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Abstract

This paper reviews optimization methods and software products for effi-
ciently solving Vehicle Routing Problem variants. First a brief introduction
of all the VRP variants will be given.
Next different optimization methods will be explained. These methods have
an important role in this paper.
Then the Traveling Salesman Problem (TSP) will be discussed. Two soft-
ware products, the Concorde solver and the TSP solver in R, are being re-
viewed. The Concorde solver uses a Branch and Bound algorithm. The TSP
solver uses an arbitrary insertion algorithm with two opt refinement. The
Concorde solver is on average 3% better than the TSP solver in R.
After this the Vehicle Routing Problem (VRP) will be handled, where two
software products will be reviewed and compared with each other. The soft-
ware products are open source and each have a different solution method.
The first software product is a VBA algorithm that uses an insertion heuris-
tic with the improvement heuristics 2-opt, 3-opt and swap operations. The
second, a genetic algorithm in Mathlab, uses a 2-opt improvement heuristic.
The VBA algorithm has on average 7% better results.
The last part of this paper will discuss the Dynamic Vehicle Routing Prob-
lem with Time Windows. This problem is based on the VRP, but now all the
customers have a certain time interval in which they would like to be served.
There are two types of customers, known customers and new customers. The
known customers are already scheduled into routes. New customers can call
in, and the company must immediately specify a time window in which the
start of the service will be provided.
The BARTOC method is a successful method for solving this problem, but
it is outdated for today’s optimization problems. The BARTOC method has
only a time and distance constraint but today’s problems have more con-
strains. Therefore it has to be extended so it can handle more constrains.
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1 Introduction
The Vehicle Routing Problem (VRP) is an optimization problem that has been
studied with much interest in the last five to six decades by mathematicians and
computer scientists. The context of the VRP is to give an optimal set of routes for
a fleet of vehicles to travel, in order to give service to a given set of customers.
The VRP was first discussed by the mathematicians George Dantzig and John
Ramser in their famous paper The Truck Dispatching Problem [1]. Dantzig and
Ramser made the first algorithmic approach to the VRP and applied it to petrol
deliveries. In 1964 Clarke and Wright improved the approach of Dantzig and
Ramser by using a greedy algorithm [2].
Today there are many variants of the VRP. The VRP can be extended with pickup
and delivery (VRPPD), multiple depots (MDVRP), capacity limits (CVRP) and
time windows (VRPTW). The VRPTW can be extended where new customers
call in, and must be planned into the existing routes. The new customer receives
an answer within five seconds. This problem is called the Dynamic VRPTW
(DVRPTW). The applications for this problem are found in the areas of package
delivery, traveling repairman’s and distribution of products.
Since the growth of online shopping and environmental awareness, the demand
for route optimization software increased. Today there are many software prod-
ucts available for all kinds of variants of the VRP, but which software products
give the best solution and which method is used for solving this problem? The
DVRPTW is one of the most difficult vehicle routing problems, since the com-
plexity of the problem and the computation time has to be short. The Booking
Algorithm for Routing and Timing Of Customers (BARTOC) is a method for
solving the DVRPTW. It can provide an answer within the required five seconds.
But what are the arguments that this method is not applicable for today’s opti-
mization problems and how can this method be adjusted so that it is applicable?
This paper reviews the different variants of the VRP, software products and meth-
ods for solving the VRP variants. Extra attention is given to the DVRPTW and
their solution method.
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2 Vehicle Routing Problem variants
As already mentioned in the introduction there are many variants of the VRP.
Every company has different criteria specific to their optimization problem. They
could have one vehicle or multiple vehicles, visiting one customer or multiple
customer per route or have capacity limits. The VRP is a very wide problem.

2.1 Traveling Salesman Problem
The Traveling Salesman Problem (TSP) was first formulated in 1930 and is one
of the most intensively studied problems in optimization. The context of this
problem is to give an optimal route for one vehicle in order to travel to each node
exactly once. This problem is computationally difficult, but a large number of
optimization methods are known for solving this problem. These methods will be
further discussed in section 3. Figure 1 and 2 give a graphical representation of
the TSP problem.

