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Preface	
	
This	paper	 is	written	as	a	part	of	the	master’s	program	Business	Analytics.	The	goal	of	this	
course	is	to	perform	a	research	with	a	mathematical	or	computer	science	related	background,	
with	a	link	to	a	business	case.	The	subject	was	chosen	in	consultation	with	my	supervisor	René	
Bekker,	who	I	approached	because	I	was	interested	in	queueing	theory	and	health	care	related	
research.	I	would	like	to	thank	René	Bekker	for	the	helpful	support	and	advice.			 	
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Summary	
The	purpose	of	the	research	is	to	build	a	model	for	a	clinical	pathway	where	flexible	capacity	
is	taken	into	account,	starting	with	a	model	for	the	outpatient	department.	The	model	should	
provide	insight	in	the	effects	of	adding	capacity	in	hospital	departments	on	the	access	time	of	
patients.		
	
From	literature	review	it	is	derived	that	many	factors	influence	hospital	waiting	lists	and	access	
times.	 To	 capture	 most	 of	 the	 elements	 influencing	 the	 access	 time,	 many	 studies	 use	
simulation	models.	In	this	paper,	we	use	a	stylized	queueing	model	to	study	the	impact	of	the	
extra	flexible	capacity.	
	
In	this	research,	every	node	in	the	clinical	pathway	is	modelled	as	a	separate	stochastic	birth-
death	process	where	capacity	can	be	added	if	the	waiting	list	becomes	too	long.	According	to	
Burke’s	 theorem,	 in	 a	 stochastic	 birth-death	 process	 the	 output	 of	 the	 system	 is	 again	 a	
Poisson	process	with	the	same	rate	as	the	original	arrival	process	and	therefore	the	use	of	
extra	 capacity	 does	 not	 influence	 the	 next	 stage	 the	 model	 of	 the	 clinical	 pathway.	
Consequently,	the	model	of	the	clinical	pathway	can	be	decomposed	to	separate	models	of	
every	node.		A	model	of	the	first	stage	in	the	clinical	pathway,	the	outpatient	department,	is	
created.	Models	for	the	other	stages	can	be	derived	from	this	model.	
	
The	outpatient	department	increases	the	capacity	of	the	clinic	 if	the	access	time	for	a	new	
patient	becomes	too	long.	We	assume	patients	arrive	according	to	a	Poisson	process	and	the	
service	 times	 of	 patients	 are	 exponentially	 distributed.	 Three	 different	 structures	 for	
increasing	 the	 capacity	 are	 implemented:	 abrupt	 increase,	 linear	 increase	 and	 “s-shaped”	
increase,	all	starting	when	the	backlog	exceeds	a	certain	threshold,	whereafter	the	expected	
waiting	time	of	patients	with	respect	to	the	load	of	the	system	is	computed.	When	no	extra	
capacity	is	used,	the	expected	number	of	patients	in	the	system	tends	to	infinity	if	the	load	
approaches	1.	Using	extra	capacity	reduces	this	effect.	The	expected	number	of	patients	in	
the	 system	 is	 compared	 to	 the	 relative	 amount	 of	 extra	 capacity	 that	 is	 used.	 The	 fluent	
increase	structures	lead	to	a	lower	amount	of	needed	extra	capacity	and	the	expected	access	
time	for	fluent	 increase	 is	 lower	than	 in	the	case	of	abrupt	 increase	until	 the	 load	exceeds	
approximately	 1.2.	 Thus,	 using	only	 a	 small	 amount	of	 extra	 capacity	makes	 it	 possible	 to	
handle	a	load	of	1.	Therefore,	we	advise	to	increase	the	capacity	in	a	fluent	way.	It	is	hard	to	
determine	which	structure	approaches	the	real	situation	because	we	did	not	have	relevant	
data	from	the	outpatient	department	available.			
	
Furthermore,	we	found	that	a	lower	backlog	threshold	for	increasing	the	capacity	leads	to	a	
shorter	waiting	list.	The	models	are	compared	to	the	case	where	the	outpatient	department	
does	not	increase	the	capacity	but	patients	are	assumed	to	abandon	the	queue	if	they	have	
to	wait	 too	 long,	 this	also	gives	a	 lowering	effect	on	the	expected	access	 time	of	patients.	
Interesting	 further	 research	 would	 combine	 increasing	 capacity	 and	 the	 effect	 of	
abandonments.	Moreover,	further	research	should	focus	on	flexible	capacity	in	departments	
without	the	assumption	of	exponential	service	times	as	this	would	approach	the	real	situation	
better.	However,	analytical	models	are	not	sufficient	for	modelling	this,	simulation	would	be	
necessary.	 	
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1. Introduction	
	
During	 the	 past	 decades,	 hospitals	 have	 become	 more	 interested	 in	 the	 use	 of	 clinical	
pathways.	 Clinical	 pathways	 are	 standardized	 routes	 of	 patients	 with	 a	 specific	 clinical	
problem.	They	are	used	both	 to	 increase	efficiency	and	provide	a	higher	 level	of	 care	and	
transparency	for	patients.	There	are	several	definitions	for	clinical	pathways.	However,	the	
most	 commonly	used	definition	 is	 from	 the	website	of	 the	European	Pathway	Association	
(2017):	 “A	 care	 pathway	 is	 a	 complex	 intervention	 for	 the	 mutual	 decision	 making	 and	
organisation	 of	 care	 processes	 for	 a	 well-defined	 group	 of	 patients	 during	 a	 well-defined	
period”.	
 
In	2012,	Eline	Bussing	wrote	a	research	paper	about	the	use	of	the	Queueing	Network	Analyzer	
(QNA)	 method	 in	 modelling	 clinical	 pathways	 to	 compute	 the	 lead	 time	 of	 the	 clinical	
pathways.	This	method	gives	an	approach	of	the	congestion	measures	of	a	(not	necessarily	
Markovian)	network	of	queues	(Whitt	1983).	The	problem	with	this	method	is	that	it	is	not	
possible	to	make	the	used	capacity	variable	based	on	the	waiting	times.	Practise	shows	that	
the	outpatient	department	works	with	a	certain	capacity,	but	if	patients	have	to	wait	too	long	
before	an	appointment	is	possible,	the	outpatient	department	will	increase	their	capacity	by	
planning	more	appointments	on	a	day.	The	main	objective	of	this	paper	is	to	build	a	realistic	
model	of	a	clinical	pathway	where	it	is	possible	to	increase	capacity	and	investigate	whether	
the	use	of	extra	capacity	influences	the	access	times	of	patients	in	every	step	of	the	clinical	
pathway	and	the	expected	total	lead	time	of	a	patient	through	the	clinical	pathway.	
	
