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Management	samenvatting	
 

Dit werkstuk behandelt de kans dat de uitgaven van een verzekeringsmaatschappij groter zijn dan de 
inkomsten. Veel gebruikte termen in levensverzekering en oplossingsmethoden voor het schatten van 
inkomsten en uitgaven van een verzekeringsmaatschappij worden in de inleiding behandeld.  
 
Het eerste gedeelte van het werkstuk richt zich op verscheidene analytische modellen die gebruikt 
worden voor het modelleren van de risico’s van verzekeringsmaatschappijen, zogenaamde risico 
modellen. Het meest bestudeerde risico model ( de standaard risico model) en een risicomodel 
gebaseerd op polissen met een exponentiële levensduur worden in detail behandeld. Afhankelijk van 
het risicomodel dat gebruikt wordt, kunnen analytische oplossingstechnieken worden toegepast om de 
exacte kans op ruin te berekenen. Het komt regelmatig voor dat voor een risico model alleen een 
benadering van de ruin kans kan worden gegeven met behulp van analytische methoden. Een andere 
optie voor het schatten van de ruin kans is het toepassen van simulatie. Een hoofdstuk is toegewijd aan 
processen dat gebruikt worden voor het simuleren van de claim aankomsten.  
 
Het tweede gedeelte van het werkstuk behandelt een simulatie studie van enkele risico modellen. De 
simulatie studie behandelt simulatie algoritmes die gebruikt worden voor het simuleren van 
risicomodellen. Microsoft Excel is gebruikt om de verschillende risicomodellen te simuleren.  
 
De uitkomsten van de simulatiemodellen zijn vergeleken met exacte oplossingen die voortvloeien uit 
analytische methoden. Op deze manier hebben we de simulatie modellen gevalideerd. De simulatie 
studie heeft aangetoond dat risicomodellen met een gamma verdeelde levensduur van polissen en 
normaal verdeelde levensduur van polissen niet dezelfde ruin kans opleveren als de standaard 
risicomodel.  



4 
 

 

Executive	summary	
 

This paper focuses on the estimation of the probability that the expenses of an insurance company 
exceed the income. The paper starts with the introduction of some definitions used in life insurance 
and solution methods for estimating the income and costs of an insurance company.  
 
The first part of the paper concentrates on several analytical models used for modelling the risk of an 
insurance company, risk models. The most studied risk model (standard risk model) and a risk model 
based on  policies with an exponential distributed lifetime are discussed in detail. Depending on the 
risk model, analytical solution techniques can be used to calculate the exact ruin probability. There are 
also a lot of risk models for which only an approximation of the ruin probability can be given. Next to 
analytical solution techniques simulation can be considered to determine the ruin probability. We have 
dedicated a section to some processes that are used to model the arrival of claims.  
 
The second part of the paper consists of a simulation study on some risk models. The simulation study 
examines simulation algorithms to perform simulations of risk models. A Microsoft Excel 
environment is used to carry out simulations of different risk models.  
 
For the validation of our simulation models the outcomes were compared with the solutions based on 
analytical methods. The simulation study showed that risk models with gamma distributed policy 
lifetimes and normal distributed policy lifetimes is not identical to the ruin probability of the standard 
risk model.   
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1. Introduction	
 
Losing someone close is one of the toughest things we will all have to deal with. If that person has not 
properly planned ahead to cover the expenses they have left behind then they leave a tremendous 
burden on their loved ones. The last thing someone wants to be remembered for is not properly 
planning ahead. Life insurance is a cost effective way to protect the ones you care about from having 
to clean up a financial mess after you have passed on. 
A life insurance policy is a contract in which an insurance company agrees to pay a sum of money to a 
designated beneficiary upon the death or other event, such as terminal illness or critical illness of the 
policyholder. In exchange, the policyholder pays a stipulated amount called a premium at regular 
intervals [12]. As with most insurance policies, life insurance is a contract between the insurer and the 
policyholder whereby a benefit is paid to the designated beneficiaries if an insured event occurs which 
is covered by the policy. 
 
Like any other company, an insurer has to show that its capital and expected income also referred to as 
assets exceed its costs also referred to as liabilities to be solvent. In the insurance industry, however, 
assets and liabilities are not known entities. They depend on how many policies result in claims, 
inflation from now until the claim, investment returns during that period, and so on. 
So the valuation of an insurer involves a set of projections, looking at what is expected to happen, and 
thus coming up with the best estimate for assets and liabilities, and therefore for the company's level of 
solvency.  
 
Different approaches can be taken to estimate the assets and liabilities of an insurance company. We 
discern two different approaches.  
 
Deterministic approach 
 
The deterministic approach is an approach where no randomness is involved in the estimation of 
values. The simplest way of estimating the assets and liabilities of an insurance company is to look at 
best estimates [12]. 
The projections in financial analysis usually use the most likely rate of claim, the most likely 
investment return, the most likely rate of inflation, and so on. The result provides a point estimate, the 
best single estimate of what the company's current solvency position is or multiple points of estimate.  
The downside of the deterministic approach is that it does not consider randomness and that there is a 
whole range of possible outcomes. Some of these outcomes are more probable and some are less. 
 
 
Stochastic modeling 
 
A stochastic model is the counterpart of the deterministic model and involves probability or 
randomness. A stochastic model is a tool for estimating probability distributions of potential outcomes 
by allowing for random variation in one or more inputs over time [10]. The random variation is 
usually based on fluctuations observed in historical data for a selected period using standard time-
series techniques.  
 
A stochastic model for an insurance company would be to set up a simulation model or an analytical 
model which looks at a single policy, an entire portfolio or an entire company. But rather than setting 
investment returns according to their most likely estimate, for example, the model uses random 
variations to look at what investment conditions might be like. 
Based on a set of random outcomes, the outcome is noted. Then this is done again with a new set of 
random variables. In fact, this process is repeated thousands of times. At the end, a distribution of 
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outcomes is available which shows not only what the most likely estimate is, but what ranges are 
reasonable too. 
 
A deterministic simulation, with varying scenarios for future investment return, does not provide a 
good way of estimating the cost of providing this guarantee. This is because it does not allow for the 
volatility of investment returns in each future time period or the probability that an extreme event in a 
particular time period leads to an investment return less than the guarantee. Stochastic modeling builds 
volatility and randomness into the simulation model and therefore provides a better representation of 
real life from more angles. 
 
Stochastic models help to assess the interactions between variables, and are useful tools to numerically 
evaluate quantities, as they are usually implemented using Monte Carlo simulation techniques (see 
Section 1.2). While there is an advantage here, in estimating quantities that would otherwise be 
difficult to obtain using analytical methods, a disadvantage is that such methods are limited by 
computing resources as well as simulation error.  

 

1.1 Simulation	
 
In finance, computer simulations are often used for scenario planning. The arrival of claims, for 
example, is computed from not always known inputs. Monte Carlo simulation is often used to 
calculate the value of companies or to evaluate financial derivatives.  

1.2 Monte	Carlo	Simulation	
 
Monte Carlo Simulation (MCS) is a technique that involves using random numbers and probability to 
solve problems. By combining the distributions and randomly selecting values from them, it 
recalculates the simulated model many times and brings out the probability of the output. Some basic 
characteristics for MCS are defined [2]: 

• The use of random numbers characterizes MCS as a stochastic method. The random numbers 
have to be independent; no correlation should exist between them.  

• MCS allows several inputs to be used at the same time to create the probability distribution of 
one or more outputs.  

• Different types of probability distributions can be assigned to the inputs of the model. When 
the distribution is unknown, the one that represents the best fit to the data could be chosen.  

