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Abstract

In this research we study the delay of a customer in polling systems with
simultaneous batch arrivals. Customers arrive according to a Poisson process. At
any arrival epoch a batch of customers may arrive simultaneously at the different
queues, according to a general joint batch-size distribution. The queues are visited
by the server in cyclic order. The service times and the switch-over times are
exponentially distributed and the service discipline is gated. The goal of this paper is
to develop and evaluate a new closed-form expression for the expected delay at
each queue that work well for arbitrary load values.

Key words: Polling systems; Approximation; Delay, Batch arrivals, Simultaneous
arrivals, Heavy traffic, Light traffic.
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1 Introduction

In our daily real-life situations, queueing is all around us. Waiting lines in traffic
situations, in supermarkets, at elevators or just at another ordinary store. Also at a more
abstract level, such as communication systems, computer networks and at production
factories queueing arises. To optimize or to simulate these situations queueing models
are developed. This paper is about a special class of these queueing models called
polling models.

1.1  Applications of polling systems

A polling system is a multi-queue single-server system in which the server visits the
queues in some fixed order. Typically the server visits the queues in a cyclic order, also
in this paper. The server visits the queues to serve the customers waiting at the queues,
typically incurring some switch-over time to move from one queue to the next. Typical
application fields of these polling models are computer communications systems,
maintenance systems, traffic management and flexible manufacturing systems.
Consider, for example, a Web server that needs to respond to numerous download
request initiated by different users. A download from the web generally consists
multiple files (e.g text, music, images), each of different size. Each of these files generates
different download requests to the Web server. The server typically implements some
schedule to determine the order in which these requests are handled. To implement
such schedule the requests are buffered in separate queues, typically depending on the
size of the download. The Web server continuously polls the different queues to check
for waiting requests to be executed. In this example, the server represents the Web
server and the customers represent the download requests.

Another situation, which we come across in real-life situations quite often, is a Local
Area Network (LAN) in which different end users want to transmit a number of files. If
such users want to transmit something over the network, transaction requests are
placed into a buffer. When a user gets the right for transmission, one or more requests
are handled/executed. In this example, the server represents the right for transmission,
the queues represent the buffers and the customers represent the requests initiated by
the end user.

The last example that will be discussed in this paper is traffic management. Waiting for a
traffic light is always a cause of annoyance, impatience and loss of valuable time and
money. At a traffic intersection, different cars arrive at different lanes for multiple
directions. When the traffic light for one specific lane turns green, one ore more cars can
pass the intersection and the other lanes must wait untill their trafficlight turns green.
In this example, the server is represented by the trafficlight, the customers represent
different cars and the queues represent the different driving lanes. More of these
applications can be found in [3].



1.2 Previous research

The first literature about polling models is written in the early 1960s (cf. [1, 2] for
overviews). In the past few decades, polling systems have received much attention. In
many articles about these polling models it is assumed that customers arrive through an
independent Poisson process. This means that at a particular queue exactly one
customer arrives at a time.

However, in many applications customers arrive in batches at the same time at different
queues. The correlation structure in the arrival processes may lead to improper
performance predictions. In the examples above there could be batch arrivals that could
lead to longer waiting times. Therefore polling models with simultaneously batch
arrivals have received more attention since the 1990s. Levy and Sidi [4] study polling
models with simultaneous batch arrivals and also van der Mei [5, 6]. For models with
gated (the server serves the customers that are in the queue at an arrival point and then
switches to the next queue) or exhaustive service (the server serves all customers that
are in the queue until the queue is empty and then switches to the next queue) Levy and
Sidi [4] derive a set of linear equations for the expected delay at each of the queues.
They also provide a pseudo-conservation law (PCL) for the system with correlated
arrivals. Boxma and Groenendijk [7] earlier derived a pseudo-conversation law for
uncorrelated arrivals and Levy and Sidi added a term to the right hand side of this
formula. This PCL is an exact expression for a specific weighted sum of the expected
waiting times at the different queues. Van der Mei [5] derives a closed-form expression
for the expected delay at each of the queues when the load tends to unity. This will be
used in this paper together with the closed-form approximation for mean waiting times
of Boon, Winands Adan and van Wijk [8]. The approximation of Boon et al. is for
uncorrelated arrivals and must be extended for correlated batch arrivals.