To	make	 the	 research	more	 explicit,	 a	 particular	 clinical	 pathway	 is	 chosen.	 This	 example	
clinical	pathway	starts	with	referral	from	a	general	practitioner,	whereafter	the	patient	arrives	
at	a	particular	outpatient	department	of	the	hospital.	On	the	basis	of	medical	examination,	
for	example	an	X-ray,	a	CT	scan	and/or	MRI	scan	the	patient	will	be	diagnosed.	Subsequently,	
the	 patient	 returns	 to	 the	 outpatient	 department	 to	 discuss	 the	 results	 of	 the	 tests	 and	
determine	the	next	steps.	Often,	the	patient	gets	medication,	some	medical	advice	or	referral	
to	care	outside	the	hospital	(for	example	physiotherapy).	If	a	patient	has	serious	complaints,	
surgery	is	needed.	After	surgery,	the	patient	must	recover	in	the	hospital	for	a	couple	of	days.	
Finally,	one	or	more	clinic	visits	are	planned	that	discuss	what	the	next	steps	will	be,	followed	
by	resignation	from	the	hospital	(Bussing,	2012).	A	schematic	representation	of	this	clinical	
pathway	can	be	found	in	appendix	A.	The	paper	refers	to	this	network	of	queues	for	a	more	
intuitive	understanding	of	 the	described	models.	However,	 the	model	 could	be	applied	 to	
comparable	clinical	pathways	as	well.	
	
To	 create	 a	model	 of	 the	 clinical	 pathway,	 first	 a	model	 of	 the	 outpatient	 department	 is	
created,	 comprising	 the	 option	 of	 using	 extra	 capacity.	 Different	 structures	 in	 increasing	
capacity	 (abruptly	 or	 fluent)	 are	 compared	 to	 determine	 which	 structure	 is	 reasonable.	
Computing	 both	 the	 expected	 number	 of	 patients	 in	 the	 system	 and	 relative	 used	 extra	
capacity	gives	us	the	possibility	to	give	recommendations	about	which	structure	of	increasing	
capacity	is	optimal.	Furthermore,	the	influence	of	the	moment	from	when	extra	capacity	is	
used	is	investigated.	The	model	is	compared	to	a	model	with	constant	capacity	where	patients	
could	abandon	the	queue	if	they	have	to	wait	too	long,	however,	it	is	not	possible	to	draw	
conclusions	which	model	is	plausible	because	we	have	no	related	data	from	the	outpatient	
department	available.		
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To	get	closed-form	results	it	was	necessary	to	assume	exponential	service	times	of	patients	in	
the	various	nodes	of	the	clinical	pathway.	According	to	Burke’s	theorem,	this	leads	to	a	model	
with	 Poisson	outflow	and	 therefore	 the	 clinical	 pathway	 could	be	modelled	 as	 a	 standard	
Jackson	Network	where	each	node	can	be	analysed	separately.	The	model	of	the	outpatient	
department	could	easily	be	adapted	to	suit	the	other	nodes	in	the	network.	A	brief	description	
of	how	every	node	could	be	modelled	is	described	in	section	3.2.		
	
This	paper	starts	with	a	study	of	relevant	 literature	about	reducing	waiting	lists	and	access	
times	of	patients	in	hospitals	and	about	patient	flow	modelling.	Next,	we	describe	the	model	
for	the	outpatient	department	and	briefly	the	model	for	the	complete	clinical	pathway.	Then	
we	present	 the	 results	of	 the	expected	number	of	patients	 and	 relative	extra	 capacity	 for	
various	situations.	The	conclusion	gives	recommendations	about	the	structure	of	increasing	
capacity	and	some	ideas	for	further	research.	
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2. Review	of	the	literature	
	
One	of	the	first	papers	concerning	the	application	of	queueing	theory	on	hospital	processes	
was	written	by	Bailey	and	Welch	in	1952	(Bailey	&	Welch,	1952).	They	mainly	used	statistics	
to	 determine	 the	 punctuality	 of	 both	 patients	 and	 medical	 staff	 and	 concluded	 that	 the	
unwillingness	of	medical	staff	to	wait	eventually	a	short	moment	fairly	increases	the	waiting	
time	of	patients,	whereas	patients	are	usually	on	time	and	are	 likely	to	come	earlier	 if	 the	
waiting	time	was	known	to	be	shorter.	This	paper	was	the	basis	of	many	studies	related	to	
hospital	waiting	times	and	waiting	lists.	
	
An	interesting	problem	in	trying	to	reduce	hospital	waiting	lists,	is	the	concept	of	‘feedback’.		
If	the	waiting	lists	for	a	hospital	are	successfully	reduced,	general	practitioners	will	refer	more	
patients	 to	 this	hospital	because	of	 the	short	waiting	 list,	and	 the	waiting	 list	will	 increase	
again	(Culyer	1976).	Worthington	(1987)	describes	a	queueing	model	that	takes	feedback	into	
account	by	assuming	the	arrival	rate	decreases	linearly	until	a	certain	number	of	customers	
on	 the	 waiting	 list,	 after	 which	 the	 arrival	 rate	 becomes	 zero.	 He	 used	 two	 options	 for	
modelling	the	feedback.	The	results	of	his	research	consist	of	the	effects	of	various	examples	
of	management	actions	on	reducing	waiting	lists,	taking	feedback	into	account,	which	leads	
to	the	conclusion	that	feedback	is	a	very	important	phenomenon	that	has	large	influence	on	
the	length	of	hospital	waiting	lists.		
	
Fomundan	&	Hermann	 (2007)	provide	an	overview	of	papers	 that	describe	applications	of	
queueing	theory	in	health	care.	They	state	that	hospitals	want	to	minimize	the	waiting	lists,	
but	 maximize	 the	 utilization	 of	 servers	 or	 resources,	 which	 leads	 to	 a	 goal	 conflict.	
Furthermore,	they	refer	to	Hall	et	al	(2006)	who	stated	that	if	the	demand	is	larger	than	the	
capacity	 of	 a	 hospital	 department	 the	 only	 way	 the	 system	 will	 reach	 an	 equilibrium	 is	
reneging,	patients	abandoning	the	queue	if	it	is	too	long.		
	
