
Factorization Machines
Marjolijn Cornelissen

Research Paper Business Analytics
Vrije Universiteit Amsterdam

Abstract. Factorization Machines are known to address many
weaknesses of machine learning models. They can handle sparse
datasets, they learn weights to interactions between variables
which are factorized, and the obtained model equation does not
depend on training examples. To show the effectiveness of Fac-
torization Machines, an experiment is carried out to show that
Factorization Machines outperform some other machine learning
models. Results of the experiment do indeed show that Factori-
zation Machines outperform the other models. The results also
show differences in performance of Factorization Machines when
changing some hyperparameters of the model. Using the learning
approach Alternating Least-Squares and increasing the value of
the number of dimensions of the latent parameter vector, gave
the best performance for this experiment.

2

Introduction

Machine learning tries to recognize patterns in data and based on that,
algorithms are created that predict and optimize. The use of machine
learning continues to grow. Various models can be used for machine
learning. Depending on the task to be performed, a suitable learning
model is selected. Supervised learning is one of the tasks in machine
learning, where a function is learned that maps an input to an output
based on example input-output pairs. This paper focuses on a relatively
new supervised machine learning model, called Factorization Machines
(FMs). FMs were introduced by Steffen Rendle in [2]. FMs are an im-
pactful model [13] and have shown excellent prediction capabilities.

FMs are especially popular in predicting the click-through rate (CTR) or
for recommender systems. In this paper, an experiment is being con-
ducted to determine how well FMs perform. In this experiment, three
machine learning models, including FMs, will be used to perform the
same task. To determine how well FMs perform, the results of the dif-
ferent models will be compared.

This research paper is divided into four sections. In the first section a
study of relevant literature will be discussed. In Section 2 FMs are intro-
duced. Next, Section 3 will describe the dataset that will be used for the
experiment. Finally, in Section 4, the experimental setup and results are
shown, together with some important conclusions.

3

1. Related work

Factorization Machines (FMs) are often used in tasks to predict whether
an advertisement will be clicked (i.e. click-through rate) or to predict
what relevant information is for a user of a webpage (i.e. recommenda-
tion systems). For those tasks, large datasets are usually used. In most
cases the datasets are sparse, which means that only a few variables for
each input vector of predictor variables are non-zero. Therefore, in
most machine learning models, no importance is given to several varia-
bles for prediction. FMs are a suitable model class to use in such cases.
FMs were first introduced in 2010 by S. Rendle [2]. FMs combine the
advantages of Support Vector Machines (SVMs) with factorization mod-
els. Several published articles describe the comparison of SVMs and
other factorization models to FMs. Therefore, this comparison will be
explained first in this section. After that, some published articles are
discussed about the performance of FMs.

1.1 FMs vs SVMs

SVMs, which is one of the most popular models in machine learning,
uses the so-called kernel trick to find an optimal boundary between pos-
sible outputs. The optimal boundary, called hyperplane, is influenced by
the support vectors. The support vectors are data points that are close
to the hyperplane.

The similarity between FMs and SVMs is that both model nested inter-
actions between variables (when using a polynomial kernel in SVMs).
But, using SVMs, the weights given to those interactions are completely
independent, and using FMs those weights are factorized. This means
that using SVMs the weight given to the interaction between variable i
and j (wi,j) is independent of the weight given to the interaction be-
tween variable i and k (wi,k). While using FMs, wi,j and wi,k depend on
each other as they overlap and share parameters due to the factoriza-
tion. Another benefit when using FMs is that making a prediction, using

4

the model equation obtained using training data, is independent of this
training data. While using SVMs the prediction depends partly on the
training data, because some data points in this training data (e.g. the
support vectors) have some influence on the model equation. Both
aforementioned advantages of FMs over SVMs are especially present
when using very sparse data, this is because SVMs cannot learn reliable
parameters in this case. Next to those benefits, FMs can learn the model
parameters without transforming the data to the dual form. Using (non-
linear) SVMs, the data (usually) needs to be transformed to the dual
form.

1.2 FMs vs other factorization models

Before listing the advantage of using FMs over other factorization mod-
els, it is worth mentioning that several factorization models are often
used for prediction tasks (especially click-through rate prediction and
recommender systems) and they mostly outperform other machine
learning models. For example, [1] describes the use of a factorization
model, namely Matrix Factorization (MF), in the Netflix Challenge. The
task in this challenge was to predict user ratings for movies offered by
Netflix based on previous ratings. Using MF, the authors of [1] won the
competition. Many more articles are published using MF, or other vari-
ants of factorization models, to win online competitions. Therefore, fac-
torization models outperform other machine learning models quite of-
ten. Especially in settings like collaborative filtering [2].