• MCS generates a range of values as output and shows how likely the output value is to occur  
 
The MCS is performed with Excel functions and an Excel add-in for simulation and optimization: 
Crystal Ball. With the help of Crystal Ball a deterministic spreadsheet can be turned into a 
probabilistic one. To use the Crystal Ball tool correctly we need to make sure that the probabilistic 
model structure reflects the underlying problem.  
 
This paper describes a simulation approach for the estimation of the probability that the expenses of an 
insurance company exceed the income within a predefined time period. This probability, called the 
ruin probability, is discussed in Chapter 2. A standard model used for the determination of the ruin 
probability is described in Chapter 2. Next to that some variations on the standard model are discussed 
in Chapter 2. A simulation study is conducted on these models and results are discussed in Chapter 3. 
Based on the observations and analyses a conclusion is drawn in Chapter 4. 
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2. The	ruin	probability	
 
 
In examining the nature of the risk associated with the solvency of an insurance company, it is often of 
interest to assess how the insurance company may be expected to perform over an extended period of 
time. One measure of risk is the probability that a ruin occurs. Ruin theory is concerned with the 
excess of the income over the expenses. This quantity, called the surplus, varies in time. A simple 
representation of the surplus is given by 
 
surplus = income – expenses.  
 
Ruin is said to occur if the surplus reaches a specified lower bound [4]. To be able to determine the 
surplus we first have to determine the income and the expenses. There are many variables and 
uncertainties involved with the income as well as the expenses of an insurance company. Risk models 
are used to model these uncertainties and variables to determine the surplus. This chapter describes 
some models used in risk theory for the determination of the surplus, mostly following to the work of 
[1], [4],[6] and [7]. 
 

2.1 Standard	risk	model	
 
The most studied literature in risk process is the standard mathematical model for the insurance of risk 
[5][6]. The standard model assumes that the insurance company only receives income from premiums 
paid by the policyholder. The income consists of premiums received at a constant rate r per unit time t. 
Let’s denote the total income for the insurance company by TI. The total income TI for the insurance 
company is  
 

TI = rt.  (2.1) 
 
Next to the total income the surplus depends on the total expenses denoted by TE. The total expenses 
for the standard model are only based on the occurrences of claims. Every time a policy expires a 
claim occurs. The number of claims within a time interval (0,t] is described by a Poisson process Nt 
with intensity rate µ. The properties of the Poisson process are: 

• The arrival time between two claims is independent and exponential distributed with expected 
value of 1/ μ.   

• And the expiration of a policy leads to only one claim at a given time.  
 
Based on the insurance type and contract agreement a claim has a size. The size of the claim, also 
referred to as claim severity, is the amount of money the insurance company needs to pay the 
beneficiary. In the standard model the claim severities Xk are random variables with mean value ϴ, 
independent of the arrival of the claims Nt. The total expenses for a time interval (0,t] are the 
aggregated claim severities within the defined time interval 
 

TE =   (2.2) 
 
Using the equation for the total income (2.1) and the equation for the total expenses (2.2) the surplus 
of the insurance company can be determined. Let’s denote the surplus of the insurance company at 
time t by St. The surplus St of the insurance company at a time is the excess of the total income over 
the total expenses 
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St = rt –   (2.3) 
 
It is reasonable to assume that the insurance company has extra capital that is not part of the income. 
This capital is the initial capital of the insurance company and can be used as buffer against fluctuation 
in claim occurrences and claim severities. Let’s denote the initial capital by U, where S0=U. The 
surplus {St }t≥0 of the insurance company for the standard risk model with initial capital U  is given by 
 

St = U + rt –   (2.4) 
 
Now we have the equation to determine the surplus of the insurance company at a time.  
 
 
The sample path of the surplus S in time t is shown in Figure 2.1. This figure clearly illustrates how 
the surplus drops according to a claim severity every time a claim occurs.  
 
 

 
Figure 2.1: Sample path of the surplus process S 
 
Ruin occurs if the surplus drops below a certain point. More specifically in this paper ruin is defined 
as the occurrence that the surplus of an insurance company has a negative value. Therefore, the 
probability of ruin is the probability that the surplus of an insurance company has a negative value 
within a predefined time horizon. According to this definition, the ruin probability ψ(U) for an 
insurance company with initial capital U is 
 

ψ(U) = P(St<0 t > 0| S0=U).   (2.5) 
 
We mentioned already that income generated by premiums and the expenses from claims are the 
variables that influence the ruin probability. The premium of a policy should be chosen such that they 
cover the expenses from claims. However a higher premium rate leads to more costs to the 
policyholder. Therefore, to somewhat “guarantee” the survival of the insurance company the premium 
rate should meet the expected expenses without burdening the policyholder with too high of a 
premium rate. The expected expenses of the insurance company are the expected number of arrivals 
multiplied with the expected claim severity: μ ϴ. The premium rate r should be chosen such that r≥ μ 
ϴ. More specifically r=(1+φ) μ ϴ and φ >0 is called the relative safety loading [1],[4]. 
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The standard risk model with constant interest rate 
 
It is possible to extend the standard risk model with interest earned on the surplus. It is likely that the 
insurance company earns interest over the capital. Let v1, v2,…, vT be a sequence of random variables 
representing the rates of interest earned by the insurer in successive years. Dickson et al.[3] present the 
standard model with the use of interest v. Adding this extension to our formula for the surplus of an 
insurance company results in 
 
 

St = S(t-1) (1+vt) + rt –  
 
This expression is based on a constant value of the interest.  
 

2.2 Analytical	solutions	of	the	standard	risk	model	
 
We have discussed the standard risk model where the Poisson process is used to describe the arrival of 
the claims. In the standard model the claim severities Xk are random variables with mean value ϴ, 
independent of the arrival of the claims Nt. Depending on the probability distribution of the claim 
severities exact solutions for the ruin probability can be calculated analytically. There are two types of 
claim severity distributions known for which the ruin probability can be calculated easily [13]. These 
are the exponential distributions and mixtures and combinations of these distributions, as well as 
distributions with only a finite number of values. For other distributions good approximations of the 
ruin probability can be found. An extended overview of exact solutions and methods for a good 
approximation of the ruin probability is given by [4].  
 
 
Exact solution to the standard risk model  
 
In this section we will present two equations to calculate the exact ruin probability for the standard 
risk model. Both of these equations are only valid if the time horizon is infinite. The first equation we 
present to calculate the ruin probability of the standard risk model assumes that there is no initial 
capital, i.e. when U=0, the ruin probability of the standard risk model can be calculated by [4] 
 

ψ(U)= ,  (2.6) 
 
The equation is valid for the standard risk model regardless of the claim arrival rate µ or the claim 
severity distribution. The ruin probability only depends on the safety loading φ.  
 
The second equation we present gives an exact solution for the ruin probability of the standard risk 
model with exponentially distributed claim severities. This equation holds for all values of the initial 
capital and like Equation (2.6 ) does not depend on the claim arrival rate .  
 

.  (2.7) 
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2.3 Risk	models	based	on	policies	with	lifetimes	
 
The standard model described in Section 2.1 makes the assumption that the time between the arrivals 
of two consecutive claims is exponential distributed. In this section we consider risk models where a 
claim occurs when the lifetime of a policy expires. The risk models we discuss in this section do also 
take the arrival of policies into consideration.  
The risk models we discuss in this section are based on the assumption that policies arrive 
independently and at random point in time. This corresponds with the Poisson process. The arrival rate 
of the policies is described with the parameter λ. The time between the arrival of two customers is 
exponential distributed with expected value 1/λ and every customer purchases one policy. The second 
assumption we make for these risk models is that every active policy has a certain lifetime. The length 
of the lifetimes of these policies is modeled according to some probability distribution. The insurance 
company will receive premium as long as the policy is active. When the lifetime of a policy expires 
not only a claim occurs, the insurance company will also miss further premium income for the expired 
policy.  
  
