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Executive Summary

Community detection finds its applications in many fields of research. Also in
the movement of crowds, community detection can be helpful to get insight in
movement patterns. For example, the city of Amsterdam has interest in getting
insight in how people move around in the city, especially after opening a new
metro line. However, there is no single method available that allows to find
clusters best. Various metrics and algorithms exist on community detection, all
having its benefits and drawbacks.

Often modularity is used as metric to find the optimal set of clusters within
a set of nodes. However, when looking at a graph as a Markov Chain, where
going from one node to another represents going from one state to another, the
so called Kemeny constant can be used as metric as well. Intuitively, the Ke-
meny constant can then be interpreted as the average number of steps required
going from a randomly chosen state to a another random state. Minimizing
this value would then represent an effective partitioning of a graph, since the
number of required steps to move around is minimized. In this study it is ex-
amined whether the Kemeny constant can be used to effectively detect clusters
in a graph with every node starting as a single cluster. Additionally, various
variants of quantifying the quality of the detected clusters using the Kemeny
constant are compared in order to get insight in the implications of averaging,
normalizing and using the uniform Kemeny constant.

This study is performed by defining six different Kemeny Constant Quality
Functions (KCQF) and using three datasets. For the first dataset, which is
rather small, it was possible to perform an exhaustive search. Then, all results
were compared to the optimal solution. For the two other datasets the Lou-
vain algorithm is used to find the optimal partitioning in communities. This
Algorithm optimizes based on modularity. Hence, is was examined whether the
KCQF metrics would behave in a similar manner as the modularity metric dur-
ing the algorithm.

This study has shown that the Kemeny constant seems suitable to create clus-
ters from single nodes. It is also shown that the way the Kemeny values of
the different clusters are combined into a single quality function does make a
difference in the performance. With this knowledge, further research can be
performed to develop an algorithm which takes Kemeny values as criteria to
form clusters. This method then can be applied to all kinds of problems, for
example on the Amsterdam city data in order to get insight in the movements
of crowds.
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1 Introduction

Community detection is concerned with detection of clusters within networks
and is originated from the mathematical sciences. Nowadays, it finds its appli-
cations in various fields such as computer, social and biological sciences [1]. Also
in the field of crowd movement, interest in clustering algorithms on GPS data is
shown [2]. Numerous methods are available for community detection, all having
advantages for different types of networks [3]. In the field of clustering crowd
movement, various methods and metrics are used to optimize the identification
of clusters [4].

Measuring clusters in movement of people has numerous applications. One
of them is identifying the movement of groups of people in order to get more
insight in the behavior of crowds [5]. Cities such as Amsterdam face an increase
in crowdedness and therefore want insight in how crowds move around the city
[6]. Additionally, Amsterdam recently opened a new metro-line. Therefore, it
would be interesting to get insight in how this new line impacts the movement
of crowds in the city.

One way of determining clusters in a network is by looking at its connectiv-
ity. The idea that nodes relatively close to each other form a cluster is called
homophily in social sciences. Intuitively, one can interpret this following a Ran-
dom Walk process. A random walk process starts randomly at a node and
proceeds randomly to other nodes following the edges in the network. Weighted
edges represent the probability taking a certain edge as opposed to another. On
average, when the number of steps between nodes is relatively small this means
the nodes are close to each other. The matrix representing the weights of the
edges is called the transition matrix. Then, one can see the network as a Markov
Chain representing the probabilities going from one node (state) to another.

From this transition matrix, the Mean First Passage (MFP) times can be ex-
tracted. These MFP times represent the expected number of transitions re-
quired going from one node to another. This can be interpreted as the distance
between nodes. Taking a weighted average of these MFP times results in the
Kemeny constant. This Kemeny constant is defined as the expected number of
transitions required going from a random node to any other node in a network.
Hence, the Kemeny constant represents the connectivity of that network.

This Kemeny constant can be used as a metric to find clusters within a network.
It is already shown that the Kemeny constant can be used to determine optimal
clusters by decomposing a network into different clusters. However, determin-
ing clusters in a network using the Kemeny constant starting with every node
as a single cluster requires a metric which takes multiple Kemeny values into
account. This leads to the following research questions.