A distinction can be made between standard factorization models (like
PARAFAC or MF), which factorize a relation between categorical varia-
bles and specialized factorization models (like SVD++, PITF or FPMC),
which are used for specific data and tasks. The benefit of FMs over
standard factorization models is that they can work with any real-val-
ued feature vector. This in contrast to the standard factorization mod-
els, which require feature vectors that are divided in m groups (when
having m categorical variables) and in each group exactly one value has
to be 1 and the rest 0 [3]. Therefore, FMs are a general predictor (just

5

like SVMs for example). Specialized factorization models are designed
for a single task. This results in many different published articles, like [7]
[8] [9] [10] [11] [12]. All these articles define a new model and a suitable
learning algorithm. [2] showed that FMs can mimic many of the most
successful factorization models just by feature extraction.

1.3 Performance of FMs

Thus, FMs bring together the advantages of SVMs (using a polynomial
kernel) and factorization models: they are general applicable and pre-
dict accurately (even in sparse settings).
Because of [2], which says: “FMs combine the advantages of Support
Vector Machines (SVMs) with factorization models”, many articles pay
attention to the comparison in performance between FMs and SVMs,
and between FMs and other factorization models. Not much published
work compares the performance of FMs to other well-known and often
used machine learning models. [5] does compare FMs to other models.
They compare, among other things, the performance of a linear model
and polynomial regression to the performance of FMs. Most of the time
FMs outperform the linear model and the polynomial regression model.
[6] does not compare FMs to other machine learning models directly,
but the authors of the article have won the Expedia Hotel Recommen-
dation challenge using FMs. This indirectly implies that it has better per-
formance than other machine learning models.

6

2. Factorization Machines

In this section, Factorization Machines (FMs) will be introduced. FMs
are an increasingly popular model that can be used in both classification
and regression tasks. FMs can even be used when the data is very high-
dimensional. To explain how FMs work, assume having a dataset
𝑿 𝜖 ℝ𝑛𝑥𝑝. For every row i, the dataset can be described as follows,
(𝒙𝒊, 𝑦𝑖) where 𝒙𝒊 𝜖 ℝ

𝑝 is a vector of the p predictor variables (feature
vector), and 𝑦𝑖 its corresponding target. FMs model all nested interac-
tions up to order d between the p predictor variables, using factorized
interaction parameters. In this research, only the model with degree
two (d = 2) will be considered, where all single and pairwise interactions
between variables will be captured. FMs predict the output associated
with an input vector, using equation (1). The first part of this equation
of the model corresponds to standard linear regression, which associ-
ates a weight to each predictor variable. 𝑤0 is the global bias, and 𝑤i
the weight of the ith variable. Linear regression only, does not take the
interaction between variables into account. Therefore, the second part
gives a weight to the interaction between the variables. It does not only
give a weight to the product of variables (𝑥𝑖𝑥𝑗), but it models all possible

interactions between the values in the feature vector, 𝒙𝒊. Therefore,
FMs break the independence of the interaction parameters by factoriz-
ing them (i.e. the data for one interaction helps to estimate the param-
eters for related interactions). So, 𝑤̂𝑖,𝑗 = < 𝑣i ,𝑣j > is the factorized

weight for the interaction between variables i and j. When having da-
tasets with high sparsity, FMs are a good model to use because it can
also estimate a weight for interactions between variables that are not
observed.

𝑦̂𝐹𝑀(𝑥) ∶= 𝑤0 + ∑ 𝑤𝑖𝑥𝑖
𝑝
𝑖=1⏟

𝑙𝑖𝑛𝑒𝑎𝑟 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛

+ ∑ ∑ 𝑥𝑖𝑥𝑗𝑤̂𝑖,𝑗
𝑝
𝑗=𝑖+1

𝑝
𝑖=1⏟

𝑏𝑟𝑒𝑎𝑘𝑖𝑛𝑔 𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 𝑜𝑓
𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

 (1)

𝑤ℎ𝑒𝑟𝑒 𝑤̂𝑖,𝑗 = < 𝑣i ,𝑣j > = ∑ 𝑣i,f𝑣j,f
𝑘
𝑓=1

7

The parameters that need to be estimated in this model are 𝑤0 𝜖 ℝ,

𝒘 = [𝑤1, … , 𝑤𝑝] ∈ ℝ
𝑝 and 𝑽 = [𝑣1,𝑓 , … , 𝑣𝑝,𝑓]|𝑓=1

𝑘 ∈ ℝ𝑝𝑥𝑘 which de-

notes a k-dimensional latent parameter vector.