Because of its simple form, the approximations of [8] and [5] are very suitable for
optimization purposes. Although the mean waiting time of systems with gated or
exhaustive services are studied, the results can easily be extended to higher moments
and other service disciplines.

1.3 Goal of this paper

The goal in this paper is to extend the approximation for the mean waiting time for each
queue of van der Mei [5] so that it can be used for arbitrary load values. Therefore
known light traffic (LT) expressions from [8] will be used and combined together with
the heavy traffic (HT) expressions of van der Mei [5]. The second goal is to build a
simulation program that can test this approximation and produce numeric results
together with an error rate of the approximation compared to the exact waiting time.
We consider a cyclic polling model with gated service and exponential service-time and
switch-over time distributions. The correlation structure is modeled as follows.
According to a Poisson process arrival points are generated. At each arrival point,
batches of customers may arrive simultaneously at the different queues. These batches
arrive according to a general joint batch-size distribution.

The focus is on the expected delay at each of the queues with arbitrary load values,
denoted by p. Denoting the delay at queue i by W; we focus on a linear combination of
the light traffic limit explained in [8] and the heavy traffic limit explained in [5].



1.4 Outline

The remainder of this paper is structured as follows. In the next chapter the model
description is explained together with the main result. After that we explain the
simulation and produce some numerical results with error rates. In the last chapter we
discuss some results and give information for further research.



2 Model

Because the approach taken is that of combining known models of [5] and [8], both
models will be explained in this chapter. Consider a polling system consisting of N > 2
queues, Q,, ..., Qy, with an infinite-size buffer. These queues are served by a single
server that visits and serves the queue in cyclic order. Arrivals are generated according
to a Poisson process with rate A. At each arrival point, a random batch of size K =
(Ky,...,Ky) arrives at the queues, where K; stands for the number of customers arriving
at Q; at an arrival point. The random vector K is assumed to be independent of previous
or future arrival points. Denote the joint batch-size distribution by m(ky, ..., ky) =
Prob{K; = kq,..,Ky = kp}(k; =0,1,...,for i = 1,...,N). Denote the arrival rate at Q;
by A; := AE[K;], and letK;; := E[K;(K; — 1)]fori=1,..,Nand K;; := E[K;K;] fori=#].

Denote the total arrival rate by A := Zﬁ\':l A;. The (finite) k-th moment of the service

time is defined by bi(k), k =1,2,... The load offered at Q; is defined by p; = Aibi(l) which
is AE[K;] bi(l). The total offered load of the system is equal to p := Z’iv=1 pi- Denote the k-
th moment of the service time of an arbitrary customer by h®) := % N Aibi(k), k=1,2.
Polling instants are defined as the epochs at which the server arrives at a queue to serve
customers waiting at that particular queue. Often, two different types of service
disciplines are considered in literature, gated and exhaustive. In this paper, only the
gated service discipline will be handled. It is not difficult to extend the results in this
paper for exhaustive and other service disciplines, but this is not in the scope of this
paper. With gated service disciplines, only those customers will be served that are
present at the polling instant at Q;. Customers that arrive after this polling instant will
not be served at that time, but at the next polling instant at Q;. After serving the

customers at Q; the server immediately proceeds to the next queue. The duration of the
switch-over period is exponentially distributed with mean r; and (finite) second

moment ri(z). Denote the first moment of the total switch-over time by r := Z?’:l r; and
the second moment of the total switch-over time by ri(z) =yN, ri(z) + Xizjriry. Itis

assumed that the interarrival times and service time are mutually independent of the
state of the system. The system must be stable, i.e. p < 1, more information about this

can be found in [9], and the system is in ready state. Let W; be the delay of a customer at
Q;. We are interested in E[W;], the expected delay at Q;.



3 Approximation

The idea behind the approximation is that we first determine a heavy-traffic (HT) limit.
After this we develop a light-traffic (LT) limit and interpolate between those two limits
in the form of the following formula:

ai+ Bip
E[Wi,approximated] = ? (1)

It is proven that capturing the behavior in an exact way, requires the (1- p) term in the
denominator. This is not surprising, because nearly all mean waiting times of queueing
systems show this behavior, except some special cases.

