0.052 0.013 0.027 0.206 0.025 0.147
f110 -0.008 0.001 -0.009 0.003 0.004 -0.001 0.009 0.007 0.001 0.022 0.013 0.003 0.043 0.019 0.012
f124 0.006 0.003 0.001 0.088 0.032 0.015 0.071 0.019 0.044 0.119 0.024 0.088 0.284 0.037 0.201
f128 0.041 0.041 0.000 0.202 0.100 0.037 0.691 0.114 0.410 0.862 0.039 0.759 0.944 0.021 0.901

CMA-ES
d 2 5 10 20 40

mean sd best mean sd best mean sd best mean sd best mean sd best
f1 0.001 0.001 0.000 0.048 0.040 0.006 0.186 0.093 0.051 0.519 0.187 0.226 0.749 0.137 0.500
f8 0.003 0.014 0.000 0.010 0.023 0.000 0.090 0.106 0.009 0.324 0.250 0.091 0.635 0.225 0.292
f17 0.001 0.008 0.000 0.138 0.237 0.000 0.226 0.319 0.000 0.005 0.019 0.000 0.073 0.213 0.000
f21 0.002 0.004 0.000 0.039 0.030 0.003 0.200 0.120 0.049 0.516 0.137 0.265 0.814 0.144 0.484
f23 0.033 0.170 0.000 0.045 0.045 0.009 0.263 0.182 0.061 0.537 0.222 0.113 0.753 0.153 0.504
f102 0.000 0.001 0.000 0.042 0.030 0.003 0.222 0.120 0.044 0.529 0.180 0.197 0.777 0.141 0.527
f110 0.001 0.003 0.000 0.015 0.042 0.000 0.113 0.198 0.002 0.470 0.291 0.114 0.617 0.321 0.130
f124 0.002 0.003 0.000 0.183 0.269 0.001 0.387 0.400 0.000 0.015 0.031 0.000 0.065 0.213 0.000
f128 0.000 0.000 0.000 0.087 0.114 0.002 0.276 0.242 0.051 0.513 0.176 0.225 0.785 0.140 0.549

Table 1: Mean, standard deviation and value of best found point after 100 evaluations. 0 represents
the objection function’s optimum and 1 the expected value of a random observation.

11

Figure 7: BO results comparing noiseless function to their noisy counterparts. a) sphere noiseless
and with uniform noise; b)Rosenbrock noiseless and with Gaussian noise; c)Schaffers F7 noiseless
and with seldom Cauchi noise; d) Gallager’s noiseless and with Gaussian noise.

Figure 8: CMA-ES results comparing noiseless function to their noisy counterparts. a) sphere
noiseless and with uniform noise; b)Rosenbrock noiseless and with Gaussian noise; c)Schaffers F7
noiseless and with seldom Cauchi noise; d) Gallager’s noiseless and with Gaussian noise.

12

5 Discussion
We are led to the conclusion that that, on average, BO is more sample-efficient than CMA-ES. This
implies that robots learning to locomote would need fewer trial runs to achieve some acceptable but
sub-optimal level of movement. However, BO does not work well in all of the cases we researched,
sometimes not making any progress at all. While CMA-ES is less sample-efficient, it is more robust,
which would make it less likely that some robots will not be able to learn to locomote at all. We
found CMA-ES to be resilient to different types of noise, which means that measurement errors
would be less of a concern.

Furthermore, it is disputable whether the sample-efficiency of BO in this research can actually
be ascribed to the BO algorithm working well, as the bulk of the early progress is made in the initial
design phase, before the first surrogate model has even been constructed. Because BO requires d
initial evaluations, it would seem unpractical to use this algorithm if the dimensionality is close
to the amount of evaluations we can afford. Perhaps we should conclude that maximin LHS, our
choice for the initial design of BO, outperforms CMA-ES in terms of sample-efficiency.

Also the running time of BO could be problematic for the application of evolutionairy robotics.
If a robot would need to compute for two minutes between one-minute trial runs, an evaluation
becomes three times as expensive and CMA-ES would be more time-efficient.

5.1 Combining methods
In the implication of robots learning to locomote, a combination of BO and CMA-ES could be
appropriate. In the first d iterations we could use BO, or its initial design, as this is more sample-
efficient than CMA-ES and computationally inexpensive. After d iterations it quickly becomes
clear whether BO is effective for the particular morphology or objective function. If it appears
that BO works well, most of the progress is made in, say, 5 or 10 following evaluations. Therefore,
it would be advisable to use BO then for a couple of iterations, even if it takes several of minutes
to compute. If BO appears not to work, CMA-ES would be a good alternative to continue with
from this point as it seems to give some guarantee of incremental improvement. The best couple
of points found so far would form the initial population.

5.2 Future work
A useful topic for future work on BO is reducing the computation time of creating the surrogate
model by making an approximation. Lizotte (2008) [5] mentions two possibilities: subset of data
Points approximation and projected process approximation.

Also the running time can be decreased using parallel runs, meaning that every iteration two
points are suggested and evaluated. The amount of times that a surrogate model has to be
computed would be halved, but the suggested points might be less optimal.

The running time could be less bothering if the computation is done while a robot is performing
a trial run. It would cause a delay in the process of updating the surrogate as the evaluation of
iteration t is added to the data in iteration t+ 2, but there would be less time wasted waiting for
the computations.

In the first d iterations BO is more efficient than CMA-ES only because of the initial design.
Because we only tested maximin LHS in this research, improvement could possibly be made with
a different algorithm for the first d iterations.

References
[1] V. M. Cora E. Brochu and N. de Freitas. A tutorial on bayesian optimization of expensive cost

functions, with application to active user modeling and hierarchical reinforcement learning.
2010.

[2] N. Hansen. The cma evolution strategy: A comparing review. 2006.

[3] R. Ros S . Finck, N. Hansen and A.auger. Real-parameter black-box optimization benchmarking
2009: Presentation of the noiseless functions. Research Center PPE, Technical Report 2009/20,
2009.

13

[4] R. Ros S . Finck, N. Hansen and A.auger. Real-parameter black-box optimization benchmarking
2009: Presentation of the noisy functions. Research Center PPE, Technical Report 2009/21,
2009.

[5] D. J. Lizotte. Practical bayesian optimization. 2008.

14

	Introduction
	Background
	Bayesian Optimization
	Initial design
	Construction the surrogate
	Acquisition functions

	CMA-ES

	Methods
	Test suite
	Noiseless Functions
	Noisy Functions

	Experimentation

	Results
	Discussion
	Combining methods
	Future work