The first risk model we discuss is a risk model based on exponential lifetime of the policies. The 
reason for this is that the exponential distribution is both relatively easy to work with and is often a 
good approximation to the actual distribution. The property of the exponential distribution that makes 
it easy to analyze is that it does not deteriorate with time. By this we mean that if the lifetime of a 
policy is exponentially distributed, then a policy that has been active for any number of years is as 
good as a new arrived policy in regards to the amount of time remaining until the policy expires. The 
exponential distribution is the only continuous distribution which possesses this property [10]. 
 
A random variable is said to be without memory, or memoryless, if  
 
P{X>s+t|X>t}=P{X>s}  for all s,t>=0.  
 
If we think of X as being the lifetime of some policy, then this equation states that the probability that 
the policy stays active for at least s+t years given that it has been active for the past t years is the same 
as the initial probability that it stays active for at least s years. In other words, if the policy is active at 
time t, then the distribution of the remaining amount of time that it survives is the same as the original 
lifetime distribution; that is, the policy does not remember that it has already been active for a time t 
[13]. 
 
The surplus process of the risk model with exponential lifetimes of policies has the same structure as 
the standard risk model and is based on the total income TI and the total expenses TE.  
The total income during a period is the number of active policies during the period multiplied by the 
rate. Let’s denote the number of active policies at time t by It. Initially,  I0 policies are active, which 
were issued before or at time 0. We further assume that each active policy pays premiums 
continuously at constant rate r to the insurance company [1]. The instantaneous total rate at which 
premiums are paid to the company at time t is thus equal to rIt. When a policy expires the insurance 
company pays out a claim, the mean size of which is denoted by ϴ, and the number of active policies 
decreases by one. The rate of the income will fluctuate every time a policy arrives or a claim occurs.  
 
Let’s denote the time an event takes place by Tz. Every time an event takes place: a policy has arrived 
or a claim has occurred. If a policy arrives, the number of active policies I increases. If a claim occurs, 
the number of active policies decreases with one and the surplus decreases with the amount of a claim. 
The income between two events is the number of active policies in the time interval multiplied with 
the premium rate r during time (Tz-1, Tz]. The income between two events denoted by ΔTI can be 
calculated using 
 

ΔTI	=	ITz-1*(Tz-Tz-1]r	 	 (2.8)	
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The surplus at time of event STz is given by  
 

STz=	STz-1+	ITz-1*(Tz-Tz-1)	r-	δX		 (2.9)	
 
where, δ =1 if a claim occurs at the time interval (Tz-1,Tz] and δ =0 if there is no occurrence of a claim 
at the interval (Tz-1,Tz]. Note that ST0 = U.  
 
 
Exact solution to the risk model with exponential distributed lifetimes of policies 
 
Adan et al.[1] present a formula to determine the exact ruin probability in case the arrival of policies is 
Poisson distributed and they have an exponential distributed lifetime and the claim size distribution is 
exponential. In this paper we restrict by notifying the reader with this equation only, for the 
mathematical foundation of this equation the reader is referred to Adan et al. [1]. According to Adan et 
al. [1] the ruin probability for an insurance company with initial capital U and initial active policies I0 
is defined by 
 

  (2.10) 
 
Note that the ruin probability is independent of the number of initially active policies, the arrival of the 
policies nor the lifetime of the policies.  
 
It is possible to model the lifetime of a policy using other probability distributions. Note that this 
probability distribution may not be memoryless, and the residual lifetime of initially active policies 
will depend on the time they have already been active.  
 

2.4 Risk	processes	and	simulation	
 
In this section simulation as a tool to estimate the ruin probability is discussed in more detail. There 
are risk models where calculation or an analytical approach results in no exclusive solution. In those 
situations simulation can be a valuable option. Simulation is a good way to present different scenarios 
for risk models. This way the impact of the uncertainties involved with risk theory can be shown.  
Setting up a correctly working simulation model can be a time consuming and challenging thing to do. 
Often good knowledge of statistics is required to draw a reliable conclusion from a simulation model 
that is based on stochastic variables.   
 
Advantages of simulation of risk models 
 

• Simulation models are useful to make estimations of ruin probability in situations where 
analytical models do not lead to an exclusive solution  

• Compared to analytical models simulation models are often more convincing and easier to 
understand for management  

 
 
Disadvantages of simulation of risk models 
 

• The calculation time of simulations increase when a more accurate and reliable estimation of 
the ruin probability is required [3].  

o The accuracy of the estimation of the ruin probability is the relative difference 
between the estimated ruin probability and the true ruin probability.  
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o The reliability of the estimation is the risk one wants to take that an estimation of the 
ruin probability exceeds the accepted error margin. 

• Mismodeling. It is common to make mistakes in setting up a simulation model. Like any 
model verification and validation of the simulation model is necessary. Cao et al. [8] discuss 
one of the most common mistakes made in spreadsheet simulation applications.  

 
 
Key factor for simulation of risk processes for an insurance company is simulating the arrival of 
claims. The generation of aggregate claims is vital for calculation of the amount of loss that may 
occur. Claims of random size Xk arrive at random times Ti. The number of claims up to time t is 
described by the stochastic process Nt. 
 

2.4.1 Homogenous	Poisson	Process	
 
Homogenous Poisson Process is one of the most common claim arrival point processes 
which have stationary and independent increments and Poisson distributed number of 
claims in a given time interval [7]. This process is normally appropriate for life insurance 
modeling. The choice of a homogenous Poisson process implies that the size of the portfolio cannot 
increase or decrease.  
Formally, a continuous-time stochastic process {Nt : t ≥ 0} is a (homogenous) Poisson 
process with intensity (or rate) l > 0 which have the following properties 

• Nt is a point process, 
• the times between two arrivals Wi are independent and identically distributed and follow an 

exponential distribution with intensity λ, i.e. with mean 1/λ.  
 
The expected value E(Nt)=λt for the homogenous Poisson process. Therefore, it is natural to 
define the income from premium in this case as r(t)=rt, where r=(1+φ)ϴλ, ϴ=EXk and φ>0 is 
the relative safety loading. The time of the arrival of a (claim) process is generated with the use of an 
algorithm. This algorithm is described in Burnecki et al. [7].  
 
 
Algorithm for the Homogenous Poisson Process 
 
Step 1: set T0 = 0 
 
Step 2: for i= 1,2,…,n do 

Step 2a: generate an Exponential random variable E with intensity λ  
step 2b: set Ti = Ti-1 + E 
 

This algorithm can be used to generate the time of the arrival of (claim) process. When the arrival 
times of the claims are generated the surplus process at the time of arrival can be determined using the 
corresponding risk process formula. 
 

2.4.2 Non-homogenous	Poisson	Process	
 
The non-homogenous Poisson process is a Poisson process with a variable intensity defined 
by the deterministic intensity (rate) function λ(t). The characteristics of non-homogenous 
Poisson process is that the increment is not necessarily stationary and when λ(t) takes 
the constant value l , the non-homogenous Poisson process reduces to the homogenous Poisson 
process. The non-homogenous Poisson process can be used for example when a claim occurrence 
depends on seasonal factors. 
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2.4.3 Mixed	Poisson	Process	
 
Often insurance companies split their portfolio into different risk associated groups. We assume in 
this situation that the claims come from a heterogeneous group of clients, each one of them 
generating claims according to Poisson distribution with the intensity varying from one group to 
another. The homogenous Poisson process and the non-homogenous Poisson process do not take 
the variability in intensity of the heterogeneous groups into account. The mixed Poisson process 
can be used to model the arrival of claims in this situation. The distribution of the point process is 
given by a mixture of Poisson process in the mixed Poisson process [9].    
 