3.1 Heavy-traffic asymptotics
In [5] van der Mei determined the following closed-form expression:

w; = M1 —p)E[W;], fori=1,..,N. (2)
where fori € G,

1+ ﬁi b(Z) + 1 (1 +5 ) n j’(l + ﬁl) Zy:l Zg:l bj(l)bl(cl)l(j'k
= =Tr i
1 +ZN=1P12n 2p) 2 pi 21 +ervn=1p1%1)

w;

In the above expression for each variable x that is a function of p, the hat-notation is an
indication for its value at p = 1. The above expression is a Heavy Traffic (HT) limit, and
the rate at which E[W;] tends to infinity as p T 1 is w;. The proof of the expression above
can be found in [5].

As said before, the goal of this paper is to extend the above expression so that it can be

used for more arbitrary values of p. To accomplish this, in (1) we define f5; as w; minus
the LT -limit that we will determine in the next section.
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3.2 Light-traffic asymptotics

To approximate a light traffic limit we know that the system is empty when a batch of
customers arrives. The number of customers a customer has to wait for is the number of
customers before him in the queue and possibly the customers in the other queues
depending on where the server will be at the arrival point of the batch. The idea for this
approximation is to compute the average waiting time for an arbitrary customer
arriving at Q;, called a tagged customer. To do this we first compute the average number
of customers that the tagged customer has to wait for in his own queue and then we
compute the average number of customers that the tagged customer has to wait for in
other queues. Thus, first we look at arriving customers at 1 queue. With probability p;
there will be arriving b; customers, i = 1, ..., m. So we have m different probabilities that
different batch-sizes arrive at that queue. Then,
pibi

z:;'n=1 pjbj
Moreover, it is easy to see that the expected number of customers before the tagged
customer becomes:

E[# of customers before tagged customer]=

Xt q;E[# customers before tagged cust.in batch type i]

q; = P(tagged customer is in batch type i) =

b; l
k=1 b;

bi—1

E[# customers before tagged customer in batch type i] = ), 5

Thus,
E[# customers before tagged customer] = X1, g; %

(k—1) =

This is the expected number of customers that an arbitrary arriving customer has to
wait for in his own queue. This was the first step, at the second step we are interested in
the expected number of customers in the other queues that an arriving customer has to
wait for.

We have the following joint batch-size distribution:

P1 (b11, b1, ... ,by1)

Ds (b1s, bys, . , bys)

Pm (blm: mer ey bNm)

With probability p; there will be arriving by, by, ..., by customers in Q4, Q, ..., Qn

respectively. Then, again if a tagged customer is in Q;
Prbik k=1

qix = P(tagged customer T; in batch type k) = < ,
Xilipjbij

., m

E[ # customers in Q; | tagged T; | = X¥1, qixE[size of Q; | type k]
E[ # customersin Q; | tagged T; | = XxLq Qixbji

11



If we take an example with 3 queues:

E[Wl,LT] =

mTrz bgl)E[# customers in Q3 | T4]

+ % bgl)E[# customers in Q, | T]

+ bfl) E[# customers before tagged in Q]

e

2r

This can also be calculated for the other queues. With 4 queues it will be:

E[Wl,LT] =

% bil)E[# customers in Q4 | T4]

N Tl-:rz bél) E[# customers in Q5 | T1]
+ % b£1) E[# customers in Q; | T4 ]

+ bfl) E[# customers before tagged in Q]

e

2r

This can also be calculated for the other queues. To generalize this we introduce the
following variables:

a, = P(tagged customer must wait for Q)
In the previous example a, = P(tagged customer must wait for Q,) = Lf%

b,(cl) = mean service time Q

N
A= Z[akbkE[# customers in Qi]], fork #i
k=1

The approximation of the light traffic limit becomes:

E[W;]= A; + bi(l)E[# customers before tagged in Q;]+

r@

T

We will use this light traffic approximation for «; in (5) for the simulation.
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4 Numerical validation of the approximation

The numerical validation of the approximation will be executed in Java. As you may
know Java is a programming language and open-source computing platform that is very
suited for the visualization and simulation of various kinds of models in mathematics,
but also in computer science, business cases and even cell phones or websites. Because
of its safety, efficiency and reliability Java is chosen for building the simulation for this
paper. To save time, which we will need for the analysis and simulation, we will not
build a completely new simulation. Petra Vis [10] has built a simulation program for
polling systems that we will be using here. However, this simulation tool is not suited for
simultaneous batch arrivals, so we have to make some adjustments to this program in
able it to work properly.

