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Abstract

In this paper we consider and test a new model that creates a
schedule for caregivers in a nursing home. In a nursing home all the
patients needs to be visited by caregivers to help them to perform
tasks or to give medicines. The problem can be seen as a Vehicle
Routing Problem with Time-Windows and this is known as a
NP-hard problem.
The model we made is inspired by a model of Mankowska, which is
meant for the scheduling problem in home care. Our focus lies on the
patient, which means that a patient should be able to give a time
preference for each visit and the number of caregivers by which a
patient is treated is minimized. This has led to a department-based
model, in which we make use of the di�erent departments in a nursing
home and we create a good balance on how to divide the caregivers.
Furthermore, we distinct di�erent levels of caregivers and unique
durations per visit.
We want to minimize the total tardiness of the visits, the maximum
tardiness and the number of visits that a caregiver performs on
another department then his/her own department. An important
factor was to keep the computational time low, such that a solution of
realistic data could be found in reasonable time. We conclude that
this model is indeed faster than the original model of Mankowska.
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1 Introduction

Home care is an increasingly occurring way to provide care to patients. People have the desire, even
when they are not fully self su�cient, to stay in their home as long as possible. With the technology
of today it is more often possible to stay home, with new tools like handrails, stair lifts and more. In
the organization of home care the patient plays a central role: the care comes to the patient while it
used to be the other way around. However, this way of taking care of people at home does not mean
that nursing homes will disappear. After all, not in every case home care is possible or desirable.
Both care options have to deal with the planning of carevisits by nurses to patients. This is a dif-
�cult problem and for years nursing homes are searching for new ways to make better schedules to
reduce costs by using their sta� as e�ciently as possible. In addition, it is also important to meet the
wishes of the patients. Quite often stories come up in the news that patients have not been washed
in days due to lack of time, or patients who have waited till eleven or twelve o'clock until they got
dressed. These stories con�rm that improvement of scheduling activities in nursing homes is necessary.

Since the number of people who get home care is increasing, there is a lot of research done about how
the planning of caregivers in home care can be optimized. Since home care and care in nursing homes
have similar features, it could be that a solution method that was intended for home care could also
be used for nursing homes. Hence, this study looks at how new insights into the theoretical approach
to home care may be applicable to schedule activities of nursing homes.

In this paper an overview is given of the situation and theory of planning problems in home care; it
will be examined whether and how to turn the theory into the situation of a nursing home. Then an
existing model for home care is translated to be applicable in nursing homes and some experiments
are carried out to see what kind of results this yields. In this model, the wishes of the patients are
discussed and are as far as possible implemented in the new model.
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2 Literature

E�ciency in home care becomes more important, since home care is a growing area in health care.
In recent years many articles have been written about optimization in home care, in particular about
optimizing the schedule and route for caregivers. This section gives an overview of articles that model
this problem, they di�er since a lot of possible conditions can be considered.
A basic model is given to show what kind of conditions can be taken into account. Then two other
articles are discussed that show what an extensive model looks like and what the consequence are
when the problem gets more speci�cations.

Basic model A relative basic form of the home care scheduling problem is given by Redjem [5]. In
his setting there are a group of identical patients and a set of identical caregivers, what means that
every patient is equally important and that every caregiver is able to perform all visits. A patient
needs at least one visit of a caregiver per day. These visits can di�er in duration. Also some visits
may require the presence of two caregivers. The patients can give their availability according to the
following time windows: whole day, morning or afternoon. The locations of the patients are known
and traveling times between patients are equal for all caregivers. It is assumed that all patients can
be visited in their given time window.
Two objective functions have been studied separately; the �rst is to minimize the travel distance and
the waiting time for the caregivers and the second is to minimize the maximum completion time of
the caregivers [5]. A caregiver may need to wait even when he is ready to perform a visit when the
patient is not yet available. The completion time is reached when a caregiver has done all visits and is
back at a given center, from which he also is assumed to start. To simplify the problem it is assumed
that for all caregivers the patients are pre-assigned. Then the remaining problem is only to �nd the
optimal route that minimizes the objective functions described above.
This setting is limited for several reasons; �rst of all since it assumes pre-assigned patients, and second
because it assumes all caregivers to be equal and to give only three options for the time window of
the availability of patients.

Extensive model Whereas the setting of Redjem is pretty basic, we can �nd a more extensive
model made by Rasmussen [4]. What remains identical compared to Redjem is that there is a set of
patients who all require at least one visit of a caregiver, and that the visits di�er in duration. The
set of caregivers is extended, since he distinguishes caregivers based on their skill-level. Furthermore,
he introduces a preference parameter between a type of caregiver and a type of visit. When this
preference parameter is zero it means that the type of caregiver is not allowed to do that type of
visit. Since this parameter can be all values between zero and one, he not only distinguish capable
from not-capable, but directs which types of visits should be done by which types of caregivers in
the most optimal situation [4]. In this way he does not give a hard restriction based on the skill level
of the caregiver, but he does increase the e�ciency of the caregivers by stimulating the caregivers to
do as many visits of their level. Another extension is that he takes into account the method used for
traveling. This means that the travel time between two patients may di�er for two caregivers when
they use di�erent ways for traveling.
The patients give a time window for the start time of the visit, but, di�erent than with Redjem, every
time window is possible. However, visits that cannot start in the given time window are left out the
schedule and will be given to a manual planner [4]. This means that this method might not be able to
create a schedule that includes all visits. To optimize which visits should be left uncovered, a weight
is given to every visit that represents the importance of that visit. This gives that the goal is not
only to minimize travel time, but also to minimize uncovered visits. Also the combination type of
caregiver and type of visit should be maximized based on the preference parameter.
Just like the setting of Redjem, Rasmussen includes visits for which two caregivers are needed at
the same time, so called synchronized visits. Furthermore, he adds other types of visits, namely two
visits for the same patient that should be done in a certain time window after each other: visits with
precedence constraints [4].
This model is more focused on the patient and more realistic than the model of Redjem, since time
windows are made more precise and since there is a distinction in the level of caregivers. We also
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obtain that this model has more constraints, so the model is more di�cult to solve. This model is
solved by a branch-and-price algorithm.

VRPTW-problem The scheduling problem in home care, can be obtained as an extension of the
Vehicle Routing Problem with Time Windows (VRPTW). This problem is an extension of the Vehicle
Routing Problem (VRP) [2], from which the Traveling Salesman Problem is a special case. In a VRP
there is a vehicle that needs to visit customers and the goal is to minimize the total distance. In
a VRPTW there are additional time windows, what means that customers can only be visited in
their time window. An example is the multiple Traveling Salesman Problem with Time Windows
(mTSPTW), in which case several salesmen need to visit customers in their time window after which
they return to their starting point. The VRPTW is NP-hard [2].

To convert the setting described by Redjem and Rasmussen to a VRPTW, we interpret the care-
givers as vehicles and the patients as customers, with their availability as time window. Since a visit
has a duration in the home care situation, there must be ensured that the treatment will be �nished
before the end time of the time window. Since the patients in the model of Redjem are pre-assigned
to a caregiver, all caregivers � vehicles � are independent and, hence, we have distinctive problems.
However, the model contains visits in which there need to be two caregivers present at the same
time and also a patient could get more than one visit from di�erent caregivers which cannot overlap.
Hence, we obtain a multiple VRPTW for the model of Redjem, that includes synchronized visits. The
model of Rasmussen is more complex and includes precedence constraints. These constraints are the
synchronized visits and the temporal dependencies, since vehicles should not only take into account
the time window of the customer, but also the visit time of another vehicle at that customer. This
problem is comparable to a Vehicle Routing Problem with Time Windows and Temporal dependen-
cies (VRPTWTD). This problem is an extension of the VRPTW and includes temporal dependencies
between customers [1]. Note that the model of Redjem can be compared to a VRPTWTD, since it
includes synchronized visits. Just as the VRPTW, also the VRPTWTD is NP-hard [1].