1. Can the Kemeny constant be used as a metric to determine the
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optimal clusters within a network starting from a network with
every node as a single cluster?

2. What variant of combining multiple Kemeny constant values
leads to clusters which are most consistent when using mod-
ularity as metric?

This research paper is structured as follows. First an overview of relevant lit-
erature is discussed in section 2. Then, an overview of the dataset used and
processing of the data is given in section 3. This is followed by a detailed de-
scription of the models and algorithm in secton 4 and the results in section
5. This research paper is concluded with a discussion and insights for future
studies in section 6 and a final conclusion with the most important findings in
section 7.

2 Literature review

In the scientific literature there is no consensus on what clustering method
should be used for different types of networks. Additionally, various metrics are
used as a criterion for performance of a clustering algorithm, such as modular-
ity, conductance, coverage and many others. The performance of these measures
differs based on the type of network, size of network and possibly other vari-
ables [7]. Therefore, for the field of community detection it is interesting to get
insight in the strengths and weaknesses of different measures for different types
of networks.

Fortunato wrote an extensive overview on what methods are available for com-
munity detection [8]. This overview also contains various extensions and lim-
itations of the modularity metric, which is one of the most commonly used
metrics. Even though this metric is proven to be used successfully[9], it also
has its limitations. One of the drawbacks of the modularity metric is the so
called resolution limit, which means modularity-based clustering algorithms fail
to detect small clusters in a substantially large network [10]. Another drawback
is that different partitions could have (almost) similar modularity values which
makes it hard to find the global optimum. Lastly, the maximum modularity
value depends on the size of the network and the number of clusters. These
limitations should be taken into account when using the modularity value in
practice [11]. Adaptations to this modularity optimization metric have been
applied to networks where multiple edges and self-connections are not included,
in order to make it more appropriate [12]. However, for other types of networks
there is still room for improvement for this metric.

Earlier studies successfully used modularity as metric to optimize clusters. In a
study it was examined whether clusters in Belgium appear based on telephone
data. In order to detect these clusters, they developed an algorithm which effi-
ciently maximizes the modularity value, which is called the Louvain Algorithm
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[13]. In Great Britain a similar study was performed, where the spectral opti-
mization algorithm [14] was used to optimize the modularity value [15]. Both
algorithms use modularity as a connectivity measure in order to optimize the
detection of community structure.

But there are also numerous methods which use other metrics than modularity
to determine communities. One way is to look at distances between nodes and
find communities with the smallest total distances. A well known algorithm is
to use the Random Walk Approach [16] to determine distance between nodes
[17]. The idea behind this approach is that when you randomly start at a node,
you spend relatively more time at nodes which belong to the community of this
cluster compared to nodes which do not. Many variants of this algorithm are
developed, for example the Markov Cluster Algorithm (MCL) [18]. This algo-
rithm simulates the flow in a graph, with a matrix consisting of probabilities
of that node going to another node as basis. After some iterations this algo-
rithm disconnects and further connects nodes, which results in several separated
communities. In this algorithm the probability of going from one node to an-
other is used as a distance metric to get insight in the connectivity of a network.

An alternative measure for the connectivity of a network is the Kemeny Con-
stant. This value is a weighted average of mean first passage times of a transition
matrix, which means it represents the expected number of steps needed to reach
its desired location [19]. Since we assume that taking less steps represents a bet-
ter connected network, this Kemeny constant can be used as a measure for the
connectivity of a network. Previous studies showed for example that small val-
ues of the Kemeny constant represented small traveling times in road networks
[20] and minimizing the Kemeny constant has been used to detect anomalitites
in networks the the field of Robotic Surveillance [21].

Various methods were examined to minimize the Kemeny constant value. One
method is to iteratively remove the edge with the biggest impact on the Ke-
meny constant. This impact is calculated by taking the derivative of the Kemeny
constant for that node. This so-called Kemeny Decomposition Algorithm [22]
is tested on various benchmark graphs and showed good results on both the
Courtois matrix [23] and the Social Network in a Karate Club [24] examples.