Together with other adjustments to determine the values of the variables explained in
the model, the main adjustment we had to make was the random arrivals of batches of
customers to the system. As input we have multiple input parameters. The first is the
general joint batch-size distribution, for example if we want to simulate 3 queues we

could have the following batch size distribution: 7(1,2,4) = %, m(2,1,0) = i and

7(0,1,2) = i. Which means that with probability %2 there will be 1 arrival at Q4, 2
arrivals at Q, and 4 arrivals at Q3. The same holds for the other, except with other
probabilities and arrivals. The second and third parameters are ri(z), ri(l), bi(l). The other
input parameters are the number of queues, the squared coefficient of variation of the
arrival distribution (always 1 in this paper in order to have exponential interarrival
times), the overall 4, which is the arrival rate of the batches that arrive simultaneously,
and the service policy, which is always FCFS. FCFS (First Come, First Served) is a service
policy whereby the customers will be served according to the order that they arrived,
without preferences. This is a standard policy for the processing of most queues in
which people have to wait for service. After reading the input parameters, the variables
such as p,4;, p;, E[K;], K; j can be calculated. The squared coefficient of variation of the
service time distribution is set to 1 in order to get exponential service times. The output
of the simulation will be the expected waiting time of the approximation of this paper
and the mean waiting time of the simulation, thus E[Wi,app] and E[W;]. The next step is
the simulation of the arrivals at the different queues. In order to make different arrivals,
switch moments and departures possible the program makes use of so called
EventQueues, which are simply events waiting in queues to be handled. Different events
are created, each event has a different starting time and has a service time which is a
random variable drawn from the corresponding distribution, in this paper this will be
the Exponential distribution. Each of the events are placed into the EventQueue, sorted
such that it will be handled according to FCFS.

In order to check the results that will be obtained by the simulation we will be using the
Pseudo Conversation Law.

13



As said earlier in the previous research section, Levy and Sidi provided an Pseudo
Conversation Law (PCL) for polling systems with simultaneous batch arrivals by adding
a part to the right hand side of the PCL provided by Boxma and Groenendijk in 1987.
The PCL that must be used here is:

N

Z?’_l/lib.(z) r®2 r N N
E[W.] = p2t=mti _ —[ 2 _ Z 2] Z Elmt
Zpl Wil=rS 0t Pt sa P P2 [M}]

i=1 ) -
7/1 b;b
T
1-p &
Where E[M} | stands for the mean amount of work left behind at Q; after service at Q;.
This depends on the service discipline, in this case Gated, so
r
E[M{] =pi=p?1_p
After programming this PCL, we can simulate a polling system with simultaneous batch
arrivals. However, after running multiple simulations, the errors between the left hand
side (LHS) and the right hand side (RHS) of the PCL where varying between 0.01 percent
and 6 percent. The simulation time of the polling system and the warm-up time of the
system caused this large variation in the error percentage. Also, in the program, multiple
simulation runs are executed. This is because over these runs, a confidence interval is
calculated. The confidence interval that will be used is 0.005 and is calculated as follows:
s Ew (1]
© #runs

i

B (Zalh;rluns EWi[l])Z
# runs

Zalht:rluns EWi [l] 2

#runs —1

0;
& =196 ———
' V# runs

interval; = y; — g interval, = u; + ¢

interval;+ interval
> 0.005 * = .
is also possible to insert a maximum number of runs that can be executed. This number

of runs, together with the warm-up and simulation time, could have an enormous
influence on the error between the RHS and the LHS. In order to minimize this error and
execute the program with the best parameters to get reliable results, the program is
executed multiple times with different values of these constants. For now, it is tested
with a 3 queues, and with the same batch size distribution as on the previous page.

When interval, — interval, another run will be executed. It

14



The full overview of the results with different simulation time and runs can be found in
Appendix . As the results clearly show, when p comes closer to 1, the more important it
becomes to have a larger number of runs and a longer simulation time. As the results
show, when less runs are performed the probability of getting an outlier is higher (the
outliers are colored grey in the results). The warm-up time does not have a significant
impact on the error rate, however it may not be too low, it will be set on 500.000 time
units.