2.4.4 Cox	Process	
 
The Cox process provides flexibility by letting the intensity not only depend on time but also 
allowing it to be a stochastic process. The Cox process is a two-step process which contains an 
intensity process Λ(t) that is used to generate another process Nt is a Poisson process conditional 
on Λ (t) which itself is a stochastic process.  The simulation algorithm of the Cox process can be 
explained that a non-negative stochastic process Λ (t) is generated and, conditioned upon its 
realization, Nt as a non-homogenous Poisson process with that realization as its intensity is 
constructed [7]. 

2.4.5 The	renewal	Process	
 
A renewal process is a stochastic model for events that occur randomly in time (generically called 
renewals or arrivals). The basic mathematical assumption is that the times between the successive 
arrivals are independent and identically distributed. In the renewal process we assume that there 
can be different distributions on the sequence of inter-arrival times {W1,W2, …} of the claim 
arrival point process Nt . Note that the homogenous Poisson process is a renewal process with 
exponentially distributed inter-arrival times.  
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3. Simulation of the risk models 
 
In this chapter a simulation study is performed to compare the ruin probability for the standard risk 
model with the ruin probability for other risk models. The approach we have taken to conduct the 
simulation study is discussed in Section 3.1.  Parameters influencing the accuracy and the reliability of 
the simulation are also discussed. A simulation model representing the standard risk model is set up in 
Section 3.2. The ruin probability for the standard risk model is estimated under different conditions. 
The simulation model and the results for the risk model with exponential lifetimes of policies are 
discussed in Section 3.3. A similar simulation analysis is performed in Section 3.4 for risk models 
with policies having a lifetime according to different probability distributions. The results for the 
different simulation models are compared and a conclusion is drawn.  
 
 

3.1 Approach	for	simulation	study	
 
The direct cause for our simulation study is a paper by Adan et al.[1]. Adan et al.[1] discuss in their 
paper the insurance risk with variable number of policies. They establish a result that, if the lifetimes 
of policies are independent and identically distributed ( i.i.d.) exponential random variables with rate 
μ, then the ruin probability is identical to the one in the standard risk (compound Poisson) model 
where the capital increases at constant rate r and claims occur according to a Poisson process with rate 
µ. The objective of the simulation study is to estimate the ruin probabilities for the standard risk model 
and for the risk model with varying number of policies with exponentially distributed lifetimes.  Next 
to that the simulation study is used to perform a sensitivity analysis on the results for the risk model 
with varying number of policies with exponentially distributed lifetimes.  Finally, some other risk 
models having policies with lifetimes with different probability distributions are simulated and 
compared to the policies with exponentially distributed lifetimes.  
 
In this section a general approach is described for setting up a simulation model for risk models. A 
subsection discusses the reliability and accuracy of the simulation model.  
 
The first three steps of our approach describes the realization of the surplus process, this corresponds 
with one simulation run. One run of the simulation enables us to determine whether a ruin occurs 
within a time horizon or not.  
 
 
Step 1: Initial situation 
 
The first step of our approach is to define the initial situation and the initial values of the simulation. 
The input for the simulation model is defined in the initialization phase. The input consists of the 
variables that are used to estimate the ruin probability.  
 
 
Step 2: Determine the events of the simulation 
 
The second step of our approach is to determine the events in the simulation. The events of our 
simulation model are the events that influence the surplus process. We consider three possible events 
for our simulation model: the arrival of a policy, the occurrence of a claim and the claim severity. The 
type of event for our simulation model will depend on the risk model that is simulated.  
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Step 3: Set up a simulation algorithm 
 
The simulation algorithm is an algorithm used to generate the time an event takes place. Using a 
simulation algorithm the time of the arrival of the next policy or the occurrence of the next claim can 
be generated.  
Every time an event takes place the surplus process is calculated. The surplus of an insurance company 
increases when a policy arrives and will decrease when a claim arrives. The surplus is calculated until 
the time is equal to the time horizon: t=T. 
 
 
Step 4: Estimate ruin probability 
 
For the estimation of the probability of ruin we simulate a large number of realizations of the model. 
We count the number of realizations that result in ruin. Let’s denote the number of realizations that we 
simulate by m. Let’s denote the number of occurrences of ruin within the specified time horizon by l. 
Our estimation of the ruin probability within a time horizon T is ψ(T) = l/m. This procedure of 
estimating the probability of ruin corresponds to the procedure described by Dickson et al.[3].  The 
number of realizations to choose depends on the level of accuracy and reliability of the result that is 
aimed for.  
 
Reliability and the number of simulation runs 
 
The simulation gives only an estimation of the ruin probability for a risk model. It is important to 
assess how valid the estimation from our simulation is. The central limit theorem states that the 
sampling distribution of any estimated statistic will be normal distributed, if the sample size is large 
enough. Two criteria are used to determine the number of realizations for the simulation to choose: 
accuracy and reliability [16].  
 
The accuracy of the estimation of the ruin probability is the relative difference between the estimated 
ruin probability  and the true ruin probability ψ. This difference is also known as the error margin 
denoted by e.  
 
The reliability of the estimation is the risk one wants to take that an estimation of the ruin probability 
exceeds the accepted error margin e. An indication of the reliability of the estimation is given by a 
confidence interval. For example a 90% confidence interval means that if many simulation runs are 
conducted and the confidence interval computed, in the long run about 90% of these intervals would 
contain the true ruin probability [16].  
 
The relationship between the accuracy and the reliability of the estimate is used to derive a formula for 
the number of simulation runs to perform [16]. We are interested in the probability of ruin, this 
corresponds to the ratio ruin to non-ruin.  
The sample size formula for categorical data discussed in Bartlett et al. [16] is used to estimate the 
proportion of two different ratios. This formula uses the estimation of the variance. The variance is 
estimated from the probability for an element to be in one category and the probability to be in the 
other category. In our model the two categories are ruin and non-ruin, so we use the probability of ruin 
ψ and the probability of non ruin (1-ψ) to estimate the variance: ψ(1-ψ). Next to the estimation of the 
variance an acceptable margin of error for the probability being estimated (e) and a reliability using a 
t-value (t) are used for the determination of the number of realizations to use. To estimate the 
proportion of ruin we use a 95% confidence interval for the reliability of the estimation. This 
corresponds with a t-value of 1.96 (see also Appendix A). 
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Thus an increase in confidence in our estimate is achieved at the expense of conducting more 
simulation runs.  
 
The number of realizations m to have a 95% confidence (t=1,96) that the estimated ruin probability is 
within 5% (e = 0,05) of the true ruin probability are given in Table 3.1.  
 

 0,80 0,75 0,50 0,40 0,30 0,20 0,10 0,05 0,03 0,01 0,005 
m 385 513 1537 2306 3587 6148 13833 29203 ~50000 ~150000 ~300000 

Table 3.1: The number of realizations m to have a 95% confident estimate of the ruin 
probability with an accepted error margin of 5%. 
 