Former research also showed that it is possible to detect spatially connected
clusters, even though no spatial characteristics were explicitly taken into ac-
count in the algorithm [25]. For this study, modularity was used as optimization
metric. However, even though the clusters visually seem correct and robust, the
modularity value was very low. Hence no objective and quantitative support
was given for the communities discovered.

In this study it is examined whether communities can be identified using the
Kemeny constant as metric. Additionally, this measure is optimized to gener-
ate most consistent results with respect to modularity. For this we use several
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benchmark datasets to validate the performance, as well as Origin-Destination
data of Amsterdam in order to conclude whether spatially connected clusters
can be supported by an objective measure.

3 Data Used

3.1 Description of Data

For this study various data sets are used. In order to validate whether the
Kemeny Constant can be used to identify communities, datasets with known
communities are used. First, we use the Courtois matrix [23] since this allows
to calculate the Kemeny values for all possible permutations. Hence, it can
easily be determined whether the Kemeny constant allows to identify the best
solution. Secondly, the Social Network in a Karate Club data, also known as the
Zachary matrix [24], is used. This matrix with a known solution allows to ex-
amine how well communities are identified by heuristic methods. For example,
the performance of the Louvain algorithm can be quantified by various metrics
based on the Kemeny constant.

Lastly, a dataset consisting of origin-destination (OD) pairs of the Amster-
dam Metropolitan region is used [26]. This empirical dataset is provided by
Google, which collected these data by keeping track of movements through An-
droid phones. The data is aggregated on both location and time. There are 512
regions defined and all data is grouped per hour and normalized. This results
in a dataset with intensities between region, with values between 0 and 1. Also
note that the data represents a fully connected graph.

3.2 Processing of Data

An extensive data-analysis is performed on this OD dataset [25] which revealed
that there are time dependencies in the dataset. For example, the time of the
day is clearly visible in the data. Moreover, day of the week, what month and
other characteristics were found. However, aggregating the data resulted in
robust clusters. Hence, for simplicity this aggregated dataset is used for this
research as well.

4 Model Description

4.1 Modularity

One of the most commonly used measures to determine the connectivity of a
network is modularity [27]. Modularity represents the fraction of edges within
a community compared to the total amount of edges. The value of modularities
lies between -1 and 1, where a value of 1 means all edges are within clusters,
and there are no edges between clusters. A negative value means there are less
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edges within clusters then one would expect on a random graph with similar
properties. The definition of modularities is

Q =
1

2m

∑
vw

[(
Avw −

kvkw
2m

)
δ(cv, cw)

]
(1)

where m is the sum of all weights in the graph, Avw is the weight from node
v to node w, kv is the sum of weights of node v, kw is the sum of weights of
node w and δ(cv, cw) represents a function which returns 1 when node v is in
the same cluster as node w, 0 otherwise. The part Avw − kvkw

2m represents the
difference between the actual weight of an edge and the weight the edge would
have on a random graph with similar properties. When considering a directed
graph the definition of modularity slightly changes [28], and is defined by

Q =
1

m

∑
vw

[(
Avw −

kinv k
out
w

m

)
δ(cv, cw)

]
(2)

where kinv represents the sum of weights of the edges going to v and koutw repre-
sents the sum of weights going from w.

4.2 Determining Clusters using Modularity

One could use modularity to identify clusters in a network. For small networks
this can be done by calculating the modularity of all possibilities and maximiz-
ing this values. However, for many networks this is an impractical approach.
Therefore, a heuristic method is needed to optimize the modularity value. An
efficient heuristic method is the Louvain ALgorithm [29] which is easily extended
to allow for directionality [30]. The Louvain algorithm works as follows and is
visualized in Figure 1

All nodes start as a single community. Then it iteratively performs the fol-
lowing two steps.

1. It runs randomly over all nodes and the modularity gain in calculated when
that node is added to a neighboring community. The node is added to
the neighboring community with the largest increase in modularity. This
steps runs sequentially over all nodes until no more modularity increase
can occur. This step is visualized going from state A to state B in Figure
1.