Complete Model Finally we discuss the article of Mankowska [3]. This article is less extended
than the model of Rasmussen, but has some important features in common. The most important
similarities are that they both make a distinction in type of caregiver, there can be a dependency
between two visits, synchronization and precedence constraints, and that patients give a time window
in which the visit should start. Some extra features treated in the model of Rasmussen are left out,
like a preference parameter for the type of patient to a type of visit and the distinction of travel times
by travel method. An important di�erence between the models is that Mankowska schedule visits of
patients outside their time window [3]. As a consequence the objective function is to minimize the
tardiness, ánd the maximum tardiness, next to the minimization of travel time by the caregivers[3].
Mankowska describes the tardiness of a visit as the time that is needed for a caregiver to perform a
visit after the time window.
The problem is solved in di�erent ways. First they tried to solve it with the MILP solver ILOG Cplex
12.3, but for the instances a solution could not be found within 10 hours. Then they tried several
local search methods.

In the article this problem is compared with the mTSPTW, but the model is of course also an
extension of the VRPTWTD. Again we obtain that there are several vehicles (caregivers) and some
customers (patients) that need to be visited more than once. The visits have a duration and also the
dependencies between the visits for a customer are taken into account.

Conclusion All three models cover the scheduling problem for home care, but they consider a dif-
ferent setting. Redjem gives a solution for a set patients with visits that can be done by all caregivers
and does not contain visits with precedence constraints and self-chosen time windows. Rasmussen
creates a much more complicated set with more distinctions, more accurate time windows and de-
pendencies between visits. Mankowska's model is similar to that of Rasmussen, but has left out some
extra features but guarantees to give a solution that includes all visits. Although the models di�er in
complexity, we obtain that all models are NP-hard since they are all extensions of the VRPTWTD.
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When the temporal dependencies are left out of the models of Redjem, Rasmussen and Mankowska
we notice the models are comparable with the VRPTW.
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3 Home care versus nursing homes

Next to home care nursing home is another way to provide care. In a nursing home patients live
together or next to each other and during the day caregivers are always nearby. Unfortunately, the
small distance between the caregivers and the patients does not make the scheduling problem easier.
The distance is namely just one of the many factors that make this problem complex. In this section
we describe the situation in a nursing home and compare this to the home care situation.

Situation in a nursing home In a nursing home a large group of patients live together, divided into
one or several departments. At every department there are some caregivers. A distinction can be
made between the caregivers, based on their skill level: caregivers with the highest level are able to
perform all tasks and the ones with the lowest level may only perform some. Since the patients live
in the nursing home, in theory a task can be done the whole day. Of course this is not desirable, for
example a patient would prefer to have breakfast at 10.00 AM rather than at 4.00 PM. Therefore
patients can assign time windows for the tasks that need to be done. Further note that not all tasks
are plannable. If a patient falls it needs help, but this task cannot be planned and hence cannot
be scheduled in advance. Therefore we only consider plannable tasks in the rest of this research.
Another remark is that we assume that synchronized visits and precedence constraints not occur in
nursing homes.

Comparison with home care situation Considering the situation described above, it is very similar
to the home care situation. A di�erence is that distances between two patients are less important in
optimizing the route of caregivers in a nursing home, since the distances are small. Another di�erence
is that we assume that no time dependent visits occur in a nursing home. Some similarities are the
distinction between caregivers and the desire to perform tasks within a certain time window.
However, what the situation in a nursing home really distinguishes from home care, is the fact that
there are several departments with patients and one group of caregivers. There are several ways to
deal with this. The �rst option is to divide the caregivers over the departments. Then, for every
department we obtain a home care situation since every department has its own patients and its own
caregivers. Then the problem is divided in several small problems, which are easier to solve. On
the other hand is it possible that the optimal solution for this situation is less than the solution for
the second option: to combine all departments. Then we get one group of patients and one group
of caregivers. The problem size increases, since the group of patients and caregivers is larger and
caregivers are in this case aloud to visit patients on every department. This means the solution for
this case is at least as good as in the �rst option.
When we approach these options with a patient-oriented view, some other aspects have to be taken
into account. For example it is for a patient not desirable to have another caregiver at every visit,
therefore it would be better to connect a small group of caregivers to every patient. However, a
disadvantage is that visits might not be performed in the given time window since in busy periods
no extra caregivers are available. Therefore a third option is given, which is described below.

Department-based option In this option the patients are divided over departments and every care-
giver is allocated to one department. This department is his base from where he performs his tasks.
In principle the caregiver stays on that department, but if it gets very busy on another department
the caregiver can go to the other departments for a while. The problem size is equal to option two
and is not decreased as in option one, but has important advantages for the patients.
We call this situation department-based and in the next section a model is made using this option.
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Table 1: List of variables

Variable Meaning

C Set of all departments
S Set of all visits
V Set of all caregivers
avs Equals 1 i� caregiver v ∈ V is quali�ed to provide visit s ∈ S

and 0 otherwise
ris Equals 1 i� department i ∈ C requires visit s ∈ S and 0 otherwise
C0 Set of all departments and a start/endpoint: C0 = C ∪ 0

[es, ls] Time window for visit s ∈ S
dij Traveling distance between departments i ∈ C0 and j ∈ C0

ps Duration of visit s ∈ S
giv Equals 0 i� caregiver v belongs to department i ∈ C, 0 otherwise

Decision variables Meaning

xijvs Equals 1 i� caregiver v ∈ V moves from i ∈ C0 to j
for providing visit s ∈ S, 0 otherwise

tivs Start time of visit s ∈ S by sta� member v ∈ V at department i ∈ C
zs Tardiness of visit s ∈ S

4 Model

In section 2 di�erent models for the scheduling problem in home care are discussed. In the previous
section the di�erences between home care and nursing homes were explained and some preferences
were given for a model to schedule caregivers in nursing homes. To make a new model, we start from
a model for home care and transform this such that it is applicable for a nursing home. From the
discussed models the model of Mankowska is chosen, because it has several important advantages.
It allows, for example, patients to give a self chosen time window for every task - from now visit -
what is in line with a patient-oriented approach. Also this model creates a schedule that includes all
visits, even when they are planned outside the time window. This is suitable, since all patients stay
in the nursing home and besides a time window only gives a preference and does not have to be a
restriction. Furthermore, the caregivers are distinguished based on their skill-levels which is current
practice in a nursing home.
The model of Mankowska was solved by an LP-solver for several data sets, but it seemed that the
model was too complex that even the LP-solver could not �nd a solution for all data sets within
ten hours. If the time dependent visits are left out, the situation is a bit less complicated but still
very complex. To reduce the computational time we want to decrease the state space of the model.
The department-based situation, as described in the previous section, could help: it might be a good
option to set our model over departments instead of over patients as Mankowska did. In this section
we describe how the department-based model looks like. The original model of Mankowska can be
found in Appendix A, here we show how this department-based model is formulated.

4.1 Outline of the variables

A table with the meaning of the variables for the department-based model is given below, see table
1. Since some meanings of sets and variables are changed, we discuss them �rst.
The set C is in Mankowska a set of all patients and is now changed into a set of all departments,

this leads to a strong decrease in number of elements in the set. The set S is a set for all visits, but
where it indicated a service type with Mankowska it now stands for a unique visit. This makes that
the set S will strongly increase in number of elements. So Mankowska had a set of visit types which
were linked to a patient when he needed a visit of that type and in this model all needed visits are
set out separately in the set S and they will be linked to the department where they take place. The
set V does not change and stays the set of caregivers.
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As a result the meaning of some variables is also changed. For example, ris now shows if visit s
must be performed on department i, while it �rst meant whether patient i needed a visit of type s.
Another change is that some variables no longer depend on an element from C, for example pis is
changed into ps. The reason is that the visits are now unique; every visit must be done ones and can
only be done on 1 department, namely on the department where the patient is who needs the visit.
The duration of a visit does not depend on set C any more, which also decreases the state space.
Finally, one new variable is added: giv, that links a caregiver to one department; his or her base-
department.