The relative error margin for a given number of simulations m  and a confidence level of 95% is 
shown in Table 3.2. Evidently, the relative error margin decreases if the number of simulations 
increases.    
 

 m=1000 m=2000 m=5000 m=10000 
0,80 3% 2,2% 1,4% 1,0% 
0,75 3,6% 2,5% 1,6% 1,1% 
0,50 6,2% 4,4% 2,8% 2,0% 
0,40 7,6% 5,4% 3,4% 2,4% 
0,30 9,5% 6,7% 4,2% 3,0% 
0,20 12,4% 8,8% 5,5% 3,9% 
0,10 18,6% 13,1% 8,3% 5,9% 
0,05 27% 19,1% 12,1% 8,5% 
0,03 35% 25% 15,8% 11,1% 
0,01 61,7% 43,6% 27,6% 19,5% 
0,005 87,4% 61,8% 39,1% 27,6% 

Table 3.2: The relative error margin for the ruin probabilities corresponding to a given number 
of realizations m  
 
The objective of this simulation study is to compare as many results as possible with different risk 
models and different parameter values. Initially we choose to simulate 1000 realizations of the 
process, as we considered this number to be sufficiently large to give estimates of the ruin probability. 
This is the same number of realizations Dickson et al.[3] use for comparison purposes of ruin 
probabilities. In case the estimated ruin probability is very low larger number of realizations of the 
process are simulated to have a more accurate estimation.    
 

3.2 Standard	risk	model	
 
The most studied literature in risk process is the standard risk model described in Chapter 2.1.  This is 
also referred to as the compound Poisson model [1].  The simulation model of the compound Poisson 
model is based on the formula of the standard risk model, as in Equation (2.4) 
 

St = U + rt –    
 
The simulation of the compound Poisson model is performed using the general approach discussed in 
Section 3.1.  
 
Step 1: Initial situation 
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In this step the initial capital U and the number of active policies at the beginning of the simulation I0 
are determined. We will perform a simulation for different values for the initial capital. There are no 
arrival of policies in the standard risk model. Therefore, we don’t have to model the number of 
initially active policies. The premium rate r, the arrival rate of the claims µ and the claim severity 
mean ϴ are chosen such that r=(1+φ)µϴ .  
 
 Step 2: The events of the simulation 
 
The only event in our simulation we have to take into consideration is the arrival of a claim. The time 
between the arrivals (inter-arrival time) of two claims is 1/ µ. Every time segment of 1/ µ a new event 
in the form of claim arrival occurs.  
 
Step 3: Set up simulation algorithm 
 
We have to set up an algorithm that generates the arrival of claim processes. The claim processes 
arrive according to a Poisson process. Therefore, the use of the algorithm described in Section 2.3 for 
the homogenous Poisson process is justified.  
 
Step 1: set T0 = 0 
 
Step 2: for k= 1,2,…,n do 

Step 2a: generate an exponential random variable E with intensity µ  
step 2b: set Tk = Tk-1 + E, 

where Tk is the time claim k occurs with a random variable X with mean size ϴ .  
 
This algorithm is used to generate the next arrival of a claim. Every time a claim occurs the surplus is 
calculated using Equation (2.4):  
 
 

 
 
Excel is used to generate the exponential random variables E and X. The following function is used to 
have an exponential random variable with expected mean value [15] 
 
Exponential =-LN(RAND())*mean 
 

3.2.1 Validation	of	our	simulation	model	
 
Validation of the simulation model is used to make sure that the simulation model reflects the standard 
risk model and estimates the ruin probability within a pre-determined reliability and accuracy margin.  
 
For the validation of the model a comparison is made with the outcome of our simulation model and 
the exact ruin probabilities for the standard risk model. In Section 2.1 we introduced an equation for 
the calculation of the ruin probability of the standard risk model with exponential claim size 
distribution (Equation 2.6 and 2.7) for the infinite time horizon.   
Before we can compare the outcome of the simulation model and the exact ruin probabilities 
calculated by Equation (2.7) we need to determine the time horizon of our simulation. The simulation 
model is appropriate for the finite time horizon, however taking a large time horizon will approximate 
the infinite time case. In the next subsection the length of the time horizon is analyzed.  
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Time horizon and the length of a simulation run 
 
One simulation run represents one realization of the surplus process for a length of time. In this paper 
we have presented exact solutions to some risk models for the infinite time horizon. In order to 
compare the results of our simulation model with the results of risk models with known exact solutions 
we have to simulate a realization for an infinite time horizon.  Monte Carlo Simulation is useful for the 
finite time horizon [4], however the ruin probability for the finite time will converge to those 
calculated in infinite case as the time horizon is getting larger (a time horizon of T=20 years gives a 
similar ruin probability as the infinite time case [4]).  
In this section we research the “time horizon” we have to take for our simulation model to 
approximate the ruin probability in infinite time. The time in our simulation model depends on the 
arrival of policies or the arrival of claims. So instead of simulating for a time horizon, we simulate up 
to a number of claim arrivals. The more arrivals of a claim we simulate the more our model will reflect 
the situation of the infinite time horizon. The ruin probability is calculated for different number of 
claim arrivals denoted by K. To have a reliable point estimate of the ruin probability we kept the 
number of simulation runs high (m=20.000). The results of our simulation are presented in Table 3.3.  
 
 
Number of claims 
K 

Average ruin 
probability  (U=1) 

Average ruin 
probability  (U=10) 

Average ruin 
probability  (U=20) 

K=20 0,5613 0,0275 0,00037 
K=100 0,60 0,064 0,0060 
K=200 0,6098 0,071 0,0069 
K=500 0,611 0,075 0,0072 
K=1000 0,608 0,076 0,0078 
K=3000 0,610 0,077 0,0075 
Exact 0,610 0,077 0,0076 
Table 3.3: The number of claim arrivals and the corresponding average ruin probability for 10000 
simulation runs and safety loading of φ =0.3.  
 
From these results we see that the speed of convergence decreases as the initial capital U grows (i.e. as 
the ruin probability decreases). For our simulation model we will use K=3000. The results have shown 
that simulating this number of claim arrivals will approximate the infinite time horizon well, even 
when ruin probability is very small. 
 
 
Comparison of results 
 
We calculate the exact ruin probabilities for the standard risk model with exponential claim size 
distribution using Equation 2.7 and compare the simulation results with them. The results of the 
simulation and the exact solution based on Equation 2.7 are shown for a safety loading of in Table 3.4 
φ=0.3 and a safety loading of φ=0.2 in Table 3.5. The results are compared under different values of 
the initial capital and different number of simulation runs.  
 
  
U m=1000 m=5000 Exact 
0 0,778 0,77 0,769 
1 0,606 0,612 0,61 
2 0,474 0,485 0,485 
5 0,265 0,245 0,243 
7 0,148 0,152 0,153 
10 0,74 0,083 0,077 
15 0,027 0,023 0,024 
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20 0,0085 0,0079 0,0076 
Table 3.4: The ruin probability of our simulation model and the exact ruin probability for 
exponential claim sizes when safety loading φ=0.3. 
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U m=1000 m=5000 Exact 
0 0,833 0,821 0,833 
1 0,712 0,710 0,705 
2 0,589 0,592 0,597 
5 0,352 0,354 0,362 
7 0,267 0,269 0,260 
10 0,158 0,155 0,157 
15 0,066 0,066 0,068 
20 0,036 0,034 0,03 
Table 3.5: The ruin probability of our simulation model and the exact ruin probability for 
exponential claim sizes when safety loading φ=0.2. 
 
The results in Table 3.4 as well as in Table 3.5 show that our simulation model produce similar results 
to the exact solutions calculated with analytical methods. Note that an increase in the number of 
simulation runs leads to an increase in accuracy of our estimation.  
 
The ruin probability of the standard risk model does not depend on the arrival rate of claims [4]. We 
have simulated the standard risk model for different values of the claim arrival rate µ. The results are 
shown in Table 3.6 for a safety loading of φ=0.3.  
 