Iversen	(1992)	describes	several	perspectives	of	patient	arrivals	 in	hospitals.	He	states	two	
traditions	in	modelling	queues,	namely	the	assumption	of	either	stochastic	arrivals	or	arrivals	
based	on	patients	deciding	whether	 they	will	 join	a	queue	or	not.	He	 refers	 to	a	paper	of	
Johansen	 (1987)	who	 suggested	 a	 combination	 of	 the	 both	 traditions	 and	 stated	 that	 the	
arrival	 of	 patients	 follows	 a	 stochastic	 pattern	 established	 from	 rational	 behaviour	 of	 the	
patients	that	possibly	join	the	queue.	He	adds	a	third	aspect	that	influences	waiting	lists	in	
hospitals,	namely	the	fact	that	in	many	countries	hospitals	are	paid	by	government	instead	of	
directly	by	the	patients.	This	leads	to	long	waiting	lists	as	the	government’s	willingness	to	pay	
for	extra	resources	only	increases	if	the	queue	becomes	longer.	As	a	result,	hospitals	prefer	
long	 queues	 since	 that	 leads	 to	 a	 larger	 contribution	 from	government.	 To	 solve	 this,	 the	
institutional	structure	should	be	reformed.		
	
A	 research	 with	 a	 more	 practical	 goal	 was	 performed	 and	 described	 by	 Elkhuizen	 et	 al.	
(Elkhuizen	 2007).	 Their	 goal	 was	 to	 develop	models	 for	 analysing	 the	 needed	 capacity	 in	
hospital	outpatient	departments.	Therefore,	they	first	modelled	the	department	as	an	M/D/1	
queue	to	gain	global	insight	in	the	problem.	This	model	was	used	to	indicate	the	performance	
when	using	the	actual	capacity	and	to	make	a	rough	estimate	of	the	needed	capacity	to	reach	
a	certain	service	level.	Furthermore,	they	build	a	simulation	model	for	a	more	detailed	study	
of	 the	 outpatient	 department.	 This	model	 needed	 less	 simplifications	 and	 provided	more	
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specific	information.	Both	models	were	used	to	estimate	the	needed	capacity	and	how	much	
temporary	extra	capacity	(and	for	how	long)	would	be	needed	to	eliminate	a	possible	present	
backlog	and	how	much	capacity	is	needed	to	keep	access	time	of	patients	within	established	
norms.	The	model	was	originally	build	 for	 the	neurology	department	of	 the	AMC,	but	was	
intended	to	be	useful	for	other	departments	as	well.	To	show	their	model	was	generic,	they	
implemented	the	model	as	well	for	the	gynecology	outpatient	department	in	the	AMC.	It	was	
indeed	easy	to	implement	because	of	the	relatively	simple	input.	They	were	able	to	obtain	
directly	applicable	results	about	the	performance	of	both	departments	and	found	out	that	the	
model	could	also	be	used	to	improve	the	efficiency	in	a	department	with	sufficient	capacity.		
	
In	the	field	of	modelling	clinical	pathways,	an	interesting	paper	was	written	by	Bhattacharjee	
&	Ray	 (2014).	 They	describe	 the	 complexity	of	patient	 flows	 through	a	hospital	 caused	by	
many	possible	pathways,	a	large	number	of	stages	in	a	care	pathway	and	possible	repeating	
stages	and	various	priority	rules	for	the	care	of	patients	within	a	node,	for	example	priority	
based	on	the	urgency	for	care.		They	state	that	patient	flow	modelling	makes	it	possible	for	
hospitals	to	perform	various	types	of	analysis	among	which	“exploring	the	interrelationships	
between	parameters	(performance)	at	various	stages”,	which	is	the	purpose	of	this	paper	as	
well.	The	authors	provide	an	overview	of	all	necessary	steps	to	model	patient	flow	in	hospitals	
and	 an	 extended	 overview	 of	 papers	 written	with	 respect	 to	 this	 subject,	 both	 based	 on	
Markovian	models	and	non-Markovian	models	or	discrete-event	simulation.	They	conclude	
that	for	modelling	patient	flows,	simulation	is	most-used	whereas	queueing	models	are	mainly	
used	in	modelling	a	single	stage	of	the	clinical	pathway.	However,	they	see	possibilities	in	using	
networks	of	queues	in	modelling	clinical	pathways	to	obtain	numerical	solutions	with	respect	
to	patient	flow	characteristics	in	hospitals.	
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3. Model	
	
We	want	to	create	a	model	of	the	clinical	pathway.	Therefore,	we	start	by	modelling	the	first	
node	in	the	clinical	pathway.	As	described	in	the	introduction,	the	first	node	in	our	example	
clinical	pathway	 is	 the	outpatient	department,	where	 the	patient	meets	 the	doctor	 for	 an	
anamnesis	interview.	Most	hospitals	have	outpatient	departments	for	several	specialisms.	In	
the	outpatient	department	of	a	certain	specialism,	multiple	doctors	on	that	field	are	serving	
assigned	patients.	For	the	ease	of	this	research	we	assume	the	clinic	of	a	certain	specialization	
had	an	overall	capacity,	where	all	doctors	can	serve	all	patients.	
	
3.1	Model	of	the	outpatient	department	
Two	other	important	assumptions	are	made	to	model	the	outpatient	department.	First,	the	
requests	for	an	appointment	are	assumed	to	arrive	according	to	a	Poisson	process	with	rate	
l.	This	assumption	is	based	on	the	fact	that	the	superposition	of	many	independent	processes	
tends	to	be	a	Poisson	process.	The	planning	of	patients	is	complicated	and	depends	on	the	
wishes	 of	 the	 patient	 and	 the	 schedules	 of	 the	 different	 doctors.	 However,	 it	 is	 assumed	
patients	are	served	on	a	First	Come	First	Served	basis	(Vis	&	Bekker,	2017).		
	
Second,	the	service	durations	of	the	patients	are	assumed	to	be	exponentially	distributed.	This	
is	 not	 completely	 realistic,	 as	 in	 practice	 the	 planned	 time	 for	 an	 appointment	 is	 set	 (for	
example	 ten	 minutes)	 and	 therefore	 deterministic.	 Having	 deterministic	 appointment	
durations	leads	to	a	pre-planned	number	of	patients	will	be	served	on	a	day,	which	would	be	
modelled	by	an	M/D/1	queue.	In	practice,	when	the	queue	becomes	longer,	the	outpatient	
department	might	decide	to	increase	the	capacity	by	shortening	the	appointment	durations	
of	 patients	 and/or	 planning	more	 appointments	 on	 a	 day.	 For	 the	 ease	 of	modelling	 this	
flexible	capacity	we	assume	the	service	durations	to	be	exponentially	distributed.	Therefore,	
the	outpatient	department	will	be	modelled	as	an	M/M/1	type	queue,	i.e.	a	stochastic	birth-
death	process.	
	
We	assume	the	decision	to	increase	the	capacity	of	the	outpatient	department	depends	on	
the	 length	 of	 the	waiting	 list.	 The	 outpatient	 department	 has	 a	 basis	 capacity	𝑚"#$%$	 and	
possible	extra	capacity	𝑚∗	leading	to	a	maximum	capacity	𝑚'#( = 𝑚"#$%$ + 𝑚∗.	Vis	&	Bekker	
(2017)	describe	the	modelling	of	the	appointment	system	with	a	queue	in	continuous	time	as	
an	M/D/1	queue	where	the	state	is	the	number	of	slots	at	the	waiting	list	for	a	patient	arriving	
at	time	𝑡:	

𝑋(𝑡)	=	backlog	in	slots	for	patients	arriving	at	time	𝑡.	
	
