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Abstract
Diagnosis of lung cancer caused by malignant nodules in

computed tomography (CT) scans is generally performed by
pulmonary radiologists in three stages: Nodule localization
locates regions of interest within the lung, nodule detection
detects if any nodules are present in these regions of inter-
est and nodule segmentation accurately separates any de-
tected nodules from the healthy tissue surrounding them. Re-
cent studies have shown that Convolutional Neural Networks
(CNNs) are able to consistently outperform radiologists on
both the lung nodule localization and detection tasks. Nod-
ule segmentation has received less attention. In this paper
we apply a 3-dimensional CNN model to perform a pixel-
wise nodule segmentation task. This paper shows that a ba-
sic 5-layer 3-dimensional CNN with limited computational
capabilities is able to achieve a 87.2% accurate prediction
on the pixelwise nodule segmentation task without any fea-
ture engineering or extensive preprocessing, suggesting that
CNNs might soon also outperform radiologists on the final
task.

1 Introduction
Lung cancer is one of the most common types of cancer

and the leading cause of cancer related death in developed
countries with an approximate 1.6 million deaths reported
worldwide in 2012 [1]. High survival rates are strongly
correlated with early detection of malignant nodules. Pul-
monary nodule detection and localization is done by radiolo-
gists spending a significant amount of time analysing X-ray
images and 3-dimensional computed tomography (CT) scans
of the patient’s lungs. Nodules are small pieces of tissue in-
side the lung which can be benign (noncancerous) of malig-
nant (cancerous). Several charasteristics of the nodule such
as size, calcification, lobulation and spiculation of the nodule
edges are used as indicators for malignancy. [6]

Originally, computer-aided detection systems (CAD
systems) for nodule detection and localization were de-
signed with the intention to reduce workload for radiolo-
gists. [11, 13] However, the latest generation of CAD sys-
tems has managed to consistently outperform expert radiolo-
gists in both the nodule detection and localization tasks [7],
suggesting that the CAD systems might completely take over
these tasks in the near future.

Although the first Neural Networks designed specifi-
cally for lung cancer detection appeared in 1993 [12], the

earliest CAD systems using Convolutional Neural Networks
appeared in 2005 [15]. Many recent models use a two-step
approach in which candidate regions are extracted from the
lungs first and subsequently classified on the presence of
nodules and expected malignancy [14, 16]. Note that with
this approach, the localization and detection tasks are clearly
seperated. The extraction of the candidate regions is gener-
ally done by a highly sensitive neural network resulting in a
high percentage of false positives amonst the candidate re-
gions. The detection task is done by a neural network with
high specificity which has the main objective of reducing the
number of false positives. The remaining set of candidate
regions are manually examined for malignancy by an expert
radiologist for a final diagnosis. In the case of a malignant
nodule, the radiologist has to manually specify the exact lo-
cation of the cancerous tissue requiring treatment, which is
quite time consuming. Once treatment of a malignant nodule
has started, periodic scans are made to monitor progress and
the treatment area has to be updated accordingly. This recur-
ring task can be technically labelled as a pixelwise segmenta-
tion task, a category in which CNNs have shown significant
progress in perfomance lately. A CAD system aiding the ra-
diologist with the segmentation task would decrease the time
spent determining the nodule’s exact location, resulting in a
reduced workload per patient. The segmentation task has so
far received relatively little attention by computer scientists
compared to the localization and detection tasks.

In this paper we show that with limited computational
capabilities and without any feature engineering or prepro-
cessing, a simple CNN is able to achieve a 86.4% accurate
prediction on the pixelwise nodule segmentation task.

1.1 Related Work

The latest state-of-the-art models in CAD systems aid-
ing lung radiologists combine the powerful pattern recog-
nition capabilites of Deep Learning with the efficiency of
Residual Neural Networks (ResNets) [7] to outperform mod-
els with a classic Convolutional Neural Networks setup. Per-
forming the nodule localization and detection tasks on the
entire CT-scan at once becomes a feasible option due to the
efficiency of ResNets and increased computational capabili-
ties, eliminating the need for extraction of candidate regions.
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Fig. 1: CNN architecture including data dimension [batch
size,x,y,z,features]

2 Methods
Nodule localization is done using a relatively simple

fully-connected CNN model implemented in Tensor-
Flow [3], consisting of four convolutional layers followed
by a single fully-connected layer, as seen in Figure 1.
A single input sample consists of 8 stacked 2D images
of 60 by 60 pixels and the batch size of the input is 3.
Xavier initialization was used for all weights [5], biases
were initalialized at zero. Each convolutional layer applies
a 3x3x3 filter on its input with stride of 1 in all three
dimensions. Zero padding was applied around the edges
of the input to preserve the dimensions of the data. Each
convolutional filter is followed up by the ReLu activation
function max{val,0} and subsequently batch normalization.
The ReLu allows for more efficient gradient propagation
and therefore speeds up convergence of the model. [8].
Batch normalization normalizes the input by the mean
and variance of the entire batch to reduce saturation of
neurons and improve generalization capabilities [9]. The
first two convolutional layers are followed by a 2x2 maxpool