To let the program be more time efficient we could produce a formula for the number of
runs as a function of p, but this is not necessary for now, the simulation time will be set
on 30.000.000. After analyzing these results and setting the variables to those values
that produce the lowest error percentage, we can finally simulate the polling system and
test our approximation (5).

To analyze these results to see if we have produced an accurate approximation, we
define a relative error of the approximation, error %, by:

E[Wi(app)]-E[W;]

s ) x 100 % (3)

error; % := abs (

To answer the question for which values the approximation is accurate we first perform
3 numerical experiments. The first experiment is a symmetric 3-queue model. As said
before the service discipline is gated for all queues. The switch-over times are
exponentially distributed with mean 1.00. The service times are exponentially
distributed with mean 1. The squared coefficient of variation of the service times is 1. At
any arrival epoch, the joint batch-size distribution is as follows:

m(1,2,4) = l, m(2,1,0) = 2and m(0,1,2) = 2. The mean batch sizes can be calculated as
2 4 4

explained in the Model section. The second model is the same as the first experiment
except the mean times are (1, 1.2, 0.75) for Q4, Q, and Q3 respectively. The arrivals at
each queue are twice the amount as in the first experiment. The third experiment is the

same as the second except the arrival distribution is: 7 (2,4, 15) = %, n(4,2,8) = iand

7(0,1,8) = i. The third experiment is executed such that p; differs from each other.
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Figure 1 shows the exact and the approximated values of van der Mei and this paper.
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Figure 1: exact and approximated waiting times for numerical experiments

The first two numerical experiments showed the above behavior. The approximation of
this paper is right on top of the exact waiting times in figure 1. The approximation of this
paper is right on top of the exact waiting times in figure 1. If we look at the error rate
defined in (6) we see that in the first two experiments it was varying between 0.6 and 3
%, which is better than expected. The next figure shows this error rate and compares it
to the approximation of van der Mei (1).
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Figure 2: error rate (6) of approximation in this paper vs. van der Mei
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Again, the first two experiments showed the above behavior where the error rates
where significantly lower than those error rates from the approximation. As said before
the error rate of the approximation (5) is low for arbitrary load values. The error rate of
van der Mei is perfect for load values that are close to 1 but not for lower load values.
For the third numerical experiment the error rate was varying between 2% and 9% for
load values between 0.25 and 0.7. The third experiment performed not as well as the
first two but still has accurate results comparing it to the approximation to van der Mei.
Figure 3 shows the error rate of the third experiment compared to the error rate of van
der Mei.

14
12

10

Error %

6 Error % Mei

Error % Bok

0 0.2 0.4 0.6 0.8 1
load

Figure 3: Error rate of the third experiment of the approximation (1) vs. the
approximation of van der Mei.

As the results shows the simulation performs not as good as the first two experiments,
this is due to the fact that this experiment is more asymmetric than the other two. After
these experiments we tested 3 other variants: one with independent Poisson arrivals,
one with independent batch Poisson arrivals and the last one with Simultaneous batch
Poisson arrivals. The results are shown in table 1.

Independent Poisson Independent Batch Poisson Simultaneous Batch Poisson
Load E[w;] E[W; app] E[W;] E[W;, app] E[W;] E[W; app]
0.01 2.03 2.03 3.20 3.21 5.46 5.46
0.02 2.06 2.06 3.25 3.25 5.52 5.53
0.05 2.16 2.16 3.38 3.39 5.74 5.74
0.10 2.33 2.33 3.64 3.63 6.10 6.11
0.20 2.74 2.75 4.22 4.22 6.99 6.99
0.50 5.00 4.99 7.38 7.39 11.79 11.78
0.70 9.00 8.99 13.02 13.03 20.19 21.28
0.80 13.98 14.00 20.01 20.07 30.90 31.91
0.90 29.00 28.99 41.28 41.20 62.74 63.80
0.95 59.27 59.00 84.14 83.47 127.31 130.58
0.99 300.10 298.99 424.01 421.62 617.66 620.83

Table 1: Expected waiting time vs. the approximated expected waiting time
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As the results clearly show the approximation works well for all variants. All of the
results above show that the approximation can be applied for all kind of different

models and variants. Only the asymmetric models performed slightly worse, but still has
accurate results.
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5 Discussion & further research

As said in the previous chapter, the approximation was not as accurate for all load
values in an asymmetric model. This could be due to the fact that we did not perform
enough runs or did not used enough simulation time. However this seemed not to be
true, because our results show that for the error between the LHS and RHS of the
pseudo conversation law the number of runs and simulation time did not have
significant affection above a certain value. The chosen number of runs and simulation
time where depended on the computer capabilities of the writer of this paper. Higher
number of runs and longer simulation time where simply not possible, perhaps with a
computer with more capabilities a higher number of runs and longer simulation time
could be accomplished. In general longer simulation leads to better reflection of reality.
In fact, if we should simulate an infinite amount of time, the simulation is equal to
reality.