Figure 1: 15 randomly generated nodes Figure 2: Optimal Tour
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2.2 Vehicle Routing Problem
The Vehicle Routing Problem (VRP) was introduced by Dantzig and Ramser in
1959 [1]. This was the first algorithmic approach to this problem and was applied
to petrol deliveries. In 1964, Clarke and Wright improved the approach of Dantzig
and Ramser by using an effective greedy approach, called the savings algorithm.
The VRP is a combinatorial optimization problem where multiple vehicles have
to travel in order to visit each node exactly once. There are multiple objectives
for the VRP i.e. minimizing costs, minimizing distance travelled or maximizing
revenue. Therefore this is an important problem for companies in the fields of
transportation, distribution and logistics. Figure 3 gives a graphical representation
of this problem.

Figure 3: Vehicle Routing Problem
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2.3 VRPTW
The VRPTW is a problem occurring often in service providing companies. Its an
extension of the VRP problem, but for this problem the nodes (customers) have
a certain time interval in which they would like to be served. The serviceman
may arrive before the time window, but the node cannot be served before the time
window opens. The serviceman has to wait until he can start providing the service.
Of course it is also not allowed to arrive after the time window.
There are multiple objectives for this problem. One of the objectives is to design
a set of routes that minimize the costs for each vehicle, such that each node is
visited once in the preferred time window. Other objectives could be, minimize
the number of vehicles, minimize travel distance or maximize volume delivered
per kilometer. Figure 4 gives a representation of this problem.

Figure 4: Vehicle Routing Problem with Time Windows
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2.4 DVRPTW
The Dynamic VRPTW is an extension of the VRPTW. But in this problem there is
a distinction between two types of customers. There are ”known customers” and
”new customers”. The known customers are already planned into routes and the
new customers call in. They have to be inserted into the existing routes. Within
a short time period of five seconds, the system has to provide an answer in which
the customer can be added into the existing route. For this problem the demand is
known according to the Poisson Process.
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3 Optimization methods
This chapter will describe what the different types of optimization methods are.
The goal of an optimization method is to find an optimal or near optimal solu-
tion with a low computational effort. The effort can be measured by the time or
memory it consumes by the method. There are a lot of optimization methods that
are helpful for solving the VRP. One can uses them separately, or in combination
with each other to try to get an even better solution. Several types of optimization
methods will be described.

3.1 Exact method
Exact methods guarantee in finding an optimal solution. Four exact methods are
described in this paper.

3.1.1 Brute Force

Brute Force is a method that computes all the possible solutions of an optimiza-
tion problem. This method works well for a small number of nodes, but turns
extremely slow when the number of nodes is large. Considering the TSP where
all nodes are in connection with each other. If the total number of nodes equals
N , then all the possible solutions are N ! When N = 25 there are 1.5525 possible
solutions. This is nearly impossible for a computer to calculate and to find the
optimum in an applicable time. The computation time is expected to grow expo-
nentially with the instance size. The time for calculating the optimal solution of
24.978 cities is 85 CPU years [11].

3.1.2 Branch and Bound

Branch and Bound is one of the most successful exact approaches for the VRP.
Branch and Bound uses a search tree with lower and upper bounds. It calculates
candidate solutions and forms a rooted tree. The algorithm explores branches
of this tree, which represent subsets of the solution set. Before enumerating the
candidate solutions of a branch, the branch is checked against upper and lower
estimated bounds of the optimal solution, and is discarded if it cannot produce a
better solution than the best one found so far by the algorithm. The result is a
limited depth of a search tree. The result in tour length compared with the Brute
Force method, will be the same. Only difference between the Branch and Bound
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method and the Brute Force method is that the Branch and Bound method will
enumerate branch of the search tree, which result in a faster computation time.