Fig. 2: Slice of CT scan. The colors of the heatmap represent
structural density. Dark blue indicates low structural density,
e.g. air and fluids; yellow indicates high density such as bone
tissue

operation with stride 2 applied to each 2D image in order to
reduce computational complexity. The fourth ConvLayer is
followed by binary interpolation to upsample the data back
to the original input dimensions. The fully-connected layer
has 2048 features, which connects to a final fully connected
layer with two output channels per pixel which provides the
raw logits for pixelwise binary classification.

A softmax activator is applied to the unscaled logits
which allows us to interpret the output as class probabilities.
Weigthed cross-entropy between this output and the true la-
bels is calculated to measure the model’s error. A weighted
cross-entropy is used to counteract class imbalance in the
data. The average error of all pixels in a sample is used as
the loss function to quantify the performance of the model
on that sample. Overall performance of the model is quanti-
fied by the average loss over all samples. This loss function
is minimized by the stochastic gradient descent algorithm
Adam [10], using a learning rate of 1e−4 and an epsilon of
1e−4. The model was trained on 75% of the available data
with 849 original samples artificially augmented to 13,584
variations on the original samples. The model was trained
until 100,000 samples had been processed. 135 (11,9%) and
148 (13,1%) original samples were used as test set and vali-
dation set respectively.
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3 Data
3.1 Image Data

From the Lung Imaging Database Consortium (LIDC)
[4], 1018 annotated computed tomography (CT) scans of di-
agnosed lung cancer patients were used. A single CT scan
consists of n images of 512 x 512 pixels, where n is the num-
ber of horizontal slices ranging from 80 to 625. Each pixel
has one channel of information representing the structural
density of the tissue in that pixel. One slice is shown in Fig-
ure 2.

3.2 Preprocessing
Each scan in the LIDC database is accompanied by an

annotation file containing annotations from up to 4 radiol-
ogists. The annotation file header contains several unique
identifiers from the corresponding CT scan in order to be able
to match them. In the body of the file, each radiologist has
differentiated their annotations between three types of nod-
ules: small nodules (smaller than 3 mm in radius), large nod-
ules (larger than 3 mm in radius) and non-nodules (nodules
of benign nature). The small nodules were located only by
one coordinate representing their centre. Large nodules and
non-nodules are located by a set of coordinates representing
their edges. Non-nodules are non-malignant and thus treated
as regular healthy tissue. The small nodules lack pixelwise
labelling by radiologists, making it impossible to extract a
valid ground truth on a per-pixel basis. The workaround for
this problem is to also label them as healthy tissue. Thus
only large nodules are preserved as malignant.

Segmentation of the lungs from the rest of the body is
one of the most widely used techniques to remove irrelevant
information [2,14]. However, when segmentation fails it also
removes the contents of the lungs rendering the sample use-
less. During manual inspection of the lung segmentation pro-
cess on 50 scans, an empirical success rate of roughly 80 to
85 percent was observed. Automatic failure detection of the
segmentation process proved to be challenging to implement
and lung segmentation was therefore removed from the pre-
processing pipeline.

Each radiologist has reviewed each nodule on a scale of
one to five for the following characteristics: subtlety, internal
structure, calcification, sphericity, margin, lobulation, spicu-
lation, texture and level of malignancy. Since these charac-
teristics are not relevant for the aim of this paper, they are
ignored.

Inconsistencies between various annotation files, devi-
ating file structures, missing values and erratic naming and
populating of variable fields required a robust parser in order
to extract as many properly documented nodules as possible.
From the 983 scans containing at least one large nodule, 793
were successfully parsed.

3.3 Sampling
Samples of size 8x512x512 were taken from the image

data in which at least 4 slices of each sample contain a malig-
nant nodule larger than 3 mm in radius. For each sample, a
ground truth for the nodules was created by taking the union

of the annotated nodule locations from up to four radiolo-
gists. A total of 1132 samples were extracted from the data
of which 849 were used for training and 135 and 148 were
held out for testing and validation respectively.

3.4 Preprocessing samples
The resolution of the samples were reduced to 8x60x60

using bilinear interpolation to reduce the size of the input to
the convolutional neural network (CNN). The pixel values
created by various CT-scanners with different configurations
were translated to Hounsfield Units to obtain uniform scal-
ing between samples. Sample-wide pixel normalization was
applied afterwards to increase performance of the CNN.