The second point we would like to discuss is the formula of Boon et al. defined in [8]. It
showed an approximation for the expected waiting time. This formula is proven for
individual Poisson arrivals in [8] and because of its functional form it could improve the
approximation in this paper especially for highly asymmetric models. Of course it should
first be extended so that it can be used for polling models with simultaneous batch
arrivals. This extension is not trivial and can cost a lot of work. If this is added to the
approximation in this paper, the error percentage defined in (3) could decrease even
more.

The last point for further research is that the simulation used for this paper could be
extended for the use of other service disciplines (exhaustive) and other distributions.
This paper only handles the exponential distribution but it can easily be extended to
others.
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Appendix |

Testing the PCL error rate between the LHS and the RHS with different # of runs and
different simulation time. The outliers are colored grey, an outlier is defined as error
rate > 0.5. Tested model is described in section 4.

Simulation time: 1,000,000

# runs
P 5 10 20 30 50 100 250 500
0.1 0.218 -0.031 0.091 0.046 -0.028 0.045 0.082 -0.013
0.2 -0.001 -0.003 -0.117 -0.071 0.022 0.011 -0.123 0.057
0.3 -0.401 0.049 0.035 0.011 0.008 -0.224 0.073 0.105
0.4 0.311 0.119 -0.041 0.100 -0.150 0.010 0.113 0.063
0.5 -0.533 0.094 0.007 0.188 0.247 0.079 -0.179 -0.214
0.6 0.267 -0.370 0.184 -0.103 0.024 -0.170 0.054 -0.169
0.7 0.644 0.325 0.242 0.091 0.189 0.009 0.065 -0.039
0.8 -0.066 -0.321 0.077 0.216 0.231 -0.071 0.056 -0.042
0.85 -0.373 0.291 -0.696 -0.622 0.046 0.228 -0.105 0.042
0.9 -1.479 1.004 0.328 0.371 -0.749 -0.771 -0.258 -0.019
0.95 0.437 1.140 0.092 -2.595 -1.936 0419 -0.164 0.356
0.975 9.207 -6.794  -5.345 -3.928 0.649 -0.050 -0.726 -0.721
Simulation time: 5,000,000
# runs
P 5 10 20 30 50 100 250 500
0.1 0.188 0.016 0.080 -0.015 0.013 0.076  -0.105 0.000
0.2 -0.027 0.015 -0.004 0.100 0.012 0.113 0.052 0.052
0.3 -0.120 0.068 0.100 0.046 0.028 0.364 -0.036 0.053
0.4 0.146 -0.023 -0.251 -0.077 -0.213 -0.343 0.109 0.117
0.5 0.021 -0.060 0.019 -0.029 0.052 0.080 0.111 -0.029
0.6 0.006 -0.050 -0.166 -0.030 -0.056 -0.249 0.048 -0.065
0.7 0.045 0.238 0.007 -0.096 -0.158 -0.112 0.170 -0.063
0.8 -0.300 0.227 -0.104 0.203 0.250 -0.169  -0.094 0.210
0.85 -0.080 -0.126  -0.244  -0.181 0.031 0.058 -0.248 0.116
0.9 0.473 -0.870 -0.363 0.533 0.030 0.635 -0.210 0.176
0.95 0.067 -0.798 0.321 0.659 -0.553 -0.406  -0.086 0.214
0.975 -5.229 -0.950 2.532 -0.712 -0.291 0.941 -0.176 ~ -0.577
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Simulation time: 10,000,000