3.1.3 Integer linear programming

Integer linear programming is an optimization technique. With this method the
TSP can then be formulated as an integer linear programming problem. This
method will result in a minimum tour length for the given nodes. Given is the
distance between each node, cij . Let ui be a sequence number in which city i
visited. Let

xij =

{
1 if there is a path from node i to node j

0 otherwise

The objective function is:
min

∑
i∈N

∑
j∈N

xijcij (1)

Subject to: ∑
i∈N

xij = 1,∀j ∈ N (2)

∑
j∈N

xij = 1,∀i ∈ N (3)

ui − uj +Nxij ≤ N − 1,∀(i, j) ∈ N, i 6= 1, j 6= 1 (4)

2 ≤ ui ≤ N, ∀i ∈ {2...n} (5)

xij ∈ 0, 1,∀i, j ∈ N (6)

Constraint 2 requires that there is an arrival from exactly one other node. Con-
straint 3 requires that there is a departure to exactly one other node. Constraint
4 and 5 enforce that there is only a single tour, and not two or more disjointed
tours. Consider a tour that goes from node 3 to 4, u3 − u4 + Nx3,4 ≤ N − 1
→ u4 ≥ u3 + 1. Similarly u has to increase by 1 along each edge of the cycle
that does not include the begin vertex 1. (Assume that the tour begin in node 1).
Therefore for a tour of length L that does not go through vertex 1, u3 ≥ u3+L is a
contradiction. Every tour must go through vertex 1. Together with the other con-
straints, it forces to create one tour [16], [17]. See figure 5 and 6 where constraints
4 and 5 are being explained in an example.
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Figure 5: Example for the integer linear programming method

1start 2 3 4

5 6

7

Figure 5 shows seven nodes. Nodes 1,2,3,4 and 5,6,7 are forming a subtour.
Using constraints 4 and 5 will show that the result for this optimization problem
is not feasible, since all the seven nodes should be into one single tour.
From node 2 to 3: 2− 3 + 7 ≤ 6 3

From node 3 to 4: 3− 4 + 7 ≤ 6 3

From node 4 to 5: 4− 5 + 0 ≤ 6 3

From node 5 to 6: 5− 6 + 7 ≤ 6 3

From node 6 to 7: 6− 7 + 7 ≤ 6 3

From node 7 to 5: 7− 5 + 7 ≤ 6 7

The result from node 7 to 5, does not satisfy constraint 4.
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Figure 6: Example 2 for the integer linear programming method

1start 2 3 4

567

Using constraints 4 and 5 will show that the optimization problem presented
in figure 6 is feasible, since all the seven nodes are into one single tour.
From node 2 to 3: 2− 3 + 7 ≤ 6 3

From node 3 to 4: 3− 4 + 7 ≤ 6 3

From node 4 to 5: 4− 5 + 7 ≤ 6 3

From node 5 to 6: 5− 6 + 7 ≤ 6 3

From node 6 to 7: 6− 7 + 7 ≤ 6 3

The outcome of the objective function is the minimum tour length. This algorithm
will present the same result as the Brute Force method, only the computation time
is less.

3.1.4 Dynamic programming

Dynamic Programming is a method for solving a complex problem by breaking it
down into a collection of simpler subproblems, solving each of those subproblems
just once, and storing their solutions. The next time the same subproblem occurs,
instead of recomputing its solution, one simply looks up the previously computed
solution, thereby saving computation time and storage space. First the nodes must
be arranged in a line so that all edges go from left to right, see figure 7. A DAG
stands for Directed Acyclic Graphs.
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Figure 7: A dag and its linearization [4]

If the distance from S to node D needs to be calculated then equation 7 has to
be solved.

dist(D) = min(dist(B) + 1, dist(C) + 3) (7)

A similar relation can be written for every node. If we compute these dist values
in the left-to-right order, a new dist value of node x is then easily computed. In
the end this method result in the shortest path from a given starting node [3]. The
result of this method compared with the Brute Force method will be the same.
The computation time will be less with the Dynamic Programming method since
not all the possible routes needs to be calculated and the Dynamic Programming
method stores the already found solutions of the subproblems.

3.2 Heuristics
Many decision problems in business and economics can be formulated as an op-
timization problem. Most of these problems are too difficult to be solved ex-
actly within a reasonable amount of time. Then heuristics becomes the method
of choice. Two types of heuristics will be discussed, Construction heuristics and
Improvement heuristics. The main difference between these two heuristics is that
construction heuristics determines a tour according to some construction rules, but
does not try to improve this tour. Improvement heuristic do try to improve a tour.