4.2 Objective function

The objective function of the problem remains the same as in Mankowska:

min Z = λ1D + λ2T + λ3T
max. (1)

In the model of Mankowska the variable D denotes the distance traveled. For home care it is of main
importance that the caregivers should not travel too much. In a nursing home the distances are small
- we assume that the walking distance between two departments will just be a few minutes - making
this no primary goal anymore. However, something else is more important in this department-based
model, namely the times a caregiver leaves his 'base-department'.
We assume that every caregiver belongs to one department, which he can leave for a visit at another
department, but then a penalty will be given. By increasing λ1, this 'base-department penalty' will
be more important and hence it becomes less likely a caregiver leaves his department. We introduce
parameter giv that equals 1 if caregiver v does not belong to department i and 0 otherwise. The part
D(epartment) of the objective function looks like:

D =
∑
v∈V

∑
i∈C0

∑
j∈C0

∑
s∈S

gjv · xijvs. (2)

This equation can be interpreted as the number of visits a caregiver with 'base-department' j performs
on a department other than department j.
Since the tardiness of a visit can now be shown as zs instead of zis, we get the other parts of the
objective function to be as follow. Note that equation 4 is also a decision variable.

T =
∑
s∈S

zs (3)

Tmax ≥ zs ∀s ∈ S. (4)

4.3 Constraints

As most constraints are equal to the constraints at Mankowska, we discuss them brie�y. The �rst
two constraints guarantee that every caregiver starts and ends the route in the central o�ce (5) and
that every caregiver leaves after a visit (6).∑

i∈C0

∑
s∈S

x0ivs =
∑
i∈C0

∑
s∈S

xi0vs = 1 ∀v ∈ V (5)

∑
i∈C0

∑
s∈S

xjivs =
∑
i∈C0

∑
s∈S

xijvs ∀j ∈ C, v ∈ V (6)

The next constraint (7) states that exactly one quali�ed caregiver performs a visit when this is needed.
Note that this constraint does not hold for visits of department 0. At the end of a service the caregiver
is sent to department 0 from a random visit s. Since it will not execute the visit it does not matter
which visit is chosen. ∑

v∈V

∑
j∈C0

avs · xjivs = ris ∀i ∈ C, s ∈ S (7)
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The start time of a visit should start in the time window and, di�erent than at Mankowska, we state
that the end time of a visit should also be within the time window. We think that for a patient it
makes more sense to give a time window in which the visit should be performed, then in which it
should start since patients might not keep the duration of the visit in mind.
Another change is that we want tivs to be 0 when task s is not performed by caregiver v. This change
will have no e�ect on the result, but will make the result easier to read. However, since the start
times are not minimized in the objective function it can still happen that a start time for a visit is
greater than 0 by a caregiver who will not perform that task. The constraints regarding the time
window are given in constraints 8 and 9.

tivs ≥ es ·
∑
j∈C

xjivs ∀i ∈ C, v ∈ V, s ∈ S (8)

tivs + ps ≤ ls + zs ∀i ∈ C, v ∈ V, s ∈ S (9)

We add an extra constraint compared to the model of Mankowska, to make sure that the zero
department will be used as a start- and end position. For the routing this is important, hence when a
caregiver performs a task it should not be possible to go straight from the start- to the end position:

if ti,v,s > 0 then
∑
k∈S

x0,0,v,k = 0. (10)

Finally, some restrictions and non-negativity constraints are given:

xijvs ∈ {0, avs · rjs} ∀i, j ∈ C0, v ∈ V, s ∈ S (11)

tivs, zs ≥ 0 ∀i ∈ C0, v ∈ V, s ∈ S. (12)

Caregiver start time constraint

There is one constraint that is actually changed in this model and that is the one that is focused on
the start times of the visits. This constraint should ensure that a caregiver starts with a new visit
when the previous visit is done and the walking time is respected. The original constraint was:

tivs1 + ps1 ·min(i, 1) + di,j ≤ tjvs2 +M(1− xijvs2) ∀i ∈ C0, j ∈ C, v ∈ V, s1, s2 ∈ S. (13)

With this constraint a caregiver could not perform several visits for the same patient directly after
each other, because when i = j the routing becomes unclear and the following two constraint could
occur:

t1,1,1 + p1 + d1,1 ≤ t1,1,2 +M(1− x1,1,1,2) (14)

t1,1,2 + p2 + d1,1 ≤ t1,1,1 +M(1− x1,1,1,1). (15)

Since we have x1,1,1,2 = x1,1,1,1 = 1, equations 14 and 15 can not be satis�ed. This is a reasonable
restriction when the set C contains many patients, but becomes very hard when the set C contains
just a few department. Even more, when there is only one department a solution can not be found.
Therefor we made a restriction on the ordering of the visits.

Ordering When an ordering is given the number of options to schedule the visits becomes smaller,
because the only thing to be done is to divide the visits over the caregivers. There are several ways to
order the visits. It is logical to base the ordering on the time window, how ever this is more di�cult
when the length of the time window is variable.
When the time windows are equal, the visits can be ordered based on their start or and time, this
will not matter. When the time windows are not equal, the ordering is di�erent when it is based on
the start time than based on the end time. An ordering based on the start time makes sense, such
that a caregiver will not have unnecessary idle time. On the other hand, since we want to minimize
the tardiness that is based on the visit time after the time window it might be better to order them
on the end time of the time window. Another aspect could be to also take into account the duration
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of the visit.

When a right order is chosen we set out the following restriction to the constraint: "If s1 < s2",
in this way a visit with a lower number will start before a visit with a higher number in the ordering.
Since we want to minimize the restrictions of the ordering, we saw an option to set the �rst job free
of the ordering in the case when there is only one department. This is possible, since the location
before the �rst job was 0. Therefore we hold no restriction to the ordering when i <> j, add "If
i = j before the "If s1 < s2"-part of above and create an extra part to the constraint: "if i = j and
xiivs + xiivk < 2":

tivs + ps1 ·min(1, i) + dij ≤ tjvs2 +M(2− xijvs2 −
∑
h∈C0

xhivs1 − xiivs1). (16)

When there is more than 1 department, this will not hold because the caregiver will change of
departments during the day.
We obtain that the routing disappears and does not help us anymore with determining the start
times when we have more than one department. Therefore the variable x is changed into xj,v,s: the
previous department does not matter anymore. The constraint is than: if s1<s2:

ti,v,s + ps1 ·min (1, i) + di,j ≤ tj,v,s2 +M · (2− xj,v,k − xi,v,s1). (17)

Actually, the only di�erence with the situation with 1 department, is that then the �rst visit could
be a higher number. For the rest, all the visits on department 1 which follow a visit that was on
department 1, hold the same constraint.

With this MLP-model we can create a schedule for given data sets The complete MLP-model is
described in Appendix A (see section A2).
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5 Experiments

The model described in the previous chapter is implemented in the AIMMS solver, just as the original
model of Mankowska. In this chapter the experiments are described and the outcomes are presented.
First a simple problem is solved using both models so that the outcome and the computational time
can be compared. An interesting issue is whether the computation time will decrease in the depart-
ment based model, since that was one of the goals. Furthermore, we explore what happens with
the outcome and in computational time when one of the sets (patients, departments or caregivers)
is increased. We conclude with the outcome of a realistic situation in which we combine all restrictions.

5.1 Small example

To get a feeling what an outcome looks like, we introduce a small example with 1 department, 2
caregivers and 10 visits over 5 patients. The data set with information about the visits is shown in
table 2. We assume a traveling time of 4 minutes between departments 0 and 1 and a traveling time
of 1 for two visits on the same department. The 2 caregivers are allowed to perform all visits and
belong to department 1. In the objective function we choose all λ's equal to 1.