2. All nodes belonging to the same community are combined into a single
node. All weights of the nodes are summed which means the weights of
the nodes within the community become the weight of the new node to
itself. The weights to and from nodes in other communities are summed
as well and become the weights of the edges between the new nodes. This
step is visualized going from state B to state C in Figure 1.
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After step 2, both steps are repeated until the outcome is the same as the
iteration before. Hence, either the number of communities reduces further (is
this leads to a higher modularity value) or the same communities remain which
leads to the termination of the algorithm.

4.3 Network as a Markov Chain

Another view on a network is to see it as a Markov Chain. When normalizing
the transition matrix, the probabilities going from one node to another appear.
This can be interpreted as follows. Assuming that you will always move from
a node (note that a move can also be a self loop), the probability of moving
is 1. When you calculate the fraction of the weight to each node of the sum
of weights of the nodes it can go to, this can be interpreted as the probability
going to that node. With these probabilities, one can define a Markov Chain P
on node set S. The weighted directed graph is then called the Markov influence
graph. The Deviation Matrix is then given by

Dp = (I − P + Πp)−1 −Πp (3)

where I is the identity matrix and ΠP = (ΠP (i, j))SxS is called the ergodic
projector and is given by

ΠP = lim
N→∞

1

N

N−1∑
n=0

Pn (4)

in which ΠP (i, j) gives the long-term average number of visits of the Markov
chain from i to j [22].

4.4 Mean First Passage Time

One interesting aspect that can be derived from the deviation matrix is the
Mean First Passage times (MFP). The MFP is the mean number of transitions
required to go from one node to another. Therefore, it is a way to represent the
distance between nodes. The Mean First Passage matrix is defined by

M = (I −Dp + 1̄1̄T · dg(Dp)) · dg(ΠP )−1 (5)

where 1̄ is an appropriately sized vector and dg() means taking the matrix where
the non-diagonal values are set to zero. With this matrix, one can calculate
the Kemeny Constant, which represents the weighted average of the mean first
passage times. The Kemeny Constant is defined by

Kp =
∑
j∈S

M(i, j)πP (j),∀i ∈ S (6)

where πP is the unique stationary distribution of P . As can be noticed from
equation 6, this value is independent of the starting position i. In other words,

8



Figure 1: Illustration of the Louvain Algorithm on the Zachary Matrix. A. The
matrix visualized as a graph with which is used as input for the algorithm. B.
Seven clusters are formed after step one of the algorithm. C. The seven clusters
have become seven separate nodes after finished step 2 and become input for
step 1 of the second iteration of the algorithm. D. After step 1 of the second
iteration, new clusters are formed. E. After merging the clusters into new nodes,
no increase in modularity occured. Hence, the clusters found in D represent the
best solution. This clustering applied on the original matrix results in these
four clusters. F. Schematic view on the algorithm.
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the expected number of steps before reaching a randomly chosen node is constant
and independent of the starting node. To give some intuition, the value of the
Kemeny constant represents the average number of steps needed going from one
node to another. As a measure of the connectivity, small values of KP would
indicate a better connectivity compared to a bigger value of KP .

4.5 Kemeny Constant as a metric for clustering

This property of the Kemeny constant allows to quantify the quality of identified
communities. However, when there is more than one cluster identified, multiple
values of KP exist and in order to quantify the quality of all clusters identi-
fied, the different values need to be combined. Numerous metrics are possible
in order to quantify the quality of the communities. In this study 6 different
Kemeny based Clustering Quality Functions (KCQF) are tested, based on two
main approaches: taking a normalized mean and taking into account the uni-
form Kemeny constant.

Intuitively the mean of all Kemeny values would be suitable (equation 9). But
one might also need to take into account the size of the clusters, since bigger
clusters tend to have larger Kemeny values. Hence, normilization is applied in
two different manners (equation 7 and 8). The other main approach is to take
into account the uniform Kemeny constant. This value represent the average
number of steps required when the connections within the cluster are randomly
assigned. Hence, the difference between the Kemeny value and the uniform Ke-
meny value represents the connectivity of the cluster (equation 11). Also for this
metric a normalization is applied (equation 10). Lastly, the fraction between
the Kemeny value and the uniform Kemeny value is used as metric (equation 12).