 U=0 U=1 U=2 U=5 U=7 U=10 U=15 U=20 
µ=10 0,760 0,621 0,478 0,226 0,154 0,069 0,029 0,0065 
µ=20 0,779 0,616 0,493 0,254 0,145 0,081 0,028 0,0072 
µ=50 0,773 0,608 0,481 0,249 0,155 0,072 0,019 0,0085 
µ=100 0,764 0,615 0,498 0,251 0,149 0,071 0,020 0,0071 
Exact 0,769 0,610 0,485 0,243 0,153 0,077 0,024 0,0076 
Table 3.6: The ruin probability of our simulation model for different claim arrival rates 
compared with the exact ruin probabilities 
 
The results in Table 3.6 show that in our simulation model the arrival rate of claims do not influence 
the ruin probability. This corresponds to the analytical outcomes. From these results we conclude that 
the simulation model we have proposed is a good reflection of the standard risk model. The ruin 
probability estimations of our simulation model are within the accepted error margin. The proposed 
simulation model can also be used for the estimation of the ruin probabilities of the standard risk 
model with other claim size distributions. The same simulation algorithm can be used to generate the 
arrival times of claims. Every time a claim occurs a stochastic variable F is generated that represents 
the claim size according to a given claim size distribution.  
 
In the next section we will perform a simulation study on risk models that consider income from 
premiums based on the number of active policies and the occurrences of claims on expiry of the 
lifetime for policies.  
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3.3 Risk	model	with	exponential	lifetimes	for	policies	
 
The risk model with exponential lifetimes for policies are already discussed in Section 2.2. In this 
section we will set up a simulation model to estimate the ruin probability for this risk model.  
 
A similar approach to the standard risk model is taken to set up a simulation model for the risk model 
with exponential lifetimes for policies. 
 
Step 1: Initial situation 
 
In this step the initial capital U and the number of active policies at the beginning of the simulation I0 
are determined. We will perform a simulation for different values for the initial capital. In this model 
we take the number of initially active policies into consideration. We will perform simulations with 
varying number of initially active policies. 
 
 Step 2: The events of the simulation 
 
The policies in this model arrive according to a Poisson process with arrival rate λ. And the policies 
have an exponential distributed lifetime with rate µ and expected lifetime of 1/ µ [13]. We have to take 
three events into consideration; one event concerning the arrival of policies, one event concerning the 
occurrence of claims and the severity of a claim when a claim occurs. Every moment a policy arrives 
the number of policies will increase, therefore the income from premiums will increase. Every 
moment a claim arrives the capital of the company decreases with a claim size and the number of 
policies decrement by one.  
 
Step 3: Set up simulation algorithm 
 
We update the value of the surplus after every event (arrival of a policy or arrival of a claim). 
Therefore, we have to generate the arrival times of the policies and the time of occurrence of the 
claims. The simulation algorithm of the homogenous Poisson process can be used to generate the 
arrival of the policies. We have to adapt this algorithm to generate the time a claim occurs.  

 
Step 1: set T0 = 0 
 
Step 2: for i= 1,2,…,m do 

Step 2a: generate an exponential random variable E with intensity λ  
step 2b: set Ti = Ti-1 + E, 
where Ti is the time policy i arrives. 
 

 Step 3: k= 1,2,…,n do 
Step 3a: generate a random exponential variable F with mean value µ 

 Step 3b: set Tk= Ti+F 
where Tk is the time a claim occurs for policy i, Tk is the lifetime of a policy added to the 
arrival time of the policy  
 

Step 4: sort the arrival of events (policies and claims) in ascending order, this way all events are sorted 
in a chronological way and the surplus for every event can be calculated.  
 
Let’s denote the time an event takes place by Tz. Note that Tz is just the time of arrival of policy i, Ti , 
and the time an occurrence of claim k takes place, Tk , assorted.  
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Every time an event takes place determine the type of event: arrival of policy or arrival of claim. If a 
policy arrives, increase the number of active policies I. If a claim arrives, decrease the number of 
active policies with one. The income generated between two events is the number of active policies in 
the time interval multiplied with the premium rate r during time (Tz-1, Tz]. The income between two 
events denoted by ΔTI can be calculated using 
 

ΔTI = ITz-1*(Tz-Tz-1]r  (3.1) 
 
When a claim arrives the surplus process is decreased by the amount of the claim severity. A graphical 
representation of this simulation algorithm for the realization of the arrival of policies and occurrence 
of claims is given in the flowchart in Figure 3.1.  

 
Figure 3.1: Flowchart of the simulation of the arrival of policies and occurrences of claims 
according to the risk model with exponentially distributed lifetimes for policies 
 
 
This flowchart can be summarized with the formula for the determination of the surplus at a time of an 
event Tz (Equation (2.9)).  
 

Start 

1 policy arrives: 

ITz=ITz-1 + 1 

Surplus at Tz: 

STz= STz-1+ ITz-1*(Tz-Tz-1) r- X 

1 policy expires: 

ITz=ITz-1 - 1 

Surplus at Tz: 

STz= STz-1+ ITz-1*(Tz-Tz-1) r 

End 

End of run? 

Type of 
arrival 

claim 

policy 

no 

yes 
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The realization of one simulation run is further illustrated in Figure 3.4, where the level of the surplus 
in time is shown. The influence of the arrival of policies and arrival of claims on the surplus level is 
made clear in Figure 3.2. Note that the surplus increases with a higher rate if an extra policy arrives 
(see (1) in the figure) and the rate is less when a claim occurs (see (2) in the figure).  
 

 
 
Figure 3.2: The realization of one simulation run, where the surplus S fluctuates according to 
the number of active policies I and the occurrences of claims 
 
 
Validation of our simulation model 
 
Validation of the simulation model is used to make sure that the simulation model reflects the standard 
risk model and estimates the ruin probability within a pre-determined reliability and accuracy margin.  
 
For the validation of the model a comparison is made with the outcome of our simulation model and 
the exact ruin probabilities for the risk model with exponential lifetimes of policies. In Section 2.3 we 
introduced an equation for the calculation of the ruin probability of the risk model with exponentially 
distributed lifetimes of the policies and exponential claim size distribution (Equation 2.10).  We 
calculate the exact ruin probabilities using Equation (2.10) and compared the simulation results with 
them. We have used the same set of initial capital and safety loading as for the standard risk model in 
Section 3.2. The results are shown in Table 3.7 for safety loading φ=0.3 and different values of the 
initial capital U and the initial number of active policies I0. We have used the same set of initial capital 
U as in the standard risk model in Section 3.2. This enables us to compare the outcome of the risk 
model also with exponentially distributed lifetimes of policies with the standard risk model.  
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 I0=0 I0=10 I0=20 I0=50 I0=100 Exact  
U=0 0,774 0,773 0,761 0,758 0,77 0,769 
U=1 0,63 0,628 0,61 0,595 0,6 0,61 
U=2 0,481 0,480 0,477 0,467 0,466 0,485 
U=5 0,256 0,255 0,249 0,251 0,234 0,243 
U=7 0,148 0,151 0,156 0,147 0,148 0,153 
U=10 0,074 0,069 0,066 0,083 0,069 0,077 
U=15 0,027 0,026 0,028 0,023 0,023 0,024 
U=20 0,0088 0,0081 0,007 0,0069 0,007 0,0076 
Table 3.7: The ruin probability of our simulation model and the exact ruin probability for 
exponential claim sizes when safety loading φ=0.3 for m=1000. 
 
Although there is some fluctuation in the outcome of the ruin probabilities compared to the exact 
solution, the results are within the relative accepted error margin of 5%. The results would be more 
accurate if a larger number of simulations was used.  
 
Adan et al. [1] suggested that the ruin probability of the risk model with exponential policy lifetimes 
does not depend on the arrival of policies. We performed a second validation of our simulation model 
by comparing outcomes of the simulation model for different values of the arrival of policies λ. The 
ruin probability is estimated for different values of the initial capital with initial number of active 
policies I0=0 and I0=050. The results are shown in Table 3.8 and are within the accepted error margin 
of the exact values calculated by Equation (2.10).  
 