Table 2: Dataset for a small example
Visits Department Start time window End time window Duration Minimal level Patient

0 0 0 300 0 1 0
1 1 0 30 10 2 1
2 1 0 30 15 3 2
3 1 0 30 10 3 3
4 1 0 30 15 3 4
5 1 0 30 20 2 5
8 1 30 65 20 2 1
9 1 30 70 25 2 2
10 1 30 80 30 2 3
6 1 30 60 5 3 4
7 1 30 60 5 3 5

Mankowska model

The �nal result of the model of Mankowska was found after 40 seconds, but it took 317 seconds in
total to �nish the run. The schedule for the two caregivers is shown in table 3. In the model of
Mankowska a time-window holds for a patient and hence for all jobs of that patient. For example the
time-window for patient 2 is from 0 to 70 and the restriction that the �rst visit should be done before
minute 30 is assumed to cancel. However, the restriction that a �rst visit should be done before the
second visit does hold, see Appendix A.

Table 3: Schedule caregiver 1 and 2 for Mankowska
Caregiver 1

Walking time Visit (patient) Start time End time Tardiness
4 5 (5) 4 24 0
1 1 (1) 25 35 0
1 2 (2) 36 51 0
1 6 (4) 52 57 0
1 10 (3) 58 88 8

Caregiver 2
Walking time Visit (patient) Start time End time Tardiness

4 4 (4) 4 19 0
1 3 (3) 20 30 0
1 7 (5) 31 36 0
1 8 (1) 37 57 0
1 9 (2) 58 73 13
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Department based model

The department based model gave after 4 seconds the result as shown in table 4 and this was not
improved in the remaining computation time that was in total 109 seconds. We see that the total

Table 4: Schedule caregiver 1 and 2 for the department based model
Caregiver 1

Walking time Visit (patient) Start time End time Tardiness
4 5 (5) 4 24 0
1 2(2) 25 40 10
1 8(3) 41 61 0
1 10 (5) 62 92 12

Caregiver 2
Walking time Visit (patient) Start time End time Tardiness

4 1(1) 4 14 0
1 3(3) 15 25 0
1 4(4) 26 41 11
1 6(1) 42 47 0
1 7(2) 48 53 0
1 9(4) 54 79 9

tardiness is 42 and the maximum is 12. In this model the time windows are given per visit. Since
it is not clear in the model which visits belong to the same patient it is possible that two visits for
one patient overlap. In this case this does not happen. Because there are more restrictions regarding
the time window than with the previous model, the tardiness is now higher. However, when only
the tardiness of the second visit is taking into account, as is done in the �rst model, we get a total
tardiness of 19.

Comparison

Both models give di�erent schemes. A reason for this is that the time-windows are di�erently used
in the models. However, in both models the time the caregivers need to perform their tasks is more
or less equal. When the computational times are compared it is notable that the department-based
model found the optimal schedule after just a few seconds and that the total computational time is
remarkably shorter.
To be able to compare the schedules of Mankowska and the department-based model, we change
the setting for Mankowska such that there are 10 patients who all need one job. In this case we
have a time-window for every visit and hence the schemes are comparable. When we run the model
of Mankowska with this change we obtain almost the same schedule as found with the department
based model and the optimal solution is already found in 22 seconds. The only di�erence between the
schemes is that visits 1 and 3 are interchanged. Visits 1 and 3 are identical, hence this is appropriate.
We see the model of Mankowska is now fast, and that the algorithm apparently runs much faster
when every patient only needs 1 visit.

Real data set

In the next experiments we use a data set from a nursing home with two departments. For three
locations in a nursing home we have data that contains all the morning visits for 6 days. Two of
the locations have on average 30 visits per department, one location has an average of 70 visits on
one department and 60 on the second and this is larger. For the experiments we used the data
of day 6 of location 2, see Data set A in Appendix B (section B1). The given data set contained
only the start time of the time window, but not an end time. Therefore this is chosen as follow:
ls = es+min(90;max(30; 3 · ps)). The time window is always between 30 and 90 minutes and depends
on the duration of the visit. The data is ordered based on the end time of the time window, such that
a visit with a higher number can be placed later in the schedule. This ordering is very important to
get a good result.
In the data set it was not clear to which patient a visit belonged. Therefore a set of 20 patients is
taken, 10 on each department. Every patient needs 3 visits except for 2 patients needing 4. By doing
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this we can implement these requirements easy in the model of Mankowska.

5.2 Enlarge set of patients

We have seen that the department-based model gave a solution after a fraction of time for a small
example. However, the new data set contains 30 visits per department and hence has a set of 60
visits. We wonder what the computational time will be when the set of visits is enlarged. The other
characteristics stay equal as in the small example, so all visits take place at 1 department and are
performed by 2 caregivers who are allowed to perform all visits.
To get an indication of the optimization process, we made an overview of the intermediate results for
two runs in �gure 1. We see that the �rst run starts with a higher level of tardiness. The seconds
run starts with a lower tardiness but sticks a while at level 3822 before it reaches the �nal result of
3524. They both �nd a result after half an hour which does not change any more in the next 15
minutes. The schedule for the two caregivers at run 1 is shown in appendix C (see section C1) and
table 5 shows a numerical overview of run 1. We see that the visits are nicely divided over the two
caregivers; the total duration is about equal while caregiver 2 performs more visits. The tardiness if
for both caregivers high, so we remark that it would be better to increase this number of caregivers.

Table 5: Numerical overview for the scheme with 2 caregivers

Caregiver 1 Caregiver 2
Number visits 28 34
Total duration 360 365
Average duration 12,87 10,74
Total tardiness 1619 1780
Average tardiness 57,82 52,35

Figure 1: Intermediate results with 2 caregivers

The model of Mankowska could not give a result after several hours, so we obtain that the
department-based model is signi�cantly faster. However, as we saw in the small example, the model
of Mankowska performed better when every patient only needs to have 1 visit. We changed the data
into a set of 62 patients who all needs one visit. Then we obtain results, but the value of the objective
function is much higher than the results of the department-based model, as can be seen in �gure 1.

5.3 Enlarge set of caregivers

We saw that the data set used in the previous subsection gave a solution within one hour. We wonder
what the in�uence is on the computational time when we add one caregiver. We obtain that the result
that was found after 43 minutes did not change in the next 12 minutes, so after 55 minutes we stopped
the run. The results can be found in �gure 2. Indeed the running time is longer with 3 caregivers,
but still a reasonable result came out in less than an hour. The schedules of the three caregivers can
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be found in Appendix C (see section C2). As we see in table 6, the visits are divided equally over the
caregivers based on their total duration. The tardiness is signi�cant higher for caregiver 3 than for
caregivers 1 or 2, this is possible since no restrictions are given in order to equally divide the tardiness
over the caregivers.

Table 6: Numerical overview for a schedule with 3 caregivers

Caregiver 1 Caregiver 2 Caregiver 3
Number visits 24 19 19
Total duration 245 240 240
Average duration/visit 10,21 12,63 12,63
Total tardiness 139 145 304
Average tardiness 5,79 7,63 16

Figure 2: Interim results with 3 caregivers

5.4 Enlarge set of departments

When an extra department is added, we have to change the model as was explained in section 4. We
also changed the data set a bit, namely we set all time windows equal to 50 minutes. In the previous
data set the length of the time window was variable. Because of this change we make sure that a
visit with a lower number has an earlier start ánd end time then a visit with a higher number. We
also increased the number of patients, such that every patient has less visits. The data set, Data set
B, can be found in Appendix B (see sectionB2).
When there are more departments we can test what the consequence is when a penalty is given when
a caregiver performs a visit that is not on his base department. First the result is given without a
penalty, then with a penalty. Caregivers 1 and 3 belong to department 1 and caregiver 2 belongs to
department 2.

5.4.1 Result without base-department penalty

Since we want to compare the optimal results in the situation with and without base-department
penalty, we should complete the run to get the optimal solution. However, this took a long time:
after 57090 seconds (15 hours, 51 minutes) the run was still not completed. The solution that was
found was already known after about 9 hours. That is why we decided to stop the run after 57090
seconds and to not wait till the run was �nished. A numerical overview of the result is given in
table 7, the schedules are shown in Appendix C(see section C3). The total of the objective function
was 1311, with a maximum tardiness of 147 and a total tardiness of 1164. Again we notice that the
tardiness is not equally divided over the caregivers.