We	 will	 model	 the	 appointment	 system	 in	 a	 similar	 way,	 assuming	 exponential	 service	
durations	leading	to	an	M/M/1	queue	where	the	state	is	identical	to	the	case	of	Vis	&	Bekker	
(2017).	The	flexible	capacity	can	be	modelled	in	two	ways.	The	first	option	is	to	model	the	
arrival	rate	𝜆	to	be	dependent	on	the	backlog	𝑥.	This	is	analogous	to	the	model	described	by	
Vis	&	Bekker	(2017),	measuring	the	arrival	rate	in	terms	of	slots;	taking	𝜇 =	1	day.	A	day	has	a	
capacity	of	𝑚(	slots,	leading	to	an	arrival	rate:	

𝜆( =
𝜆
𝑚(
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The	second	option	is	to	model	the	service	rate	𝜇	to	be	dependent	on	the	backlog	𝑥	whereas	
the	arrival	rate	𝜆	does	not	depend	on	the	queue	length.	Then	the	service	rate	becomes:		
	

𝜇( = 𝑚(	slots	per	day	⋅ 1	day	= 𝑚(	
	
We	are	interested	in	the	limiting	distribution:	
	

𝜋6 𝑥 = 	
𝜆(78 ⋅ … ⋅ 𝜆:
𝜇( ⋅ … ⋅ 𝜇8

𝜋6(0)	

	
We	see	that	the	limiting	distribution	only	depends	on	the	ratio	<=

>
	(first	modelling	option)	or	

the	ratio	 <
>=
	(second	modelling	option).	We	can	easily	derive	that	these	ratios	are	equal:	

	

	
𝜆(
𝜇 =

𝜆 𝑚(
𝜇 =

𝜆
𝑚( ⋅ 𝜇

=
𝜆
𝜇(

	

	
Therefore,	we	can	conclude	both	types	of	modelling	are	equivalent	and	will	lead	to	the	same	
results	as	each	model	could	be	rewritten	in	the	other	variant.	From	now	on,	we	will	model	the	
increasing	capacity	by	using	𝜆(,	i.e.	the	arrival	rate	depends	on	the	backlog	𝑥.	
	
Basis	scenario	
We	start	by	modelling	 the	basis	 scenario	where	no	extra	 capacity	 is	available	 to	 see	what	
happens	to	the	queue	length	if	the	load	of	the	system	increases,	i.e.	the	arrival	rate	of	patients	
increases.	The	basis	scenario	can	be	modelled	as	a	birth-death	process	with	birth	rate	𝜆′ =
<

'@ABCB
	and	death	rate	𝜇 = 1	day.	The	expected	number	of	patients	follows	directly	from	the	

load:	
	

𝔼(𝐿) = FG

87F
,		 	 where	𝜌 = <I

>
.	

	
In	the	basis	scenario,	we	chose	the	capacity	𝑚"#$%$ = 4,	based	on	the	paper	of	Bussing	(2012).	
The	load	and	expected	queue	length	are	computed	using	MS	Excel	for	the	range:	𝜆 = 0, 4 .	
The	results	are	shown	in	Figure	1.	We	see	that	when	the	load	increases,	the	expected	number	
of	patients	increases	almost	exponentially,	tending	to	infinity	when	the	load	gets	close	to	1.		
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Figure	1:	Expected	number	of	patients	for	increasing	load	if	no	extra	capacity	is	available	

	
	
This	tendency	does	not	match	practice.	Even	though	the	load	in	the	outpatient	department	
system	often	exceeds	1,	the	waiting	list	does	not	become	infinitely	long,	as	the	outpatient	
department	will	undertake	steps	to	avoid	extremely	long	waiting	lists.	Extra	capacity	will	be	
deployed	by	planning	more	appointment	slots	on	a	day,	for	example	by	the	use	of	an	extra	
doctor	or	by	working	longer	days.		 	
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Three	options	of	increasing	capacity	
We	are	interested	in	the	effect	of	increasing	capacity	on	the	expected	access	time	of	arriving	
patients	when	the	 load	 increases.	Therefore,	 the	basis	scenario	where	no	extra	capacity	 is	
available	is	compared	to	three	different	ways	of	increasing	capacity.	
	
The	 first	option	 is	 to	 start	with	 the	basis	 capacity	𝑚"#$%$	 and	 increase	 the	 capacity	 to	 the	
maximum	capacity	𝑚'#(	if	the	queue	becomes	longer	than	a	certain	threshold	𝑎8.	This	abrupt	
increase	of	capacity	gives	the	following	structure	of	𝜆(:	
	
	

𝜆( =

𝜆
𝑚"#$%$

, 𝑥 < 𝑎8

𝜆
𝑚'#(

, 𝑥 ≥ 𝑎8
	

	
	
However,	 it	 is	more	 realistic	 that	 the	 capacity	 will	 be	 gradually	 increased.	 Therefore,	 the	
second	option	is	to	start	with	the	basis	capacity	and	gradually	increase	the	capacity	in	a	linear	
way	if	the	queue	exceeds	the	first	threshold	𝑎8.	If	the	queue	becomes	more	than	a	second	
threshold	 𝑎P,	 the	 maximum	 capacity	 is	 used.	 Of	 course,	 this	 gives	 a	 linear	 decrease	 in	
𝜆(	between	the	two	thresholds	𝑎8	and	𝑎P,	resulting	in	the	following	structure	for	𝜆(:	
	
		

𝜆( =

𝜆
𝑚"#$%$

, 𝑥 < 𝑎8

𝑥 − 𝑎8
𝑎P − 𝑎8

𝜆
𝑚'#(

−
𝜆

𝑚"#$%$
+

𝜆
𝑚"#$%$

, 𝑎8 ≤ 𝑥 ≤ 𝑎P

𝜆
𝑚'#(

, 𝑥 ≥ 𝑎P

	

	
	
The	third	option	again	concerns	a	gradually	increase	of	the	capacity,	but	this	time	a	smoother	
interpolation	between	the	basis	and	maximum	capacity.	An	appropriate	function	for	this	goal	
is	the	Cubic	Hermite	Spline	(Cubic	Hermite	spline	2017).	As	𝜆(	should	be	decreasing	between	
<

'@ABCB
	and	 <

'SA=
,	the	Hermite	basis	function	ℎ:8 𝑡 = 	−2𝑡V + 3𝑡P	is	used	and	transformed,	

resulting	in	the	following	structure	for	𝜆(:	
	
	

𝜆( =

𝜆
𝑚"#$%$

, 𝑥 < 𝑎8

−2
𝑥 − 𝑎8
𝑎P − 𝑎8

V
+ 	3

𝑥 − 𝑎8
𝑎P − 𝑎8

P 𝜆
𝑚'#(

−
𝜆

𝑚"#$%$
+

𝜆
𝑚"#$%$

, 𝑎8 ≤ 𝑥 ≤ 𝑎P

𝜆
𝑚'#(

, 𝑥 ≥ 𝑎P
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Figure	2	shows	the	three	different	structures	for	𝜆 = 0.2.	For	the	first	structure	option	𝑎8 =
35,	for	the	second	and	third	structure	options	𝑎8 = 10	and	𝑎P = 60.		
	