All metrics can be formalized as follows.

KCQF 1 =
1

N

∑
j∈C

Kj

S2
j

(7)

KCQF 2 =
1

N

∑
j∈C

Kj

Sj
(8)

KCQF 3 =
1

N

∑
j∈C

Kj (9)

KCQF 4 =
1

N

∑
j∈C

Kj −Kunifj
S2
j

(10)

KCQF 5 =
1

N

∑
j∈C

Kj −Kunifj (11)

KCQF 6 =
1

N

∑
j∈C

Kj

Kunifj
(12)
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where N is the number of clusters, C represents the clusters identified, Kj is
the Kemeny value of each cluster and Sj is the size of each cluster. Kunif is
the Kemeny value calculated from the uniform matrix of each cluster.

4.6 Validating Clustering Results

4.6.1 Exhaustive search

For small matrices, the Kemeny value of all possibilities can be calculated. It
is expected that the solution with the smallest Kemeny value should be the
optimal solution. For the Courtois matrix the solution is known, which allows
to validate whether the various Kemeny based Clustering Quality Functions
lead to the optimal solution.

4.6.2 Kemeny in Louvain Algorithm

For bigger matrices, the Louvain algorithm is used to identify clusters. The
Louvain algorithm works based on the maximization of the modularity value.
So, one would expect that the Kemeny value would decrease accordingly. Hence,
every iteration the various values of KCQF are calculated and expected to de-
crease.

In addition, during step 1 of the algorithm, the value of modularity is forced
to either increase or remain the same (this is by definition of the algorithm).
Hence, one would expect the Kemeny value to decrease or remain the same ac-
cordingly. To examine this, the development of the Kemeny value during step
1 of the algorithm is visualized in order to get insight in the performance of the
Kemeny value as measure for the clustering quality.

5 Results

5.1 Exhaustive search

For the Courtois matrix it can be seen that only KCQF 6 results in the optimal
solution (see Table 1). It also shows that based on modularity not the optimal
solution is reached. KCQF 2 and KCQF 3 result in a solution somewhat
similar to the optimal solution and equal to the modularity solution. KCQF 4 is
almost similar to the modularity solution, except from the last cluster. KCQF 1
and KCQF 5 show solutions with only two clusters. KCQF 5 and KCQF 1
reflect the first two clusters of the solution. However, the third cluster of the
solution is classified as either one of the first two cluster. In Table 2 the values
for the different metrics for various amounts of clusters are shown, as well as
the optimal value on which the final solution is based.
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Table 1: Community structure based on exhaustive search on the Courtois
matrix optimized for Modularity (Mod) and six different KCQF values.

Solution Mod KCQF 1 KCQF 2 KCQF 3 KCQF 4 KCQF 5 KCQF 6
1 1 1 1 1 1 1 1
1 2 1 2 2 2 1 1
1 2 1 2 2 2 1 1
2 3 2 3 3 3 2 2
2 3 2 3 3 3 2 2
3 4 2 4 4 4 1 3
3 4 1 4 4 4 2 3
3 4 1 4 4 1 1 3

Table 2: The values of Modularity (Mod) and KCQF for various numbers of
clusters. Highlighted are the values which are either maximized (Modularity)
or minimized (KCQF) which correspond to the solutions in Table 1.

Nr clusters Mod KCQF 1 KCQF 2 KCQF 3 KCQF 4 KCQF 5 KCQF 6
1 0 64,15 513,17 4105,35 0 0 1
2 0,47 0,59 2,37 9,49 -113,30 -1752,06 0,01
3 0,66 0,60 1,59 4,40 -135,44 -974,95 0
4 0,68 0,71 1,27 2,64 -146,28 -585,39 0,01

5.2 Louvain Algorithm

For the larger matrices the Louvain algorithm is used to test whether the Ke-
meny value decreases along with the increase of modularity. The results for
the Zachary matrix are shown in Table 3. It can be seen that only KCQF 1,
KCQF 2, KCQF 5 and KCQF 6 show a decrease in the Kemeny value.