  λ=10 λ=20 λ=40 λ=50 λ=100 Exact  
I0=0        
 U=0 0,771 0,774 0,759 0,767 0,785 0,769 
 U=1 0,617 0,628 0,61 0,595 0,6 0,61 
 U=2 0,481 0,480 0,477 0,467 0,466 0,485 
 U=5 0,256 0,255 0,249 0,251 0,234 0,243 
I0=50        
 U=0 0,779 0,758 0,768 0,777 0,757 0,769 
 U=1 0,607 0,598 0,618 0,621 0,603 0,61 
 U=2 0,475 0,472 0,493 0,476 0,489 0,485 
 U=5 0,248 0,253 0,259 0,240 0,235 0,243 
Table 3.8: The ruin probability of our simulation model and the exact ruin probability for 
exponential claim sizes when safety loading φ=0.3 for m=1000. 
 
From the results in this section we conclude that the simulation model we have presented for the risk 
model with exponentially distributed policy lifetimes is valid. For a given safety loading and initial 
capital the standard risk model produces similar results for the ruin probability as the risk model with 
exponentially distributed policy lifetimes. Also the number of initially active policies and the arrival 
rate of policies has no influence on the ruin probability of the insurance company when the lifetime of 
a policy is exponential distributed.  
 
In the next section we will study the influence of the distribution of the lifetime of policies.  
 

3.4 Risk	models	with	lifetimes	for	policies	
 
In the previous section we have discussed a simulation model for policies with an exponential lifetime. 
Due to its memoryless property the model with exponential lifetime for policies assumes that the 
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expected remaining lifetime of initially active policies is similar to the expected lifetime of a newly 
arrived policy regardless of the time it has already been active. The objective of the simulation study 
in this section is to examine whether the same conclusions can be drawn for risk models with different 
policy lifetime distributions as for the risk model with exponentially distributed policy lifetimes.  
In this section two risk models with policy lifetimes are examined: a first risk model with normal 
distributed policy lifetimes and a second one with gamma distributed lifetimes. For both of these risk 
models we performed an analysis similar to the risk model with exponentially distributed policy 
lifetimes: 
 

1. We examined the impact of the number of initially active policies on the ruin probability, and 
2. the impact of the arrival rate of policies on the ruin probability 

 
In the previous section we described a simulation algorithm to model the arrival of claims according to 
a homogenous Poisson process and the exponential lifetime of policies. We make use of the same 
simulation algorithm to model the arrival of policies. For the lifetime of policies a random variable G 
is generated with a mean from the corresponding distribution for the lifetime of a policy.  
 
Unlike the exponential distribution these distributions assume that the expected lifetime of newly 
arrived policies is longer than the expected remaining lifetime of initially active policies. Therefore, 
we have to take the remaining lifetimes of the initially active policies into consideration in the 
simulation.  
The following approach is taken to simulate the remaining lifetime of initially active policies is: 
 

1. Generate a uniform (0,1) random number H  
2. Generate a random variable G from the corresponding distribution with mean lifetime µ 
3. expected remaining lifetime: Hµ ≤ µ 

 
Since we do not know how long the policy is already active we multiply the generated random 
variable with a value between (0,1) to correct for this. Note that this approach is just an approximation 
where the remaining lifetime of an already active policy is a fraction of the lifetime of a newly arrived 
policy. 
 

3.4.1 Risk	model	with	normal	distributed	policy	lifetimes	
 
The first risk model we examine is the risk model with normal distributed policy lifetimes. To indicate 
that a real-valued random variable G is normally distributed with mean μ and variance σ2 ≥ 0, we write  
 
G ~ normal(µ,σ2) 
 
For our simulation we have set the mean lifetime to µ=20 with a standard deviation of 5. The Excel 
function we have used to generate a random normal variable with a mean and standard deviation is 
[15] 
 
= Norminv (rand(), mean, standard deviation) 
 
The influence of the arrival rate on the ruin probability is examined for this risk model. In the case of 
exponentially distributed policy lifetimes the arrival rate had no influence on the ruin probability. In 
Figure 3.3 the ruin probability for different values of the initial capital U and policy arrival rate λ are 
shown. The mean claim size for each case is ϴ=1 and exponentially distributed and for the safety 
loading we have used φ=0.3. The number of initially active policies I0=0. 
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Figure 3.3: Ruin probability for the risk model with normal (20,5) distributed policy lifetimes 
for different values λ and U. 
 
The results in Figure 3.3 tell us that the ruin probability decreases if the arrival rate increases. This is 
the case for all examined values of initial capital.  Note that the differences are getting smaller when 
the arrival rate increases, e.g. the difference between the values for λ=60 and λ=100 are smaller than 
the differences between λ=40 and λ=60. 
Next to the influence of the arrival rate on the ruin probability the influence of the number of initially 
active policies I0 on the ruin probability is examined. In Figure 3.4 the ruin probability for different 
values of initially active policies corresponding to some initial capital are shown. The mean claim size 
is ϴ=1 and the safety loading φ=0.3. The arrival rate of policies is λ=20 for all cases.  
 

 
Figure 3.4: Ruin probability for the risk model with normal (20,5) distributed policy lifetimes 
for different values I0 and U. 
 
The results in Figure 3.4 show that the ruin probability increases if the number of initially active 
policies increases. This is the case for all values of the initial capital. We can draw a conclusion from 
these observations that the number of initially active policies has a great influence on the ruin 
probability.  
The analysis for the risk model with normal distributed policy lifetimes indicate that the ruin 
probability for this model depends on the arrival rate of policies as well as the number of initially 
active policies. 
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3.4.2 Risk	model	with	gamma	distributed	policy	lifetimes	
 
The second risk model we examine is the risk model with gamma distributed policy lifetimes. A 
random variable X that is gamma-distributed with scale β and shape a is denoted 
 
G ~ gamma(a, β) 
 
For our simulation model we chose a gamma(a,β) distribution with scale parameter β=3 and shape 
parameter a=5. The mean of the gamma distribution is a β=15.   
The following excel function is used to generate a random gamma variable G with expected mean  
 
=Gammainv(rand() , shape parameter, scale parameter) 
 
The influence of the arrival rate on the ruin probability is examined for this risk model. In the case of 
exponentially distributed policy lifetimes the arrival rate had no influence on the ruin probability. In 
Figure 3.5 the ruin probability for different values of the initial capital U and policy arrival rate λ are 
shown. The mean claim size for each case is ϴ=1 and exponentially distributed and for the safety 
loading we have used φ=0.3. The number of initially active policies I0=0. 
 

 
 
Figure 3.5: Ruin probability for the risk model with gamma (5,3) distributed policy lifetimes for 
different values λ and U. 
 
Although not as clear as the risk model with normal distributed policy lifetimes the results in Figure 
3.5 tell us that the ruin probability decreases if the arrival rate increases. The arrival rate has an impact 
on the ruin probability.  
Next to the influence of the arrival rate on the ruin probability the influence of the number of initially 
active policies I0 on the ruin probability is examined. In Figure 3.6 the ruin probability for different 
values of initially active policies corresponding to some initial capital are shown. The mean claim size 
is ϴ=1 and the safety loading φ=0.3. The arrival rate of policies is λ=20 for all cases.  
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Figure 3.6: Ruin probability for the risk model with gamma (5,3) distributed policy lifetimes for 
different values I0 and U 
 
The results in Figure 3.8 show that the ruin probability is higher for higher number of initially active 
policies. This corresponds with the results for the risk model with normal distributed policy lifetimes.  
 