	
	

	
Figure	2:	the	structure	of	𝜆(	for	three	options	of	increasing	capacity	

	
	
Performance	measures	
We	want	 to	study	 the	expected	access	 time	of	patients	when	the	 load	 is	 increasing	 for	all	
options	of	 structures	 for	𝜆(.	As	our	 state	𝑥	 denotes	 the	backlog,	 the	expected	number	of	
patients	in	the	system	represents	the	number	of	slots	a	patient	have	to	wait	when	he	arrives.	
Thus,	the	expected	number	of	patients	equals	the	expected	access	time	of	a	patient	in	slots.	
	
The	expected	number	of	patients	in	the	system	can	be	computed	using	the	following	formula:	
	

𝔼(𝐿) = 𝑥 ⋅ 𝜋6(𝑥)
6

:

	

	
where,		
	

𝜋6 𝑥 =
𝜆(78
𝜇 𝜋6 𝑥 − 1 = 	

𝜆(78 ⋅ … ⋅ 𝜆:
𝜇( ⋅ … ⋅ 𝜇8

𝜋6(0)	

	
With	𝜆(	as	modelled	according	to	the	various	structures	and	𝜇( = 𝜇 = 1	day	for	all	𝑥.	
	
	
	
	
	

0

0,01

0,02

0,03

0,04

0,05

0,06

0 50 100 150 200 250 300 350

La
m
bd

a

x

Option	1

Option	2

Option	3



	 14	

The	computational	scheme	for	computing	the	expected	number	of	patients	works	as	follows.	
We	set	𝜋6 0 = 	1.	Then,	𝜋6 𝑥 	is	computed	for	the	first	𝑚	values.	We	chose	𝑚 = 300,	large	
enough	such	that	the	thresholds	𝑎8, 𝑎P < 𝑚.	Thus,	𝜋6 𝑥 	is	computed	for	1 ≤ 𝑥 ≤ 300.	For	
𝑥 > 300	we	compute	the	sum:	

𝜋6 𝑥
6

(\V:8

	

	
To	compute	this	sum,	we	need	to	assume	𝜆(	is	constant	for	𝑥 > 300,	which	is	arranged	by	the	
choice	of		𝑚 > 𝑎8, 𝑎P.	So,	for	𝑥 > 300	we	have	constant	𝜆( =

<
'SA=

	.	Then,	for	𝑥 > 300	we	
have:		

𝜋6 𝑥 =
𝜆 𝑚'#(

𝜇 𝜋6 𝑥 − 1 	

	
Thus,	for	𝑥 > 300:	

𝜋6 𝑥 =
𝜆 𝑚'#(

𝜇

(7V::

𝜋6 300 	

	
Where	𝜋6 300 	is	already	directly	computed	in	the	model.	Then:	
	

𝜋6 𝑥
6

(\V:8

=
𝜆 𝑚'#(

𝜇

(7V::

𝜋6 300
6

(\V:8

= 	
𝜋6 300
𝜆 𝑚'#(

𝜇

V:: ⋅
𝜆 𝑚'#(

𝜇

(6

(\V:8

	

	
From	series	theory,	we	know	if	 𝑟 < 1:	
	

𝑟(
6

(\^_8

=
1

1 − 𝑟 −
1 − 𝑟^_8

1 − 𝑟 =
𝑟^_8

1 − 𝑟	

	

Applying	this	for	𝑟 =
< 'SA=

>
	and	𝑛 = 300	gives:	

𝜋6 𝑥
6

(\V:8

= 	
𝜋6 300
𝜆 𝑚'#(

𝜇

V:: ⋅
𝜆 𝑚'#(

𝜇

(6

(\V:8

= 	
𝜋6 300
𝜆 𝑚'#(

𝜇

V:: ⋅

𝜆 𝑚'#(
𝜇

V:8

1 −
𝜆 𝑚'#(

𝜇

= 𝜋6 300 ⋅
𝜆 𝑚'#(

𝜇 ⋅
1

1 −
𝜆 𝑚'#(

𝜇

= 𝜋6 300 ⋅

𝜆
𝑚'#(

𝜇 − 𝜆
𝑚'#(

	

This	result	is	implemented	in	the	model.	Note	that	indeed	
< 'SA=

>
< 1	as	we	set	the	capacity	

𝑚'#( > 𝜆	for	the	whole	range	of	𝜆	and	𝜇 = 1.	
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Now	the	summation	of	all	𝜋6(𝑥)	for	the	first	300	states	and	the	sum	to	infinity	is	computed.	
All	values	of	 	𝜋6(𝑥)	are	normalized	by	dividing	by	the	total	sum.	The	normalized	values	of	
𝜋6(𝑥)	are	used	to	compute	the	expected	number	of	patients:	
	

𝔼(𝐿) = 𝑥 ⋅ 𝜋6(𝑥)
6

:

	

	
This	summation	needs	to	be	split	as	only	the	first	300	states	are	computed	directly.		
	