3.5 Data Augmentation
Since only 849 samples were available for training the

model, various augmentation techniques were applied to arti-
ficially increase the number of unique samples used in train-
ing by a factor of 16. Every epoch, each of the following
operations has a 50% chance of being applied to an original
sample:

- being flipped on the horizontal axis
- being flipped on the vertical axis
- rotated 90, 180 or 270 degrees, with 1/3 probability for
each option.

Data augmentation was done on-line instead of off-line
because of the small batch size and the fixed order of in-
put of the model. Off-line data augmentation would cause
multiple subsequent batches to be (partly) filled with 16 sim-
ilar samples all originating from one source image. On-line
augmentation ensures that each batch is filled with samples
originating from different source images.

3.6 Disputed pixels
Each medical scan is annotated by up to four radiologists

independently. This means that there are up to four differ-
ent masks representing the ground truth, causing the problem
that pixel-for-pixel consensus is almost never obtained. This
was dealt with by defining the union of all positive-labeled
pixels as the ground truth for a nodule. Not only is the model
trained and evaluated on the resulting mask, but its perfor-
mance is also be evaluated considering only the pixels that
radiologists unanimously agreed on.

Discarding the disputed pixels in the evaluation stage
provides a reliable ground truth allowing for a more deter-
ministic analysis of the model’s performance but has a draw-
back: The model has a classification bias towards the positive
label as all the disputed pixels were considered to be nodules
during training.

The disputed pixels tend to be amongst the most diffi-
cult pixels to correctly classify. Besides the strong evidence
given by the disagreement between expert radiologists, these
pixels are often located around the edge of the nodule. Dis-
carding them decreases the average difficulty of the segmen-
tation task.
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(a) Original image (b) Annotated nodule

(c) Absolute prediction (d) Entropy

(e) Loss (weighted entropy)

Fig. 3: Prediction on sample visualized

% positive pixels % disputed % of nodule disputed

Training set 4.39 2.66 60.59

Test set 5.92 3.06 51.69

Validation set 7.06 4.16 58.92

Table 1: Distribution of samples

4 Results
Table 2 shows the performance of the model on the data.

Note that the model obtains large differences in loss function
for the three data sets but differences in quality of absolute
performance are minimal. Figure 4 shows the increasing ac-
curacy as the model was trained. Evaluating the entire train-
ing set whilst training significantly slowed down the learning
process, therefore the decision was made to evaluate only
five of the 849 samples per epoch to gain a rough estimate
of the progress. As the high variation of the training set in
Figure 4 shows, this was only good enough for an highly
uncertain indication. Figure 5 shows that the difference in

Loss Sensitivity Specificity Accuracy

Training set

Including disputed pixels 0.674 0.657 0.881 0.876

Excluding disputed pixels n/a 0.687 0.881 0.880

Test set

Including disputed pixels 1.938 0.462 0.904 0.872

Excluding disputed pixels n/a 0.486 0.904 0.888

Validation set

Including disputed pixels 1.144 0.680 0.877 0.864

Excluding disputed pixels n/a 0.721 0.877 0.873

Table 2: Results on train, test and validation set

performance between including or excluding disputed pixels
remained stable around 1.16% throughout the training pro-
cess.

4.1 Analysis
One critical issue with the dataset is that scans were

added in batches by various medical institutions. Data for
the training and validation sets was downloaded together at
once and samples were assigned to one of the sets at random.
The remaining data was downloaded at a later stage to serve
as test set. Table 2 shows that the distribution of the data set
was most likely not i.i.d. as the test set scores significantly
lower in sensitivity and higher in specificity.

The weight ratio of 15:1 in favour of positive pixels in
the loss function might have been insufficient in hindsight.
Table 2 shows that the model has a relatively low sensitivity
and high specificity. The factor 15 was chosen based on man-
ual review of a few samples which resulted in an estimation
of 6.67% positive pixels, an overestimation of the number of
positive pixels in the entire dataset. The true ratios are shown
in Table 1. However, Figure 6 shows after an initial drop in
correctly predicted positive pixels, a steadily increasing sen-
sitivitiy. More extensive training might further increase the
model’s ability to correctly identify nodules.

Due to the extensive duration of the learning proces,
only a single set of hyperparameters was applied to the
model. Optimizing parameters such as initial learning rate,
momentum or number of features used by each layer could
further increase the quality of the model.

5 Conclusion
We have seen that a fairly simple model is able to per-

form decently on the pixelwise nodule segmentation task and
is able to reach an accuracy of 86.4%. Although the quality
of the segmentation process does not equal that of expert ra-
diologists, it is nonetheless a clear proof of concept and sug-
gests that more complex models with higher computational
capacity will be able to outperform human radiologists. It
is important to note that this is achieved without the use of
feature engineering or extensive preprocessing such as seg-
menting the lungs from the rest of the body.
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Fig. 4: Accuracy during training.

Fig. 5: Stable performance gap due to disputed pixels.
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