5.4.2 Result with base-department penalty

Now we add the last part of equation 1. The question is how λ1 should be chosen, if it is too low it
will not have any e�ect but when it is too high no caregiver will leave their department with perhaps
a high tardiness as a consequence. First we choose 1 = 50, but that has not so much e�ect so we
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Table 7: Numerical overview 3 caregivers without base-department penalty

Caregiver 1 Caregiver 2 Caregiver 3
Number visit 16 20 26
Total duration 285 240 200
Average duration 17,81 12,00 7,69
Total tardiness 759 233 25
Average tardiness 47,44 11,65 0,96
# Visits department 1 8 6 17
# Visits department 2 8 14 9

increased it to λ1 = 100. Of course the calculation time was again very high, this time we stopped
the run after 8,5 hours. Now the objective function became 2563, with a maximum tardiness of 82,
a total tardiness of 1281 and a penalty of 100 times 12. The numerical overview is shown in table 8
and the schedule of the caregivers can be found in Appendix C (see section C4).

Table 8: Numerical overview 3 caregivers with base-department penalty

Caregiver 1 Caregiver 2 Caregiver 3
Number visit 20 23 19
Total duration 215 290 220
Average duration 10,75 12,61 11,58
Total tardiness 436 549 296
Average tardiness 21,80 23,87 15,58
# Visits department 1 14 2 15
# Visits department 2 6 21 4

When we compare both results we see that indeed caregiver 2 and 3 leave their department less
often. Caregiver 1 is the second caregiver that belongs to department 1 and since there are as many
visits on department 1 as on department 2 it makes sense that caregiver 1 could not also stay on
department 1 for the most part. We also notice that the average tardiness increases as was expected.

5.5 Realistic case

We have seen that the model �nds a solution in reasonable time when we enlarge the three sets
C, S and V . Now we can include the last element to make the setting realistic: the skill levels of
the caregivers. Till now we assumed all caregivers to be able to perform all tasks, while in real-life
caregivers di�er in skill-level. Based on earlier studies we know that for the used data set (Data set
B), we need 7 caregivers: 1 of level 1, 4 of level 2 and 2 of level 3. The caregivers of level 3 are able to
perform all tasks, while the caregivers of level 1 may only perform the tasks of level 1. It is not known
how many caregivers should belong to which department, but since the number of visits is equal on
both departments we should divide them equally. Therefore each department gets 1 caregiver of level
3 and 2 caregivers of level 2. The caregiver of level 1 is assigned to department 1.
We have run this model twice; the �rst time without the base-department penalty and the second
time with the base-department penalty. The results were found after about one hour, in the next 1.5
hours the results did not change so we stopped the run. This is much faster than in the previous
sections, a cause can be that the tardiness is 0 for the most visits and hence those visits do not need
improvement any more. The intermediate results are presented in �gure 3. When the penalty is not
included, we obtain that only 2 visits have tardiness of only 2 resp. 8 minutes. When a penalty, with
λ1 = 20, we notice that the tardiness in increased to a total of 54, divided over 4 visits. We do �nd
that the number of visits performed at the non-base department is decreased from 21 to 5, see tables
9 and 10. The schedules of the caregivers can be found in Appendix C (see section C5). We further
note that caregiver 1 was not really needed, even though was stated that 7 caregivers was optimal,
since caregiver 1 only needs to perform 1 visit. A reason can be that we have chosen a time window
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of 50 minutes which apparently is big enough to let almost all visits be performed in time. However,
when we decrease the time window to 30 minutes, the tardiness will increase and that it could be
very helpful to have 7 caregivers.

Figure 3: Intermediate results

Table 9: Numerical overview without base-department penalty
Caregiver 1 Caregiver 2 Caregiver 3 Caregiver 4 Caregiver 5 Caregiver 6 Caregiver 7

Number visit 1 8 8 8 9 16 12
Total duration 5 150 105 85 105 150 125
Average duration 5,00 18,75 13,13 10,63 11,67 9,38 10,42
Total Tardiness 0 0 0 0 0 10 0
Average Tardiness 0 0 0 0 0 0,625 0
# visits department 1 1 3 6 2 5 6 8
# visits department 2 0 5 2 6 4 10 4
# visits wrong department 0 3 2 2 4 6 4

Table 10: Numerical overview with base-department penalty
Caregiver 1 Caregiver 2 Caregiver 3 Caregiver 4 Caregiver 5 Caregiver 6 Caregiver 7

Number visit 1 8 8 7 6 15 15
Total duration 10 125 90 95 80 200 125
Average duration 10,00 15,63 11,25 13,57 13,33 13,33 8,33
Total Tardiness 0 0 0 11 0 14 29
Average Tardiness 0,00 0,00 0,00 1,57 0,00 0,93 1,93
# visits department 1 1 0 8 0 6 3 13
# visits department 2 0 8 2 7 0 12 2
# visits wrong department 0 0 0 0 0 3 2
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6 Conclusion

It is a di�cult task to make an optimal schedule for a group of caregivers in a nursing home. In this
research we were inspired by models for scheduling of caregivers in home care. From this we obtained
a routing model that already has some restrictions and features that are present in the scheduling
problem for a nursing home: the caregivers have di�erent skills such that not every caregiver should
be able perform every task and the patients should give a time window in which they prefer to be
visited by a caregiver.
We used the routing model of Mankowska as a starting point and converted it to a model for the
nursing home situation. In the new model we obtained that in the situation with 1 department a
result was obtained faster than the model of Mankowska, even when the group of patients, visits or
caregivers was enlarged. When the data was changed such that every patient needs only one visit,
the model of Mankowska improved signi�cantly but still performed less than the department-based
model.
In the experiments a real data set was used, making the size of visits and caregivers realistic to what
could be seen in regular nursing homes. We noticed that a �rst result was already obtained within
a minute and that within an hour a reasonable result was found. We did not let all the runs �nish
because that would take a lot of time and because the question was merely to compare the computa-
tional time for some reasonable results between the tests than to �nd the computational time of the
optimal result.
We obtained that a reasonable result was found faster in the realistic case with 7 caregivers, than
with only 2 or 3 caregivers. A reason can be that there is less tardiness with 7 caregivers so it only
needs to improve the tardiness of a few visits instead of for tens of visits.

The department-based model has as advantage that for all the visits a time window can be given,
while in the model of Mankowska one time window is given that holds for all visits of one patient. On
the other hand, since in the model it is not known which visit belongs to which patient, an overlap
of two visits for one patient can not be prevented.
In the department-based model the visits need to be ordered on forehand, because of this the solution
could possibly be not the optimal solution. The visits can be ordered based on their start- or end
time, this choice has e�ect on the result.
We introduced a base department penalty in order to stimulate the caregivers to perform as many
tasks on one department, because then the patients are more likely to see the same caregivers. As a
result the tardiness may increase. An good balance can be found by choosing a good weight for that
situation.
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7 Discussion

In this research many things were explored, however many more aspects need further research. In
this section we give an overview of our assumptions and of the aspects that could be improved by
further research.
The model could be adjusted such that more options are possible. First we did not take into account
synchronized visits and visits with precedence constraints, while they could occur in nursing homes.
A few times in the experiments we obtained that the tardiness was not equally divided over the
caregivers, because there was no restriction about this in the model. It might be preferable to have
the tardiness equally divided over the caregivers. Also in our model we only allow tardiness after the
time window and it was not allowed to start a visit before the time window. The model could be
extended such that these options become possible.
We gave as restriction that caregivers should only perform visits when they had the right skill-level,
however we could have given a preference within the possible visits as Rasmussen [4] described.
Another option is to examine whether it helps to �rst schedule the caregivers with the lowest level,
followed by scheduling the caregivers with a higher level to the visits that are still open and so on.
In that case the problem is divided what could decrease the total computation time. On the other
hand, it will be more di�cult to minimize the base-department penalty.
Even though a reasonable solution was found within several minutes/hours, the optimal solution took
a very long time. There was no time, nor a need, to let the runs �nish, but it could be investigated
how long a run takes and how much the values of the objective function that are found in this paper
would further improve.
Since routing was not possible anymore we had to make use of an ordering that was �xed in advance.
This is a strong assumption, and can lead to a solution that is far from optimal. It could investigated
whether there is another way to �nd a schedule witch avoids routing.
These aspects show that an optimal way to �nd a solution to the scheduling problem in nursing homes
is not yet found and that further research is needed.
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Appendix A

A1. Model of Mankowska

The model of Mankowska [3] is used as a start for the model used in this paper. The model of
Mankowska is presented below.