𝔼(𝐿) = 𝑥 ⋅ 𝜋6 𝑥 =
6

:

𝑥 ⋅ 𝜋6 𝑥 +	 𝑥 ⋅ 𝜋6 𝑥
6

V:8

V::

:

	

	
For	the	first	300	states,	the	sum	product	of	the	state	and	𝜋6 𝑥 	can	be	computed.	For	𝑥 >
300	the	sum	will	be	computed	in	a	similar	way	as	before,	assuming	constant	𝜆( =

<
'SA=

	for	

𝑥 > 300	and	
< 'SA=

>
< 1.	Similar	to	the	previous	summation	we	find	

	

𝑥 ⋅ 𝜋6 𝑥
6

V:8

= 𝑥 ⋅ 𝜋6 𝑥
6

V:8

= 𝑥 ⋅
𝜆 𝑚'#(

𝜇

(7V::

𝜋6 300
6

(\V:8

= 	
𝜋6 300
𝜆 𝑚'#(

𝜇

V:: ⋅ 𝑥 ⋅
𝜆 𝑚'#(

𝜇

(6

(\V:8

	

	
Using	series	theory,	we	know	if	 𝑟 < 1:	
	

𝑥 ⋅ 𝑟(
6

(\:

=
𝑟

𝑟 − 1 P	

and		

𝑥 ⋅ 𝑟(
^

(\:

=
𝑛 ⋅ 𝑟 − 𝑛 − 1 𝑟^_8 + 𝑟

𝑟 − 1 P 	

	
Combining	these	leads	to:	
	

𝑥 ⋅ 𝑟(
6

(\^_8

= 𝑥 ⋅ 𝑟(
6

(\:

−	 𝑥 ⋅ 𝑟(
^

(\:

=
𝑟

𝑟 − 1 P −
𝑛 ⋅ 𝑟 − 𝑛 − 1 𝑟^_8 + 𝑟

𝑟 − 1 P

=
−𝑛 ⋅ 𝑟 + 𝑛 + 1 𝑟^_8

𝑟 − 1 P 	

	

Applying	this	for	𝑟 =
< 'SA=

>
	and	𝑛 = 300	gives:	
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𝑥 ⋅ 𝜋6 𝑥
6

V:8

= 	
𝜋6 300
𝜆 𝑚'#(

𝜇

V:: ⋅ 𝑥 ⋅
𝜆 𝑚'#(

𝜇

(6

(\V:8

=
𝜋6 300
𝜆 𝑚'#(

𝜇

V:: ⋅
−300 ⋅

𝜆 𝑚'#(
𝜇 + 301

𝜆 𝑚'#(
𝜇

V:8

𝜆 𝑚'#(
𝜇 − 1

P

= 𝜋6 300 ⋅
−300 ⋅

𝜆 𝑚'#(
𝜇 + 301

𝜆 𝑚'#(
𝜇

𝜆 𝑚'#(
𝜇 − 1

P 	

		
	
This	result	is	implemented	in	the	model	to	complete	the	summation	
	

𝔼(𝐿) = 𝑥 ⋅ 𝜋6(𝑥)
6

:

	

	
Now	various	 results	 can	be	obtained	 about	 the	 access	 times	of	 patients	 in	 the	outpatient	
department	and	the	influence	of	increasing	capacity	on	the	expected	number	of	patients	in	
the	system,	which	are	presented	in	the	results	section.	
	
Furthermore,	it	is	interesting	to	compare	the	expected	number	of	patients	in	the	system	to	
the	fraction	of	time	extra	capacity	is	used,	i.e.	the	fraction	of	time	that	the	backlog	exceeded	
the	lowest	threshold:	
	

𝜋6(𝑥)
6

(a#b

	

	
However,	this	performance	measure	does	not	take	the	amount	of	extra	used	capacity	 into	
account.	Therefore,	the	relative	extra	capacity	used	is	more	informative.	The	relative	extra	
capacity	used	is	the	sum-product	of	the	amount	of	extra	capacity	used	and	the	fraction	of	time	
this	amount	is	used:		
	

𝜆
𝜆(
− 𝑚"#$%$ ∗ 𝜋6(𝑥)

6

(\:
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Abandonments	
Finally,	we	want	to	compare	the	expected	number	of	patients	in	the	system	when	increasing	
capacity	with	the	phenomenon	that	was	described	by	Hall	et	al	(2006)	called	reneging.	In	this	
situation	patients	 leave	the	queue	 if	 their	access	time	to	the	outpatient	department	 is	 too	
long.	This	is	modelled	as	an	M/M/1	queue	with	abandonments,	having	a	constant	arrival	rate	
𝜆,	but	the	death	rate	consists	of	a	summation	of	the	service	rate	and	a	rate	depending	on	the	
number	of	patients	in	the	queue:	𝜇 + 𝜃 ⋅ 𝑖,	where	𝜇	represents	the	service	rate	 𝜇 = 	 8	e#f

'@ABCB
,	

𝜃	represents	the	parameter	of	patients	leaving	the	queue	and	𝑖	represents	the	state	(number	
of	patients	in	the	system).	Note	that	the	birth-	and	death	rates	are	no	longer	constant	for	𝑥 >
𝑚 = 	300,	thus	the	summations	needed	to	compute	the	expected	number	of	patients	in	the	
system	cannot	be	computed	with	the	derivations	above	and	only	the	first	300	states	are	taken	
into	account.	However,	as	 the	results	of	 this	summation	 is	close	to	zero,	 the	effect	on	the	
expected	number	of	patients	is	negligible.		
	
	
3.2	Clinical	pathway	
As	explained	 in	section	3.1,	the	model	of	the	outpatient	department	can	be	rewritten	as	a	
birth-death	 process	 with	 constant	 birth	 rate	 𝜆	 and	 varying	 death	 rate	 depending	 on	 the	
capacity.	According	 to	Burke’s	 theorem	 (Burke's	Theorem	2016),	 in	an	M/M/1	queue	with	
arrival	rate	𝜆,	the	departure	process	is	also	a	Poisson	process	with	parameter	𝜆.	If	we	interpret	
this	 in	 the	 clinical	pathway,	 the	arrival	process	of	patients	of	 the	next	node	 in	 the	 clinical	
pathway	is	again	a	Poisson	process	with	parameter	𝜆,	independent	of	the	use	of	extra	capacity	
in	the	outpatient	department.		
	
Consequently,	under	the	assumption	of	exponential	service	times,	the	clinical	pathway	can	be	
modelled	as	a	Jackson	Network	where	every	node	can	be	modelled	separately	and	every	node	
does	not	influence	the	next	node.	When	modelling	the	next	node	in	the	clinical	pathway,	in	
our	 example	medical	 examination	 (for	 example	 a	 CT-scan),	 we	 can	 use	 the	model	 of	 the	
outpatient	department	by	changing	some	parameters.	Again,	we	need	to	assume	the	service	
durations	are	exponentially	distributed	to	obtain	analytical	results,	although	it	is	more	likely	
the	service	durations	are	deterministic.	Furthermore,	In	the	case	of	medical	examination	it	is	
less	likely	extra	capacity	is	available	as	this	does	not	only	depend	on	the	available	time	of	the	
doctor’s	but	also	on	the	scanning	equipment.	Thus,	 for	modelling	medical	examination	we	
could	even	use	the	reduced	model	of	the	outpatient	department,	just	having	basis	capacity.	
	
Similarly,	the	model	of	the	outpatient	department	could	be	rewritten	to	a	model	for	surgery/	
the	operation	room.	In	this	case,	it	is	unlikely	extra	capacity	is	available,	as	it	depends	on	the	
availability	 of	 doctors,	 assistants,	 rooms	 and	 equipment.	 The	 assumption	 of	 exponential	
service	times	is	more	realistic	for	surgery	as	the	time	needed	for	surgery	is	more	uncertain	
then	at	a	scan	or	outpatient	department	visit.	
	