Table 3: Iterations of the Louvain algorithm on the Zachary matrix. The algo-
rithm optimizes based on the modularity increase. Also the change in Kemeny
values is shown for the various KCQF values. Highlighted are the metrics which
decrease compared to the previous iteration.

Iteration Mod KCQF 1 KCQF 2 KCQF 3 KCQF 4 KCQF 5 KCQF 6
1 0,35 0,74 2,09 7,78 -0.47 -6,18 0,58
2 0,44 0,19 1,41 11,85 -0,24 -12,27 0,48
3 0,44 0,19 1,41 11,85 -0,24 -12,27 0,48

When looking into more detail it becomes clear how the values of the differ-
ent metrics develop in the first step of the Louvain algorithm. By definition,
the value of modularity should either increase or remain the same. In Figure
2 the development of the Kemeny metrics are shown. It can be seen that all
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Figure 2: The development of the Modularity and KCQF metrics during the
first iteration of the Louvain algorithm on the Zachary data. All KCQF metrics
correspond to the y-axis on the left (Kemeny value). The modularity value
corresponds to the y-axis on the right. On the x-xis the different steps in the
first iteration are shown.

Kemeny values show qualitatively similar behavior, meaning that the lines ei-
ther increase, decrease or remain the same in a similar fashion. However, when
looking closely to the iteration steps between iteration 40 and 50, one can see
that KCQF 3 and KCQF 5 remain the same whereas all other metrics show a
slight increase. In that sense KCQF 3 and KCQF 5 would follow the modu-
larity metric better than the other ones. But in general, for all Kemeny metrics
the values decrease when modularity increases.

For the Amsterdam data, the results are shown in Table 4. For this data
only KCQF 1 and KCQF 2 show a decrease in Kemeny value. When looking
into more detail, KCQF 1, KCQF 2, KCQF 4, KCQF 5 (see Figure 3) and
KCQF 6 (see Figure 4) show similar behavior as expected. However, KCQF 3
shows increasing behavior which indicates the lack of normalizing for the size of
each cluster causes the increase of the Kemeny metric. In other words, for this
dataset it is necessary to normalize for clustersize. Apparently the decrease of
the sum of Kemeny constants of all clusters is less than 1

N of the previous sum.
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Figure 3: The development of the Modularity and the first five KCQF metrics
during the first iteration of the Louvain algorithm on the Amsterdam data. All
KCQF metrics correspond to the y-axis on the left (Kemeny value). The mod-
ularity value corresponds to the y-axis on the right. On the x-xis the different
steps in the first iteration are shown. KCQF 6 is not shown due to a different
scale on the y-axis which impaired visibility.

Table 4: Iterations of the Louvain algorithm on the Amsterdam data. The algo-
rithm optimizes based on the modularity increase. Also the change in Kemeny
values is shown for the various KCQF values. Highlighted are the metrics which
decrease compared to the previous iteration.

Iteration Mod KCQF 1 KCQF 2 KCQF 3 KCQF 4 KCQF 5 KCQF 6
1 0,0100 1,6545 18,8945 370,9738 -0,6443 -58,6830 0,8551
2 0,0104 1,2452 15,5278 391,8439 -0,2968 -50,3522 0,8810
3 0,0104 1,2452 15,5278 391,8439 -0,2968 -50,3522 0,8810

When combining the results from both datasets, KCQF 1 and KCQF 2 show
most promising results. Both metrics show a decrease during the Louvain al-
gorithm. Also in the detailed view of the first iteration step both metrics show
a decrease in general. However, it should be noted that in the detailed view
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Figure 4: The development of the Modularity and KCQF 6 metric during the
first iteration of the Louvain algorithm on the Amsterdam data. The KCQF 6
metric corresponds to the y-axis on the left (Kemeny value). The modularity
value corresponds to the y-axis on the right. On the x-xis the different steps in
the first iteration are shown.

these metrics perform worse than KCQF 5. KCQF 3 and KCQF 4 show an
increase in both cases where a decrease is expected and are therefore the worst
metrics. KCQF 5 and KCQF 6 only show a decrease for the Zachary data.