Table 11: List of variables

Variable Meaning

C Set of all patients
S Set of all visits
V Set of all caregivers
avs Equal 1 i� caregiver v ∈ V is quali�ed to provide visit s ∈ S
ris Equal 1 i� patient i ∈ C requires visit s
C0 Set of all patients and start/endpoint; C0 = C ∪ 0

[ei, li] Time window for patient i ∈ C
dij Traveling distance between patient i ∈ C0 and j ∈ C0

pis Duration of visit s at patient i

Decision variables Meaning

xijvs Binary, 1 i� caregiver v moves from i to j for providing visit s, 0 otherwise
tivs Start time of visit s by sta� member v
zis Tardiness of visit s at patient i.

min Z = λ1D + λ2T + λ3T
max

D =
∑
v=V

∑
i∈C0

∑
j∈C0

∑
s∈S

dij · xijvs

T =
∑
i∈C

∑
s∈S

zis

Tmax ≥ zis ∀i ∈ C, s ∈ S

∑
i∈C0

∑
s∈S

x0ivs =
∑
i∈C0

∑
s∈S

xi0vs = 1 ∀v ∈ V

∑
i∈C0

∑
s∈S

xjivs =
∑
i∈C0

∑
s∈S

xijvs ∀i ∈ C, v ∈ V

∑
v∈V

∑
j∈C0

avs · xjivs = ris ∀i ∈ C, s ∈ S

tivs1 + pis1 + dij ≤ tjvs2 +M(1− xijvs2) ∀i ∈ C0, j ∈ C, v ∈ V, s1, s2 ∈ S

tivs ≥ ei ∀i ∈ C, v ∈ V, s ∈ S
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tivs ≤ li + zis ∀i ∈ C, v ∈ V, s ∈ S

The next equation is adjusted to the fact that we assume there are no double services, but we do
want that two services for one patient do not overlap.

tivk − tiws ≥ pis −M · (2−
∑
j∈C0

xjiws −
∑
h∈C0

xhivk)

xijvs ∈ {0, avs · rjs} ∀i, j ∈ C0, v ∈ V, s ∈ S

tivs, zis ≥ 0 ∀i ∈ C0, v ∈ V, s ∈ S

26



Table 12: List of variables

Variable Meaning

C Set of all departments
S Set of all visits
V Set of all caregivers
avs Equals 1 i� caregiver v ∈ V is quali�ed to provide visit s ∈ S

and 0 otherwise
ris Equals 1 i� department i ∈ C requires visit s ∈ S and 0 otherwise
C0 Set of all departments and a start/endpoint: C0 = C ∪ 0

[es, ls] Time window for visit s ∈ S
dij Traveling distance between departments i ∈ C0 and j ∈ C0

ps Duration of visit s ∈ S
giv Equals 0 i� caregiver v belongs to department i ∈ C, 0 otherwise

Decision variables Meaning

xijvs Equals 1 i� caregiver v ∈ V moves from i ∈ C0 to j
for providing visit s ∈ S, 0 otherwise

tivs Start time of visit s ∈ S by sta� member v ∈ V at department i ∈ C
zs Tardiness of visit s ∈ S

A2. Department-based model

From the model of Mankowska is created the department-based model. This model is presented
below.

min Z = λ1D + λ2T + λ3T
max

D =
∑
v∈V

∑
i∈C0

∑
j∈C0

∑
s∈S

gjv · xijvs

T =
∑
s∈S

zs

Tmax >= zs ∀s ∈ S

∑
i∈C0

∑
s∈S

x0ivs =
∑
i∈C0

∑
s∈S

xi0vs = 1 ∀v ∈ V

∑
i∈C0

∑
s∈S

xjivs =
∑
i∈C0

∑
s∈S

xijvs ∀j ∈ C, v ∈ V

∑
v∈V

∑
j∈C0

avs · xjivs = ris ∀i ∈ C, s ∈ S

tivs ≥ es ·
∑
j∈C

xjivs ∀i ∈ C, v ∈ V, s ∈ S

tivs + ps ≤ ls + zs ∀i ∈ C, v ∈ V, s ∈ S

if ti,v,s > 0 then
∑
k∈S

x0,0,v,k = 0.
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xijvs ∈ {0, avs · rjs} ∀i, j ∈ C0, v ∈ V, s ∈ S
tivs, zs ≥ 0 ∀i ∈ C0, v ∈ V, s ∈ S.

When there is only 1 department we get:
"If i = j and s1 < s2":

tivs1 + ps1 ·min(i, 1) + di,j ≤ tjvs2 +M(1− xijvs2) ∀i ∈ C0, j ∈ C, v ∈ V, s1, s2 ∈ S.

"if i = j and xiivs + xiivk < 2":

tivs + ps1 ·min(1, i) + dij ≤ tjvs2 +M(2− xijvs2 −
∑
h∈C0

xhivs1 − xiivs1).

"else":

tivs1 + tjvs2 <=M

When there are more than 1 department we get:
if s1<s2:

ti,v,s + ps1 ·min (1, i) + di,j ≤ tj,v,s2 +M · (2− xj,v,k − xi,v,s1).
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Appendix B

B1. Dataset A

In table 13 the data set of section 2, day 6 for a morning from 7:10 till 11:00 is shown. In this data
set the time windows depend of the duration on the visit: ls = es+min(90;max(30; 3 · ps)).

Table 13: Dataset A
Visits Department Start time End time Duration Minimal Patients Visits Department Start time End time Duration Minimal Patients

window window level window window level
0 0 0 1000 0 1 32 2 480 555 25 2 15
1 2 430 460 5 3 11 33 1 480 570 35 2 8
2 2 420 465 15 2 12 34 1 480 570 40 3 9
3 2 435 465 5 3 13 35 2 480 570 30 2 16
4 1 450 480 5 2 1 36 2 480 570 35 2 17
5 1 450 480 5 3 2 37 2 510 570 20 2 18
6 1 450 480 5 3 3 38 2 540 570 10 2 19
7 1 450 480 10 3 4 39 1 510 585 25 2 10
8 2 450 480 5 2 14 40 1 555 600 15 2 1
9 2 450 480 5 3 15 41 1 570 600 5 1 2
10 2 435 495 20 2 16 42 2 510 600 50 3 20
11 1 480 510 10 2 5 43 2 570 600 5 2 11
12 1 480 510 10 2 6 44 2 570 600 5 2 12
13 1 480 510 5 3 7 45 2 570 600 5 2 13
14 1 480 510 5 3 8 46 1 600 630 5 2 3
15 2 450 510 20 2 17 47 1 600 630 5 2 4
16 2 480 510 10 2 18 48 1 600 630 5 2 5
17 2 480 510 5 3 19 49 1 600 630 10 2 6
18 2 480 510 5 3 20 50 1 600 630 10 2 7
19 2 480 510 5 3 11 51 2 600 630 5 1 14
20 2 480 510 10 3 12 52 2 600 630 5 1 15
21 1 495 525 10 2 9 53 2 600 630 5 1 16
22 1 495 525 5 3 10 54 2 600 630 10 1 17
23 1 495 525 5 3 1 55 1 615 645 10 2 8
24 1 510 540 10 2 2 56 1 620 650 5 2 9
25 1 510 540 10 2 3 57 2 640 670 10 2 18
26 1 510 540 10 3 4 58 1 660 690 10 1 10
27 2 510 540 5 2 13 59 1 660 690 10 2 1
28 2 510 540 10 2 14 60 2 600 690 45 2 19
29 1 525 555 5 3 5 61 2 660 690 10 1 20
30 1 525 555 5 3 6 62 2 660 705 15 1 11
31 1 525 555 5 3 7