In summary, for the risk models examined the results clearly illustrate that the ruin probability for the 
risk models with gamma and normal distributed policy lifetimes depend on the arrival rate of policies 
as well as the number of initially active policies. This in contrast to the risk model with exponential 
policy lifetimes as discussed in Adan et al.[1].    
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4. Conclusion	
 
For an insurance company, each contract of insurance brings a risk which occurs because of 
random frequency and non-negative random amount of claim. One of the main tasks of the 
insurance company is to determine premiums to prevent from ruin of the insurance company. To 
manage this risk, ruin probabilities are important tools which help insurance companies to control 
the risk of ruin. The probability of ruin is used for decision taking, for instance the premium 
calculation or the computation of reinsurance retention levels. For an actuary it is important to be 
able to take a good decision in reasonable time.  
 
In this paper Monte Carlo simulation as a tool is used to model risk models. The simulation 
models used in this paper are modeled in a well-known environment: Microsoft Excel. The use of 
simulation algorithms to model the standard risk model and risk models with policy lifetimes are 
discussed and shown. Also a section is dedicated to factors that have effect on the reliability and 
accuracy of the simulation outcome.  Therefore the paper can be a reference for the reader to 
simulate simple risk models in an accessible environment (Excel).  
 
Secondly, we have studied the conclusions drawn in Adan et al. [1] using this simulation technique. 
Adan et al. [1] concluded that, if the lifetimes of policies are exponential random variables, then the 
ruin probability is identical to the one in the standard risk model where reserves increase at constant 
rate r and claims occur according to a Poisson process.  
Two simulation models are presented in this paper. The first simulation model representing the 
standard risk model. The application of a simulation algorithm for the arrival of claims is described. 
This simulation model can be used as a framework to model standard risk models with all kind of 
claim size distributions. We have validated the simulation model for the standard risk model by 
comparing the outcome with known exact solutions to analytical methods.  
 
The second simulation model we have presented is a simulation model based on the arrival of policies 
with an intensity described by the Poisson process and the occurrence of claims on expiry of the 
lifetime of policies. And is also validated by comparing the outcome with known exact solutions to 
analytical methods.  
 
The simulation study confirmed the conclusion drawn by Adan et al. [1]. Further we have examined if 
the conclusions drawn by Adan et al. hold for risk models with different distributed policy lifetimes. A 
risk model based on normal distributed policy lifetimes and a risk model based on gamma distributed 
lifetimes is examined. The results for these two risk models showed that the number of initially active 
policies and the arrival rate of policies has an influence on the ruin probability.  
We conclude that the standard risk model cannot be used to estimate the ruin probability for all risk 
models that consider the arrival of policies and a lifetime for policies. In contrary, it would be not a 
surprise if the results for the standard risk model only holds for a risk model with exponentially 
distributed policy lifetimes. Apparently, the memoryless property of the exponential distribution has a 
great influence on the ruin probability.  
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Appendix A 

 

 

  

          P             
  0.25 0.2 0.15 0.1 0.05 0.025 0.02 0.01 0.005 0.0025 0.001 0.0005 
df                         
1 

1 1.376 1.963 3.078 6.314 12.706 15.895 31.821 63.657 127.321 318.309 
636.61
9 

2 0.817 1.061 1.386 1.886 2.92 4.303 4.849 6.965 9.925 14.089 22.327 31.599 
3 0.765 0.979 1.25 1.638 2.353 3.182 3.482 4.541 5.841 7.453 10.215 12.924 
4 0.741 0.941 1.19 1.533 2.132 2.776 2.999 3.747 4.604 5.598 7.173 8.61 
5 0.727 0.92 1.156 1.476 2.015 2.571 2.757 3.365 4.032 4.773 5.893 6.869 
6 0.718 0.906 1.134 1.44 1.943 2.447 2.612 3.143 3.707 4.317 5.208 5.959 
7 0.711 0.896 1.119 1.415 1.895 2.365 2.517 2.998 3.499 4.029 4.785 5.408 
8 0.706 0.889 1.108 1.397 1.86 2.306 2.449 2.896 3.355 3.833 4.501 5.041 
9 0.703 0.883 1.1 1.383 1.833 2.262 2.398 2.821 3.25 3.69 4.297 4.781 
10 0.7 0.879 1.093 1.372 1.812 2.228 2.359 2.764 3.169 3.581 4.144 4.587 
11 0.697 0.876 1.088 1.363 1.796 2.201 2.328 2.718 3.106 3.497 4.025 4.437 
12 0.696 0.873 1.083 1.356 1.782 2.179 2.303 2.681 3.055 3.428 3.93 4.318 
13 0.694 0.87 1.079 1.35 1.771 2.16 2.282 2.65 3.012 3.372 3.852 4.221 
14 0.692 0.868 1.076 1.345 1.761 2.145 2.264 2.624 2.977 3.326 3.787 4.14 
15 0.691 0.866 1.074 1.341 1.753 2.131 2.249 2.602 2.947 3.286 3.733 4.073 
16 0.69 0.865 1.071 1.337 1.746 2.12 2.235 2.583 2.921 3.252 3.686 4.015 
17 0.689 0.863 1.069 1.333 1.74 2.11 2.224 2.567 2.898 3.222 3.646 3.965 
18 0.688 0.862 1.067 1.33 1.734 2.101 2.214 2.552 2.878 3.197 3.61 3.922 
19 0.688 0.861 1.066 1.328 1.729 2.093 2.205 2.539 2.861 3.174 3.579 3.883 
20 0.687 0.86 1.064 1.325 1.725 2.086 2.197 2.528 2.845 3.153 3.552 3.85 
21 0.686 0.859 1.063 1.323 1.721 2.08 2.189 2.518 2.831 3.135 3.527 3.819 
22 0.686 0.858 1.061 1.321 1.717 2.074 2.183 2.508 2.819 3.119 3.505 3.792 
23 0.685 0.858 1.06 1.319 1.714 2.069 2.177 2.5 2.807 3.104 3.485 3.768 
24 0.685 0.857 1.059 1.318 1.711 2.064 2.172 2.492 2.797 3.091 3.467 3.745 
25 0.684 0.856 1.058 1.316 1.708 2.06 2.167 2.485 2.787 3.078 3.45 3.725 
28 0.683 0.855 1.056 1.313 1.701 2.048 2.154 2.467 2.763 3.047 3.408 3.674 
29 0.683 0.854 1.055 1.311 1.699 2.045 2.15 2.462 2.756 3.038 3.396 3.659 
30 0.683 0.854 1.055 1.31 1.697 2.042 2.147 2.457 2.75 3.03 3.385 3.646 
40 0.681 0.851 1.05 1.303 1.684 2.021 2.123 2.423 2.704 2.971 3.307 3.551 
50 0.679 0.849 1.047 1.299 1.676 2.009 2.109 2.403 2.678 2.937 3.261 3.496 
60 0.679 0.848 1.045 1.296 1.671 2 2.099 2.39 2.66 2.915 3.232 3.46 
80 0.678 0.846 1.043 1.292 1.664 1.99 2.088 2.374 2.639 2.887 3.195 3.416 
100 0.677 0.845 1.042 1.29 1.66 1.984 2.081 2.364 2.626 2.871 3.174 3.39 
1000 0.675 0.842 1.037 1.282 1.646 1.962 2.056 2.33 2.581 2.813 3.098 3.3 
z* 0.674 0.841 1.036 1.282 1.645 1.96 2.054 2.326 2.576 2.807 3.09 3.291 
                          
  50% 60% 70% 80% 90% 95% 96% 98% 99% 99.50% 99.80% 99.90% 
          Confidence level C           