3.2.1 Construction heuristics

Two types of construction heuristics will be explained, saving heuristics and in-
sertion heuristics. The insertion heuristic is used to check if an extra node can be
added to a route [2]. See figure 8 for a representation of this method.
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Figure 8: Insertion heuristic

Formula 8 is used to calculate, between which two nodes the new city k can
be inserted by checking all combinations of i, j. The minimum route length (I) is
eventually chosen and city k can be inserted between i and j.

Iij = Cik + Cjk − Cij (8)

The Saving heuristic is used to calculate whether two routes can be added together.
This method starts with an initial allocation of one vehicle to each customer. Then
it calculates the possible saving if two routes are added together, with Iij = C0i +
C0j−Cij were 0 represents the depot. If Iij has been calculated and the minimum
has been chosen and i and j are not in the same tour, then i and j should be added
together. See figure 9 for a representation of this method.

Figure 9: Saving heuristic
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Other construction heuristics are Nearest Neighbor, Cheapest Insertion and
Farthest Insertion.

3.2.2 Improvement heuristics

A well-known improvement heuristic is k-opt. This is a local search algorithm
and its applies local changes in existing routes, to find the best solution. 2-opt
and 3-opt are methods that will be briefly described and are very successful in
improving the route.
The main idea about 2-opt is it will compare every possible combination of swap-
ping two nodes, to check if there is a better solution possible. See figure 10 for a
representation of this problem.

Figure 10: Example of the 2-opt heuristic [8]

3-opt heuristics involves deleting three arcs in a tour, then reconnecting the
network in all other possible ways, and then evaluating each solution to find the
optimum.
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4 Traveling Salesman Problem
As mentioned in section 2, the Traveling Salesman Problem (TSP) is an NP-hard
problem and covers the fields of optimization, operations research and computer
science. The goal of the TSP is to give an optimal tour for one vehicle for a
given set of nodes, where each node is only visited once. The objective of this
problem is to find a route that minimizes the total distance travelled. A large
number of exact methods and heuristics are known to solve this problem. The TSP
has several applications other than only planning and routing. It appears in other
sub-problems as well, such as soldering points, DNA fragments and astronomy.
The TSP can be modeled as an undirected weighted graph such that cities are the
graph’s vertices, paths are the graph’s edges, and a path’s distance is the edge’s
length. The minimization problem starts and finishes at a specific vertex.

4.1 Software
There are many software products available that can solve the TSP problem. In
this paper two software products for the TSP will be tested. The Concorde solver
and the TSP package in R. Both will be tested on how good their optimal solution
is.

4.1.1 Concorde Solver

The Concorde solver is one of the best known and exact solvers today [7]. It uses
a Branch and Bound algorithm to find the optimal solution. The Concorde solver
has been extremely successful for large data sets. The largest data set contained
85,900 nodes. The required input is a list with x and y coordinates.

4.1.2 TSP package

The TSP package in R is written by Michael Hahsler [5]. It can create a route for a
number of nodes with different types of methods. The required input is a list with
x and y coordinates. The ”optimal method” uses an arbitrary insertion algorithm
with two opt refinement.
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4.2 Results
In table 1 the results are shown of the several tests between the Concorde solver
and the TSP solver. A data set is created where the nodes have a random x and y
coordinate ∈ [0, 10]. Each software product calculates their optimal tour for the
given data set. C represents the Concorde solver and R the R solver. L represents
the tour length and T the computation time in seconds.