B2. Dataset B

In table 14 the data set of section 2, day 6 for a morning from 7:10 till 11:00 is shown. In this data
set the time windows are equalto 50 minutes independent of the duration of the visit.
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Table 14: Dataset B
Visits Department Start time End time Duration Minimal Patients Visits Department Start time End time Duration Minimal Patients

window window level window window level
0 0 0 1000 32 2 510 560 5 2 15
1 2 420 470 15 2 14 33 2 510 560 10 2 16
2 2 430 480 5 3 15 34 2 510 560 20 2 17
3 2 435 485 5 3 16 35 1 510 560 25 2 4
4 2 435 485 20 2 17 36 2 510 560 50 3 18
5 1 450 500 5 2 1 37 1 525 575 5 3 5
6 1 450 500 5 3 2 38 1 525 575 5 3 6
7 1 450 500 5 3 3 39 1 525 575 5 3 7
8 1 450 500 10 3 4 40 2 540 590 10 2 19
9 2 450 500 5 2 18 41 1 555 605 15 2 8
10 2 450 500 5 3 19 42 1 570 620 5 1 9
11 2 450 500 20 2 20 43 2 570 620 5 2 20
12 1 480 530 10 2 5 44 2 570 620 5 2 21
13 1 480 530 10 2 6 45 2 570 620 5 2 22
14 1 480 530 5 3 7 46 1 600 650 5 2 10
15 1 480 530 5 3 8 47 1 600 650 5 2 11
16 2 480 530 10 2 21 48 1 600 650 5 2 12
17 2 480 530 5 3 22 49 1 600 650 10 2 13
18 2 480 530 5 3 23 50 1 600 650 10 2 1
19 2 480 530 5 3 24 51 2 600 650 5 1 23
20 2 480 530 10 3 25 52 2 600 650 5 1 24
21 2 480 530 25 2 26 53 2 600 650 5 1 25
22 1 480 530 35 2 9 54 2 600 650 10 1 26
23 1 480 530 40 3 10 55 2 600 650 45 2 27
24 2 480 530 30 2 27 56 1 615 665 10 2 2
25 2 480 530 35 2 14 57 1 620 670 5 2 3
26 1 495 545 10 2 11 58 2 640 690 10 2 14
27 1 495 545 5 3 12 59 1 660 710 10 1 4
28 1 495 545 5 3 13 60 1 660 710 10 2 5
29 1 510 560 10 2 1 61 2 660 710 10 1 15
30 1 510 560 10 2 2 62 2 660 710 15 1 16
31 1 510 560 10 3 3

Appendix C

C1. Schedule for 2 caregivers on 1 department

The schedule of two caregivers for the situation described in Appendix B, in which all visits take
place on department 1 and in which both the caregivers are able to perform all visits, is presented in
table 15
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Table 15: Schedule caregivers with all visits on 1 department
Caregiver 1 Caregiver 2

Distance Patient Starttime Endtime Tardiness Distance Patient Starttime Endtime Tardiness
4 10 (16) 435 455 0 4 2 (12) 420 435 0
1 4 (1) 456 461 0 1 1 (11) 436 441 0
1 5 (2) 462 467 0 1 3 (13) 442 447 0
1 7 (4) 468 478 0 1 6 (3) 450 455 0
1 12 (6) 480 490 0 1 8 (14) 456 461 0
1 18 (20) 491 496 0 1 9 (15) 462 467 0
1 19 (11) 497 502 0 1 11 (5) 480 490 0
1 20 (12) 503 513 3 1 13 (7) 491 496 0
1 21 (9) 514 524 0 1 14 (8) 497 502 0
1 23 (1) 525 530 5 1 15 (17) 503 523 13
1 24 (2) 531 541 1 1 16 (18) 524 534 24
1 26 (4) 542 552 12 1 17 (19) 535 540 30
1 29 (5) 553 558 3 1 22 (10) 541 546 21
1 30 (6) 559 564 9 1 25 (3) 547 557 17
1 31 (7) 565 570 15 1 27 (13) 558 563 23
1 32 (15) 571 596 41 1 28 (14) 564 574 34
1 33 (8) 597 632 62 1 35 (16) 575 605 35
1 34 (9) 633 673 103 1 36 (17) 606 641 71
1 37 (18) 674 694 124 1 38 (19) 642 652 82
1 40 (1) 695 710 110 1 39 (10) 653 678 93
1 41 (2) 711 716 116 1 43 (11) 679 684 84
1 42 (20) 717 767 167 1 44 (12) 685 690 90
1 48 (5) 768 773 143 1 45 (13) 691 696 96
1 51 (14) 774 779 149 1 46 (3) 697 702 72
1 53 (16) 780 785 155 1 47 (4) 703 708 78
1 54 (17) 786 796 166 1 49 (6) 709 719 89
1 61 (20) 797 807 117 1 50 (7) 720 730 100
1 62 (11) 808 823 118 1 52 (15) 731 736 106

1 55 (8) 737 747 102
1 56 (9) 748 753 103
1 57 (18) 754 764 94
1 58 (10) 765 775 85
1 59 (1) 776 786 96
1 60 (19) 787 832 142

31



C2. Schedule for 3 caregivers on 1 department

When there are 3 caregivers to perform all visits, we get the results shown in table 16.

Table 16: Schedule for 3 caregivers
Caregiver 1 Caregiver 2 Caregiver 3

Distance Patient Starttime Endtime Tardiness Distance Patient Starttime Endtime Tardiness Distance Patient Starttime Endtime Tardiness
4 10 (16) 435 455 0 4 4 (1) 450 455 0 4 3 (13) 435 440 0
1 8 (14) 456 461 0 1 5 (2) 456 461 0 1 1 (11) 441 446 0
1 15 (17) 462 482 0 1 6 (3) 462 467 0 1 2 (12) 447 462 0
1 16 (18) 483 493 0 1 13 (7) 480 485 0 1 7 (4) 463 473 0
1 19 (11) 494 499 0 1 14 (8) 486 491 0 1 9 (15) 474 479 0
1 21 (9) 500 510 0 1 18 (20) 492 497 0 1 11 (5) 480 490 0
1 22 (10) 511 516 0 1 20 (12) 498 508 0 1 12 (6) 491 501 0
1 25 (3) 517 527 0 1 26 (4) 510 520 0 1 17 (19) 502 507 0
1 29 (5) 528 533 0 1 32 (15) 521 546 0 1 23 (1) 508 513 0
1 31 (7) 534 539 0 1 33 (8) 547 582 12 1 24 (2) 514 524 0
1 35 (16) 540 570 0 1 39 (10) 583 608 23 1 27 (13) 525 530 0
1 37 (18) 571 591 21 1 40 (1) 609 624 24 1 28 (14) 531 541 1
1 38 (19) 592 602 32 1 47 (4) 625 630 0 1 30 (6) 542 547 0
1 43 (11) 603 608 8 1 50 (7) 631 641 11 1 34 (9) 548 588 18
1 44 (12) 609 614 14 1 52 (15) 642 647 17 1 36 (17) 589 624 54
1 45 (13) 615 620 20 1 55 (8) 648 658 13 1 41 (2) 625 630 30
1 46 (3) 621 626 0 1 56 (9) 659 664 14 1 42 (20) 631 681 81
1 49 (6) 627 637 7 1 58 (10) 665 675 0 1 48 (5) 682 687 57
1 53 (16) 638 643 13 1 60 (19) 676 721 31 1 51 (14) 688 693 63
1 54 (17) 644 654 24
1 57 (18) 655 665 0
1 59 (1) 666 676 0
1 61 (20) 677 687 0
1 62 (11) 688 703 0

C3. Schedule for 3 caregivers on 2 departments without penalty

Now there are 2 departments. Caregiver 1 and 3 belong to department 1 and caregiver 2 to department
2. However, the penalty D in the objective function is 0 since λ1 is chosen 0. We get the following
schedules, see in table 17.