To learn these model parameters, the following approaches can be used
for FMs: Stochastic Gradient Descent (SGD), Alternating Least-Squares
(ALS) or Markov Chain Monte Carlo (MCMC). Each of these approaches
uses the loss function 𝐿({𝑦𝑖(𝑥), 𝑦̂𝑖(𝑥)}|𝑖=1

𝑛), which needs to be mini-
mized. 𝑦𝑖 denotes the target, and 𝑦̂𝑖 the predicted value corresponding
to the input feature vector 𝒙𝒊. FMs can be applied to regression or clas-
sification prediction tasks. The loss function is determined for each of
these prediction tasks differently. For a regression task, the squared loss
is mostly used, and for a classification task, the log loss can be used.
Most of the time the number of model parameters that need to be es-
timated is large. Because of this, FMs makes them prone to overfitting.
Therefore, regularization term(s) may be included in the loss function.

8

3. Data

The dataset used in this research originates from an open machine
learning competition on the website of Kaggle. The goal of this compe-
tition is to predict whether a mobile advertisement will be clicked. Data
contains ten days worth of data from the company Avazu. The ten days
are from 21 October 2014 – 30 October 2014 and has a total of
40,428,868 user sessions. The following assumption is made: the day of
the week will not influence the click-through rate. This assumption is
made because the available dataset only contains data of a few days in
October, which is too few data to see if there is any pattern concerning
the day of the week and whether an advertisement is clicked. Using this
assumption, only the data of the first day will be used instead of using
all ten days, to make computations easier due to the relatively small size
of the data1.

The data of the first day has a total of 4,122,995 user sessions. Every
user session in the dataset is described by 24 variables. All variables are
categorical, and are shown in Table 1a, together with the corresponding
number of categories. An overview of how the dataset looks like is given
in Table 1b.

1 To make the models predict more accurately, it would be desirable to use all data. But since

this research only focusses on the comparison of performance, and not to obtain the overall
best performance, data of one day is enough.

9

Variables Number of categories

Identified variables
(all categorical)

Id 4,122,995

Hour 24

Position 7

Site
metadata

ID 2865

Domain 3394

Category 22

Applica-
tion
metadata

ID 4154

Domain 287

Category 31

Devices
metadata

ID 368,962

IP 1,048,575

Model 6098

Type 4

Connection type 4

Anonymized variables
(all categorical)

C1, C14 – C21 Resp.: 7; 785; 8; 9;
193; 4; 44; 168; 38

Target variable
(binary)

Click 2

Table 1a: The variables of the Avazu dataset.

Overview dataset

Table 1b: Overview of the dataset.
(Note: the variable ‘hour’ is given in the following format: YYMMDDHH).

There are two major classes of categorical variables –where the differ-
ent categories of the variable have an order (ordinal), or without an or-
der (nominal). Some of the variables, like site id, are not numeric. Those
must be transformed into a numeric value before one can work with
most machine learning models. The variables where an order can be
found (ordinal) are easy to give a numeric interpretation. For nominal
data, this transformation can be done using one-hot encoding. How-
ever, this way of transforming is not useful if there are many different

10

unique categories, because the number of columns in the data will in-
crease immensely, which leads to the need for more memory space and
computational power. For example, the variable device id has 368,962
unique categories, which results in 368,962 columns (i.e. new variables)
instead of one. Because of limitations in memory, it is not possible to
one-hot encode all variables. There are other techniques that can be
used to transform categorical variables with many unique categories
(for example, hashing). But since the aim of this research is to compare
the performance of different models, and not to get the overall best
performance, the variables with a large number of unique categories
are removed. The remaining variables have been transformed using
one-hot encoding.

After doing this, the data can be used to predict whether an ad will be
clicked, using different machine learning models. The type of model
that needs to be used is a supervised learning model. Because based on
the obtained data, where examples of input and associated output (click
or no click) are given, the algorithm learns how the properties of the
input are decisive for the output. After this learning phase, supervised
learning models can produce the right output for new input with a cer-
tain accuracy. The experimental setup and results are presented in the
next section.

11

4. Experiment

Using the dataset described in the previous section, an experiment is
conducted to see how well FMs perform. First, the setup of this experi-
ment is described, followed by the results.

4.1 Experimental setup

To demonstrate the effectiveness of FMs, the performance is compared
to the performance of Logistic Regression and Decision Trees. These
models were chosen because they are both useful when having a binary
target variable, in this research click or no click (1/0), and because they
both belong to the most frequently used machine learning models at
the moment.

To evaluate the performance of the three models, the classification loss
function - logarithmic loss (log loss) - is used. This evaluation metric is
appropriate when the output is the probability of a binary outcome,
which is the case in this research. It defines how well the prediction is.
It takes the confidence of the probability into account when assessing
how to penalize incorrect classifications.