# runs
1] 5 10 20 30 50 100 250 500
0.1 0.009 0.048 -0.100 -0.041 -0.098 -0.024 -0.132 0.0282
0.2 -0.131 0.020 -0.037 0.112 -0.012 0.098 0.191 0.0705
0.3 -0.035 0.028 0.002 -0.045 0.069 0.076  -0.062 -0.1566
0.4 0.127 -0.032 0.045 0.100 -0.032 -0.029 0.127 -0.0200
0.5 -0.001 0.054 0.068 -0.135 -0.084 0.091 0.142 -0.0716
0.6 -0.084 -0.059 0.089 -0.145 0.017 0.123 -0.347 0.1388
0.7 0.019 -0.113 -0.107 -0.059 -0.094 0.045 -0.042 -0.0047
0.8 -0.260 0.290 0.319 -0.025 0.048 -0.094 -0.104 0.0239
0.85 -0.650 0.250 0.118 -0.004 0.151 -0.043 -0.039 0.2020
0.9 0.204 0.198 0.207 0.061 -0.029 -0.572 -0.019 0.0384
0.95 -0.267 1.094 -0.094 -0.405 -0.526 -0.221 -0.586 0.0980
0.975 1.363 0.134 0.836 -0.764 0.156 0.537 0.204 -0.5286

Simulation time: 15,000,000

# runs
p 5 10 20 30 50 100 250 500
0.05 0.010 -0.001 0.073 0.072 -0.105 -0.019 0.010 -0.066
0.1 0.028 -0.070  -0.032 0.007 -0.097 0.096 -0.086 0.003
0.3 0.007 -0.015 -0.081 -0.021 0.016 -0.022 -0.124 -0.065
0.5 -0.067 0.005 -0.051 0.158 -0.011 0.034 0.005 -0.104
0.7 -0.016 -0.014 -0.116 -0.025 0.191 -0.147  -0.076 0.034
0.8 -0.164 0.056 0.145 0.108 -0.042 -0.095 0.167 -0.001
0.9 -0.607 -0.072 0.056 -0.064 -0.012 0.068 -0.030 -0.088
0.95 0.301 1.235 0.050 0.016 0.503 0.025 -0.128 0.092
0.975 1.346 -0.798 -0.431 -0.238 -0.345 -0.157 0.328 -0.033
0.99 -5.952 -3.804 -0.485 -3.320 -0.976 0.232 0.442 0.505

Simulation time: 20,000,000

# runs
1] 5 10 20 30 50 100 250 500
0.05 0.064 0.007 0.065 0.042 0.055 0.000 -0.067 0.068
0.1 -0.033 0.001 -0.172 -0.066 0.057 0.031 -0.084 -0.063
0.3 0.012 0.010 -0.034 0.042 -0.061 -0.012 0.086 0.032
0.5 0.018 0.075 -0.080 0.046 -0.051 -0.031 -0.019 0.084
0.7 -0.040 -0.151 0.040 0.167 -0.223 0.081 -0.032 0.094
0.8 0.378 0.005 -0.039 -0.213 -0.073 -0.001 0.235 0.070
0.9 -0.037 0.059 -0.131 -0.223 -0.087 0.151 0.277 0.190
0.95 0.394 0.516 0.135 -0.494  -0.064 0.036 -0.100 0.073
0.975 -0.263 1.393 0.834 0.192 0.245 -0.029  -0.019 0.036
0.99 -6.524  -0.777 -0.656 0.086 -0.840 -0.706 0.431 -0.042




0.05
0.1
0.3
0.5
0.7
0.8
0.9
0.95
0.975
0.99

Simulation time: 30,000,000

# runs

5 10 20 30 50 100 250 500
0.003 0.006 0.089 0.036 -0.032 0.108 0.089 -0.038
-0.009 0.017 -0.030 0.029 0.024 -0.004 -0.009 -0.018
-0.108 -0.010 -0.046 -0.055 0.003 0.026 -0.003 -0.030
-0.072 0.000 0.056 -0.018 0.049 -0.125 0.029 -0.037
0.087 -0.080 -0.018 -0.011 -0.035 0.114  -0.023 -0.099
0.000 0.123 0.291 -0.092 0.014 -0.071 0.108 -0.185
-0.410 -0.165 0.112 0.219 -0.077 -0.051 -0.073 0.276
0.110 0.271 -0.325 0.084 -0.138 0.335 -0.031 0.210
-0.688 -1.321 -0.634 -0.155 0.162 -0.117 0.104 0.013
-0.284 1.339 -0.886 0.417 0.167 0.044 0.269 -0.038