6 Discussion

Detecting communities in a dataset when starting with all nodes as single clus-
ters is often done using the modularity value. However, using the properties of
the Kemeny constant seems also promising to detect clusters. But when doing
so, one needs to come up with a metric which combines the Kemeny values
of the different clusters into one single metric which reflects the quality of the
detected communities. In this study, two types of metrics were tested: the av-
erage of Kemeny values of all clusters and using the uniform Kemeny values in
order to relate the clusters found to random clusters of similar size. For both
types, different manners of normalizing were applied and compared in order to
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test what metrics are useful and to gain insight in when to use what metric as
quality function to detect communities.

When combining the results from the three different datasets, the quality metric
where the average is normalized by dividing it by the size of the cluster performs
most consistently with respect to the modularity. Comparable metrics, where
is normalized with the squared cluster size or without normalization perform
worse. When there is no normalization, the decrease of the Kemeny value does
not compensate for the decrease in the total amount of clusters which causes the
total to increase instead of decrease. On the other hand, when you emphasize
the number of nodes within a cluster, by normalizing with the square of cluster
size, the number of clusters becomes too small. This is because a small number
of clusters results in larger clusters, as can be seen in the exhaustive search
result in section 5.1.

Concerning the metrics including the uniform Kemeny value, the way of normal-
izing seems to be of great importance. As with the normalized average metrics,
when the difference between the Kemeny value and the uniform Kemeny value
is normalized by the squared cluster size, this cluster size makes too much im-
pact. In this case the difference between the Kemeny value and the uniform
Kemeny value is always negative. Dividing by the squared cluster size causes
larger negative values when cluster sizes are smaller, since the number of clusters
is bigger. On the other hand, no normalization results in a too small amount
of clusters. Dividing the Kemeny value by the uniform Kemeny value results in
the optimal solution in the exhaustive search and also on the Zachary data it
shows good results. However, on the Amsterdam data it shows no consistency
with the modularity, just as the other metrics with the uniform Kemeny value.

It is hard to conclude which of these metrics performs best, since the per-
formance is different on the various datasets. Additionally, performance on the
exhaustive search is different from the Louvain algorithm. And lastly, some
assumptions and practical choices were made which may have influenced the
result. For example, The Zachary data does not contain any self-connection,
whereas the Amsterdam data does. When the Louvain algorithm is initialized
for the Zachary data, all nodes are separate clusters with a connection value
of 0. For these clusters it is not possible to calculate a Kemeny value. For
this study this value is arbitrarily set to 100. If a generic quality measure is
developed, one could make this value dependent on for example the number of
clusters to make it scalable for larger matrices.

Another assumption that is made is for the calculation of the uniform ma-
trix. The way the uniform matrix is calculated results in a matrix with self-
connections. When the Louvain algorithm is initialized, it is possible to calcu-
late the uniform Kemeny values, whereas the Kemeny values for the same data
become the arbitrarily chosen 100. One should take this into account when
interpreting the outcome. Another possibility to correct for this is to add self
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connection to the input data, for example by applying the random surfer [31].

7 Conclusion

Community detection finds its applications in many fields of research. Most
often, modularity is used as metric to find the optimal set of clusters within a
set of nodes. When looking at a graph as a Markov Chain, where going from
one node to another represents going from one state to another, the Kemeny
constant can be used as metric as well. The Kemeny constant can then in-
tuitively be interpreted as the average number of steps required going from a
randomly chosen state to a another random state. A low value would then rep-
resent an effective partitioning of a graph, since the number of required steps
to move around is minimized. This study has shown that the Kemeny constant
seems suitable to create clusters from single nodes. It is also shown that the
way the Kemeny values of the different clusters are combined does make a dif-
ference in the performance of the community detection. With this knowledge
further research can be performed to develop a Louvain-like algorithm which
takes Kemeny values as criteria to form clusters. In conclusion, the Kemeny
constant is promising to use as metric to detect communities within graphs.
When one takes into account the implications of the various manners to com-
bine the Kemeny values into a quality function, the Kemeny constant is suitable
for community detection.
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