The	hospital	stay	is	harder	to	model	because	the	model	of	the	outpatient	department	needs	
to	be	adapted	to	an	M/M/S	queue.	The	assumption	of	exponential	service	duration	is	plausible	
in	this	case,	though	the	service	duration	is	quite	long	compared	to	the	outpatient	department	
(often	a	few	days	instead	of	just	a	short	appointment).	Also	in	this	situation,	the	use	of	extra	
capacity	 is	not	very	 likely,	hospitals	cannot	easily	add	beds	 to	a	ward	as	an	extra	bed	also	
comprises	extra	nurses	and	other	care	workers.	
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As	all	nodes	in	the	clinical	pathway	could	be	modelled	separately	and	do	not	influence	each	
other,	 results	could	be	obtained	similar	 to	 those	of	 the	outpatient	department.	Therefore,	
only	for	the	outpatient	department	results	are	obtained	and	described	in	the	next	section.	
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4. Results	
	
Various	results	of	performance	measures	are	obtained	for	the	outpatient	department.	First,	
the	expected	number	of	patients	in	the	system	𝔼 𝐿 	is	computed	for	all	three	structures	of	
increasing	 capacity.	 In	 all	 scenarios,	 we	 take	 𝑚"#$%$ = 4,𝑚'#( = 6.5	 and	 𝜇 = 1.	 These	
parameters	are	roughly	based	on	the	paper	of	Bussing	(2012).	To	compare	the	effect	of	the	
three	structures	of	𝜆(,	for	both	the	second	and	third	structure	we	choose	𝑎8 = 10	and	𝑎P =
60.	For	the	first	structure	(abrupt	increase	of	the	capacity)	we	choose	𝑎8 = 35.	Figure	3	shows	
the	expected	number	of	patients	𝔼(𝐿)	for	the	three	options	of	increasing	capacity	in	the	range	
𝜆 = 	 [0.2, 0.4, … , 6]	and	the	basis	scenario	without	increasing	capacity	for	𝜆 = 0, 4 ,	plotted	

against	the	basis	load	𝜌 = 	
< '@ABCB

>
.	

	
	

	
Figure	3:	Expected	number	of	patients	in	the	system	against	load	for	basis	capacity	and	three	options	

of	increasing	capacity	
	
We	see	that	the	expected	number	of	patients	in	the	system	is	lower	in	the	cases	where	extra	
capacity	is	used	from	when	the	load	approaches	a	value	of	1.	However,	if	the	load	becomes	
more	than	approximately	1.5,	the	system	with	extra	capacity	becomes	instable	and	expected	
number	of	patients	will	tend	to	infinity	again.	Furthermore,	the	expected	number	of	patients	
grows	more	fluently	if	the	extra	capacity	is	added	fluently	as	in	the	second	(linear)	and	third	
(Hermite	spline)	structures.	The	third	structure	does	not	have	much	influence	on	the	expected	
number	of	patients	in	the	system	compared	to	the	linear	increase	of	capacity.	It	is	not	possible	
to	estimate	which	structure	is	most	realistic	for	the	outpatient	department,	as	we	do	not	have	
data	concerning	the	number	of	patients	in	the	outpatient	department	system	in	relation	to	
the	used	extra	capacity	available.		
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Figure	4	shows	the	corresponding	relative	extra	capacity	that	is	used	for	the	three	options,	
assuming	the	same	parameters	as	before.	We	see	the	relative	extra	used	capacity	is	almost	
equal	for	options	2	and	3,	whereas	more	capacity	is	used	when	the	first	option	for	increasing	
capacity	is	applied.		
	
	
	

	
Figure	4:	Relative	extra	capacity	that	is	used	against	the	load	for	three	options	of	increasing	capacity	
	
Combining	both	figures	3	and	4,	we	see	that	if	the	load	of	the	system	is	below	1.2,	the	second	
and	third	option,	i.e.	gradually	increasing	the	capacity	leads	to	both	a	lower	expected	number	
of	patients	in	the	system	and	a	smaller	amount	of	used	extra	capacity.	Only	if	the	load	exceeds	
1.2	the	expected	number	of	patients	is	smaller	than	when	abrupt	increase	is	used,	as	for	the	
first	option	immediately	the	full	available	extra	capacity	is	added.	Nevertheless,	in	the	scenario	
with	parameters	as	above,	we	would	advise	 to	 increase	 the	capacity	gradually	 rather	 than	
abrupt.	
	
Influence	of	threshold	parameters	
To	determine	on	which	moment	extra	capacity	should	be	used,	we	tried	to	gain	some	more	
insight	in	the	influence	of	the	parameters	𝑎8	and	𝑎P,	the	threshold	for	the	backlog	at	which	
extra	capacity	is	added.	Figure	5	shows	the	expected	number	of	patients	in	the	system	for	the	
three	different	structures	for	various	values	of	parameters	𝑎8	and	𝑎P.	All	other	parameters	
are	equal	to	the	case	above.			
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Figure	5:	Expected	number	of	patients	in	the	system	against	load	for	various	values	of	threshold	

parameters	𝑎8	and	𝑎P		
	
	
Of	 course,	 lower	 threshold	 values	 𝑎8	 and	 𝑎P	 lead	 to	 a	 shorter	 expected	 queue,	 as	 extra	
capacity	 is	added	even	when	the	backlog	is	relatively	small.	Note	that	 if	the	thresholds	are	
really	small	(𝑎8 = 10/	𝑎8 = 5	and	𝑎P = 15)	the	shape	of	the	graph	of	the	expected	number	
of	patients	looks	like	an	elongated	version	of	the	graph	of	the	expected	number	of	patients	
without	extra	capacity,	which	is	not	realistic.	It	is	more	likely	the	queue	will	get	longer	for	a	
while,	after	which	extra	capacity	is	made	available	which	will	shorten	the	waiting	list.	Apart	
from	this,	it	is	again	hard	to	draw	conclusions	on	which	values	for	𝑎8	and	𝑎P	are	realistic	and/or	
optimal	because	of	a	lack	of	data	about	the	real	situation	in	the	outpatient	department.	The	
expected	number	of	patients	tends	to	infinity	again	if	the	basis	load	becomes	approximately	
1.5,	for	all	structures	and	values	of	𝑎8	and	𝑎P.		
	
We	see	that	the	influence	of	the	structure	of	adding	capacity	has	most	influence	in	the	last	
row	of	parameters	in	the	legend	(𝑎8 = 50/	𝑎8 = 20	and	𝑎P = 80).	This	is	caused	by	the	large	
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spread	in	the	values	of	parameters	𝑎8	and	𝑎P,	which	leads	to	a	slow	increase	of	the	capacity	
in	the	second	and	third	structure.		
	