Table 17: Schedule 3 caregivers without penalty
Caregiver 1 Caregiver 2 Caregiver 3

Department Number Start time End time Tardiness Department Number Start time End time Tardiness Department Number Start time End time Tardiness
2 3 447 452 0 2 2 436 441 0 1 5 450 455 0
2 4 468 488 3 2 3 442 447 0 1 26 506 516 0
1 7 477 482 0 2 4 448 468 0 1 27 517 522 0
1 13 490 500 0 1 7 472 477 0 1 28 523 528 0
1 14 496 501 0 1 13 480 490 0 1 31 529 539 0
2 16 510 520 0 1 14 491 496 0 1 37 563 568 0
2 19 516 521 0 2 16 500 510 0 1 38 569 574 0
1 23 560 600 70 2 19 511 516 0 1 39 575 580 5
1 30 571 581 21 1 23 520 560 30 1 41 581 596 0
2 36 625 675 115 1 30 561 571 11 1 42 597 602 0
2 40 636 646 56 2 36 575 625 65 1 47 621 626 0
2 43 642 647 27 2 40 626 636 46 1 49 627 637 0
1 46 651 656 6 2 43 637 642 22 1 50 638 648 0
2 51 660 665 15 1 46 646 651 1 1 56 661 671 6
2 52 666 671 21 2 51 655 660 10 1 57 672 677 7
2 54 677 687 37 2 52 661 666 16 1 59 683 693 0

2 54 667 677 27 1 60 694 704 0
2 58 678 688 0 2 9 459 464 0
2 61 689 699 0 2 11 465 485 0
2 62 700 715 5 2 18 486 491 0

2 20 492 502 0
2 32 543 548 0
2 33 549 559 0
2 44 606 611 0
2 45 612 617 0
2 53 652 657 7
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C4. Schedule for 3 caregivers on 2 departments with penalty

In this case λ1 is 100 and hence there is a penalty given when caregivers perform a visit on another
department, the schedules are presented in table 18.

Table 18: Schedule 3 caregivers with penalty
Caregiver 1 Caregiver 2 Caregiver 3

Department Number Starttime Endtime Tardiness Department Number Starttime Endtime Tardiness Department Number Starttime Endtime Tardiness
0 0 0 0 0 2 1 420 435 0 1 5 450 455 0
2 1 435 450 0 2 2 436 441 0 1 6 456 461 0
2 2 441 446 0 2 3 442 447 0 1 8 462 472 0
2 3 447 452 0 2 10 450 455 0 1 12 480 490 0
2 10 455 460 0 2 11 456 476 0 1 23 508 548 18
2 11 476 496 0 2 16 480 490 0 1 26 549 559 14
2 16 490 500 0 2 17 491 496 0 1 27 560 565 20
2 17 496 501 0 2 19 497 502 0 1 29 566 576 16
2 19 502 507 0 2 21 503 528 0 1 31 577 587 27
2 21 528 553 23 2 25 529 564 34 1 37 605 610 35
2 25 564 599 69 2 32 565 570 10 1 41 611 626 21
2 32 570 575 15 2 34 571 591 31 1 46 639 644 0
2 34 591 611 51 2 36 592 642 82 1 47 645 650 0
2 36 642 692 132 1 39 646 651 76 1 48 651 656 6
1 39 651 656 81 2 40 655 665 75 1 50 657 667 17
2 40 665 675 85 2 44 666 671 51 2 20 494 504 0
2 44 671 676 56 2 51 672 677 27 2 33 591 601 41
2 51 677 682 32 2 53 678 683 33 2 45 630 635 15
2 53 683 688 38 2 54 684 694 44 2 55 671 716 66
2 54 694 704 54 2 58 695 705 15

1 59 709 719 9
2 61 723 733 23
2 62 734 749 39

C5. Realistic case

In this situation we observe 7 caregivers (see table 19). In the �rst table, table 20, is shown the result
without the base-department penalty, in the second table, table 21, with the penalty by a λ1.

Table 19: Base department caregivers
Caregiver Level Department

1 1 1
2 2 2
3 2 1
4 2 2
5 2 1
6 3 2
7 3 1
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Table 20: Schedule without base-department penalty
Caregiver 1 Caregiver 6

Department Visit Start time End time Tardiness Department Visit Start time End time Tardiness
1 42 570 575 0 2 2 430 435 0

Caregiver 2 2 3 436 441 0
Department Visit Start time End time Tardiness 1 7 450 455 0

2 9 450 455 0 1 8 456 466 0
2 11 456 476 0 2 10 470 475 0
2 25 480 515 0 1 15 480 485 0
1 29 519 529 0 2 17 489 494 0
1 35 530 555 0 2 18 495 500 0
1 38 556 561 0 2 19 501 506 0
2 44 570 575 0 2 20 507 517 0
2 55 600 645 0 2 36 518 568 8

Caregiver 3 1 37 572 577 2
Department Visit Start time End time Tardiness 2 51 600 605 0

1 12 480 490 0 1 57 620 625 0
1 22 491 526 0 1 60 660 670 0
2 32 530 535 0 2 62 674 689 0
2 34 536 556 0 Caregiver 7

1 48 600 605 0 Department Visit Start time End time Tardiness
1 49 606 616 0 1 14 480 485 0
1 50 617 627 0 1 23 486 526 0
1 56 628 638 0 1 27 527 532 0

Caregiver 4 1 28 533 538 0
Department Visit Start time End time Tardiness 1 31 539 549 0

1 5 450 455 0 1 39 568 573 0
2 16 480 490 0 1 41 574 589 0
2 24 491 521 0 1 47 602 607 0
2 40 543 553 0 2 1 420 435 0
2 45 570 575 0 2 43 593 598 0
1 46 600 605 0 2 53 611 616 0
2 54 609 619 0 2 58 640 650 0
2 61 660 670 0

Caregiver 5

Department Visit Start time End time Tardiness
2 4 435 455 0
1 6 459 464 0
1 13 480 490 0
2 21 494 519 0
1 26 523 533 0
1 30 534 544 0
2 33 548 558 0
2 52 600 605 0
1 59 660 670 0
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Table 21: Schedule with a base-department penalty
Caregiver 1 Caregiver 6

Department Visit Start time End time Tardiness Department Visit Start time End time Tardiness
1 59 660 670 0 2 2 430 435 0

Caregiver 2 2 3 436 441 0
Department Visit Start time End time Tardiness 2 10 450 455 0

2 4 435 455 0 2 11 456 476 0
2 9 456 461 0 1 14 480 485 0
2 16 480 490 0 2 17 489 494 0
2 24 491 521 0 2 18 495 500 0
2 33 522 532 0 1 28 504 509 0
2 34 533 553 0 1 31 510 520 0
2 40 554 564 0 2 36 524 574 14
2 44 570 575 0 2 45 575 580 0
2 53 606 611 0 2 55 600 645 0
2 54 612 622 0 2 58 646 656 0

Caregiver 3 2 61 660 670 0
Department Visit Start time End time Tardiness 2 62 671 686 0

1 5 450 455 0 Caregiver 7

1 12 480 490 0 Department Visit Start time End time Tardiness
1 29 510 520 0 1 6 450 455 0
1 35 522 547 0 1 7 456 461 0
1 41 555 570 0 1 8 462 472 0
1 50 600 610 0 1 15 480 485 0
1 57 620 625 0 2 19 489 494 0
1 60 683 693 0 2 20 495 505 0

Caregiver 4 1 23 509 549 19
Department Visit Start time End time Tardiness 1 27 550 555 10

2 1 420 435 0 1 37 556 561 0
2 21 480 505 0 1 38 562 567 0
2 25 506 541 11 1 39 568 573 0
2 32 542 547 0 1 42 574 579 0
2 43 570 575 0 1 47 600 605 0
2 51 600 605 0 1 48 606 611 0
2 52 606 611 0 1 49 612 622 0

Caregiver 5

Department Visit Start time End time Tardiness
1 13 480 490 0
1 22 491 526 0
1 26 527 537 0
1 30 538 548 0
1 46 600 605 0
1 56 615 625 0
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