The formula for the log-loss (binary classification) equals:

𝐿 = −
1

𝑛
∑ (𝑦𝑖𝑙𝑜𝑔(𝑦̂𝑖) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑦̂𝑖))
𝑛
𝑖=1 ,

where 𝑦𝑖 and 𝑦̂𝑖 represent the target and prediction respectively for
every user.

12

Different hyperparameter settings are possible using FMs.

• The learning approach, which can be Stochastic gradient descent
(SGD), Alternating least-squares (ALS) or Markov Chain Monte Carlo
(MCMC).

• The k-dimensional latent parameter vector. To evaluate the impact
of this hyperparameter, k=8 and k=100 are used.

For the Decision Trees the hyperparameter for the metric for measuring
the best split in the tree can be tuned. This is measured using either Gini
Impurity or Information Gain (IG). For Logistic Regression the hyperpa-
rameter for the optimization method can be tuned. Three optimization
methods are investigated, a Newton method to solve the primal prob-
lem and Coordinate Descent (CD) to solve the dual problem.

4.2 Experimental results

As mentioned before, different hyperparameter settings are possible.
The performance of the three machine learning models, measured in
log loss, are presented in Table 2. In this table, the model is given – De-
cision Trees, Logistic Regression or Factorization Machines (FMs) – to-
gether with certain settings for the hyperparameters. In case of non-
convexity, multiple iterations are performed to prevent to get stuck in
a local optimum.

13

Machine learning model Log loss value

Decision Tree (Gini) 0.468637

Decision Tree (IG) 0.469266

Logistic regression (CD) 0.436450

Logistic regression (Newton) 0.436744

Logistic regression (SAG) 0.438423

FMs (MCMC, k=8) 0.423139

FMs (MCMC, k=100) 0.420696

FMs (ALS, k=8) 0.418806

FMs (ALS, k=100) 0.416772

FMs (SGD, k=8) 0.423534

FMs (SGD, k=100) 0.423678

Table 2: performance of different machine learning models with different hyperpa-

rameter settings, measured using log loss (best performance = green, worst perfor-

mance = red).

No matter what machine learning model is used, FMs outperform other
models in terms of log loss. However, it is worth mentioning that the
training time is longer than Decision Trees and Logistic Regression. For
FMs, the learning approach ALS is significantly better that the other two
in terms of log loss. Next to this, it can be obtained that increasing the
number of dimensions in the latent parameter vector (k) results in bet-
ter performance of FMs.

14

References

 [1] Koren, Y., Bell, R.M., Volinsky, C., (2009): Matrix Factorization tech-
niques for recommender systems. IEEE Computer 42(8), p.30-37.

[2] Rendle, S., (2010): Factorization Machines. IEEE International Con-
ference on Data Mining, p.995-1000.

[3] Freudenthaler, C., Schmidt, L., Rendle, S., (2011): Factorization Ma-
chines, Factorized Polynomial Regression Models.

[4] He, X., Chua, T., (2017): Neural Factorization Machines for Sparse
Predictive Analytics.

[5] Juan, Y., Zhuang, Y., Chin, W., (2016): Field-aware Factorization Ma-
chines for CTR Prediction.

[6] Liu, X., et al., (2013): Combination of Diverse Ranking Models for
Personalized Expedia Hotel Searches.

[7] Koren, Y., (2008): Factorization meets the neighborhood, a multi-
faceted collaborative filtering model. ACM SIGKDD International
Conference on Knowledge discovery and data mining, p.426-434.

[8] Koren, Y., (2009): Collaborative filtering with temporal dynamics.
ACM SIGKDD International Conference on Knowledge discovery
and data mining, p.447-456.

[9] Rendle, S., Freudenthaler, C., Schmidt-Thieme, L., (2010): Factoriz-
ing Personalized Markov Chains for Next-Basket Recommendation.
International Conference on World Wide Web, p.811-820.

[10] Rendle, S., Schmidt-Thieme, L., (2010): Pairwise interaction tensor
factorization for personalized tag recommendation. ACM Interna-
tional Conference on Web search and data mining, p.81-90.

[11] Salakhutdinov, R., Mnih, A., (2008): Bayesian Probabilistic Matrix
Factorization using Markov Chain Monte Carlo. International Con-
ference on Machine Learning.

[12] Salakhutdinov, R., Mnih, A., (2008): Probabilistic Matrix Factoriza-
tion.

[13] Harris, B., (2015): Factorization Machines, a new way of looking at
machine learning. Retrieved from https://securityintelli-
gence.com/factorization-machines-a-new-way-of-looking-at-ma-
chine-learning/