	
	

	
Figure	6:	Fraction	of	time	extra	capacity	is	used	against	basis	load	for	various	values	of	threshold	

parameters	𝑎8	and	𝑎P	
	
	
Figure	6	 shows	 the	 fraction	of	 time	extra	 capacity	 is	used	belonging	 to	 the	 structures	and	
parameters	showed	above.	Clearly,	the	fraction	of	time	extra	capacity	is	used	is	larger	if	the	
parameter	𝑎8	 is	 smaller,	 as	extra	 capacity	 is	 added	 from	a	 lower	 state.	 There	 is	not	much	
difference	in	the	fraction	of	time	extra	capacity	is	used	between	linear	increase	(option	2)	and	
increasing	capacity	according	to	a	Cubic	Hermite	Spline	(option	3).	We	see	that	if	the	capacity	
is	increased	abruptly	(option	1),	the	fraction	of	time	extra	capacity	is	used	is	lower	than	if	the	
capacity	is	increased	gradually,	because	the	threshold	for	abrupt	increase	is	higher	(the	mean	
of	the	parallel	thresholds).		In	this	figure,	the	fraction	of	used	extra	capacity	is	not	taken	into	
account.		
	
Figure	7	shows	the	relative	extra	capacity	used,	we	see	that	 these	graphs	are	all	 relatively	
close	to	each	other.	Of	course,	for	lower	threshold	values	𝑎8	and	𝑎P	the	relative	extra	used	
capacity	is	larger,	as	even	when	the	backlog	is	small	extra	capacity	is	added.	Furthermore,	we	
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explained	 by	 the	 fact	 that	 in	 option	 1	 immediately	 the	 maximum	 capacity	 is	 used	 if	 the	
threshold	is	exceeded.		
	
	
	
	

	
Figure	7:	Relative	extra	capacity	that	is	used	against	basis	load	for	various	values	of	threshold	

parameters	𝑎8	and	𝑎P	
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Abandonments	
Now	we	compare	the	expected	number	of	patients	in	the	system	of	the	situations	in	figure	3	
with	the	situation	where	no	extra	capacity	is	available,	but	patients	abandon	the	queue	if	the	
waiting	list	is	too	long.	In	figure	6	we	see	the	expected	number	of	patients	as	shown	in	figure	
3	again,	but	the	expected	number	of	patients	of	the	model	with	abandonments	is	added	for	
two	different	values	of	the	parameter	𝜃.	All	other	parameters	are	equal	to	the	situation	as	
shown	in	figure	3.		
	

	
Figure	6:	Expected	number	of	patients	in	the	system	against	load	for	the	scenario	of	patients	leaving	

the	queue	with	rate	𝜃,	compared	to	figure	3	
	
	
We	see	the	expected	number	of	patients	strongly	depends	on	the	value	of	the	parameter	𝜃,	
which	was	not	possible	to	estimate	because	we	had	no	data	available.	 If	we	expect	a	high	
abandoning	rate	𝜃,	patients	do	not	have	much	patience	to	wait	and	many	patients	leave	the	
queue	and	for	example	choose	to	go	to	another	hospital,	which	leads	to	a	smaller	expected	
number	 of	 patients.	 Note	 that	 the	 expected	 number	 of	 patients	 in	 the	 cases	 with	
abandonments	remains	stable,	whereas	the	other	situations	tend	to	infinity	when	the	load	
increases.	Adding	capacity	 leads	to	a	stable	system	even	when	the	load	exceeds	1,	but	the	
system	tends	to	infinity	again	when	the	load	approaches	1.5.	
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5. Conclusion	
	
We	derived	a	model	for	the	clinical	pathway	assuming	exponential	service	times,	causing	the	
model	could	be	split	in	separate	models	for	the	various	nodes	in	the	network,	as	the	nodes	do	
not	influence	each	other	according	to	Burke’s	theorem.	We	expect	increasing	capacity	in	for	
example	 the	 first	 node	 (the	 outpatient	 department)	 will	 influence	 the	 arrival	 process	 of	
patients	in	the	next	node	and	the	service	times	of	appointments	in	the	outpatient	department	
are	 in	 real	 life	 deterministic.	 Therefore,	 we	 can	 conclude	 assuming	 exponential	 service	
duration	 is	not	appropriate	 in	all	 nodes	of	 the	network.	 Interesting	 future	 research	would	
comprise	approaches	to	networks	of	queues	where	the	service	parameters	depend	on	the	
state	of	 the	 system	without	 the	exponential	 assumption,	 i.e.	 a	network	of	M/G/1	queues.	
Based	on	the	literature	studied,	we	can	expect	it	will	be	hard	to	model	such	a	network	without	
using	 simulation,	 as	 it	 is	 hard	 to	obtain	 exact	 results	 for	 networks	without	 the	Markovian	
property.		
	
Nevertheless,	 the	 model	 for	 the	 outpatient	 department	 was	 elaborated	 and	 leaded	 to	
interesting	 results.	We	 see	 adding	 capacity	 significantly	 reduces	 the	 expected	 number	 of	
patients	in	the	outpatient	department	system	and	therefore	the	access	times	of	patients.	We	
see	the	system	remains	stable	until	the	load	of	the	system	is	almost	1.5	if	extra	capacity	is	
used,	whereas	the	system	without	extra	capacity	becomes	unstable	if	the	load	approaches	1.	
Furthermore,	when	taking	both	the	expected	number	of	patients	and	the	relative	used	extra	
capacity	in	the	system	into	account,	we	would	advise	to	increase	the	capacity	gradually	rather	
than	abrupt,	as	this	leads	to	both	a	lower	use	of	extra	capacity	and	a	lower	expected	number	
of	patients	until	a	load	of	approximately	1.2.	However,	we	see	it	is	hard	to	draw	conclusions	
about	which	estimations	for	parameters	and	increasing	capacity	are	realistic	because	we	did	
not	 have	data	 available.	 For	 further	 research,	 it	would	be	 interesting	 to	 collect	 data	 from	
outpatient	departments	and	verify	which	of	the	 increasing	capacity	structures	described	 in	
this	paper	is	most	realistic	and	which	threshold	parameters	are	used	in	practice.	
	
Additionally,	it	would	be	interesting	to	investigate	whether	outpatient	departments	perceive	
that	patients	leave	the	queue	if	they	have	to	wait	too	long	and	in	case	they	do,	combine	the	
effect	of	abandonments	and	using	extra	capacity	and	derive	the	influence	on	the	expected	
number	of	patients	in	the	system.		
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Appendices	
	
Appendix	A	
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