Table 1: TSP results table

# nodes L(C) T(C) L(R) T(R)

25 431 0,22 435 0,06
50 541 0,27 544 0,08
75 664 0,67 665 0,15
100 805 2,19 817 0,90
125 891 2,61 907 1,05
150 966 2,40 992 1,31
175 1029 1,87 1065 1,32
200 1096 2,89 1136 1,84
225 1133 5,36 1180 2,11
250 1185 8,63 1238 2,88
275 1230 13,47 1303 4,53
300 1295 14,84 1366 6,11

The Concorde solver gives a better solution for each set of nodes. When
the number of nodes increases, the difference between both products increases
as well. On average the Concorde solver gives a 3% better solution than the R
solver. The computation time of the R solver is shorter than the Concorde solver,
but its solution is worse.
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5 Vehicle Routing Problem
The Vehicle Routing Problem (VRP) was introduced by Dantzig and Ramser in
1959 [1]. The VRP is a combinatorial optimization problem were a number of
vehicles have to travel in order to visit each node exactly once. Where the TSP is
applicable for one vehicle, the VRP have multiple vehicles.
Multiple objectives can be applicable for the VRP i.e., minimizing costs, mini-
mizing distance travelled or maximizing revenue. The most common objective is
minimizing costs, since this is the most relevant reason for companies to use the
VRP software. But if an employee is paid per package he delivers, he wants to
maximize the number of packages delivered. So multiple objectives are applica-
ble, but it can differ for every situation. Therefore this is an important and often
returning problem for companies in the fields of transportation, distribution and
logistics.

5.1 Vehicle Routing Software
There are many software products available for solving the VRP. There is free
open source software and commercial software. For this paper open source soft-
ware will be discussed.
In mathlab Joshep Kirk developed a program for solving the VRP. This program
uses a Genetic Algorithm to solve the VRP. Required input is an x and y coordi-
nate and the number of servicemen available. The algorithm starts with a random
solution for the given number of servicemen. The program starts with initial routes
for each serviceman and uses 2-opt and swap operations to optimize the routes [9].
In Excel, Güneş Erdoğan developed an algorithm that solves the VRP. The most
relevant input fields of this program are the address of the customers, the number
of trucks and the average speed of the vehicles. The coordinates are found by the
Bing search engine from Microsoft. In the next step the Euclidean distance ma-
trix is calculated. After this step the algorithm will start. It uses a saving heuristic
with 2-opt, 3-opt and swap operations. Swap operations is where two nodes on
different routes are removed from their routes and inserted into the other route.
The solution is shown for each vehicle separately to which customer and at what
time it should arrive and depart. [10]
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5.2 Results
For testing both software products a data set is created were the nodes have a
random x and y coordinate ∈ [0, 10], with the central depot located at the median
[5, 5]. Both software products will be tested, with the same data set, for their
optimal solution. The objective for this test is minimizing the total tour length.
The results are presented in table 2, where E represent the VBA algorithm and M
the Mathlab algorithm. T represents the time in seconds.

Table 2: VRP results table

# of Nodes # of Vehicles Route (E) T(E) Route (M) T(E)

10 2 29.930 0.090 29.930 3
25 3 48.170 0.250 48.170 27
50 3 61.960 3.350 65.140 115
66 4 75.420 2.110 81.970 200
75 3 75.700 9.860 77.470 250
80 4 81.880 3.740 83.720 280
100 4 85.050 10.830 94.170 340
150 15 179.140 12.630 233.12 550

The algorithm programmed in VBA is more successful than the Mathlab al-
gorithm. Overall the VBA algorithm is 7% better. The VBA algorithm uses more
optimization heuristics. Especially the 3-opt heuristic is useful to use for a large
number of nodes in a route. This indicates that the more heuristics are used, the
better the result will be.
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6 The Dynamic VRP with Time Windows
The VRPTW is an extension of the VRP problem, but for this problem the nodes
(customers) have a certain time interval in which they would like to be served.
The VRPTW is NP-hard, so it requires a heuristic solution approach. All the pa-
rameters, such as demand locations and time windows, are assumed to be known.
Each customer i has a time window [ai, bi]. The serviceman must arrive before bi.
He can arrive before ai, but then the customers cannot be served. The serviceman
has to wait until he can start with providing the service. There are two types of
time windows, soft time windows and hard time windows. Soft time windows al-
low delays, but these delays will be punished with a penalty. Hard time windows
do not allow any delays.
There are multiple objectives for this problem. One of the objectives is to design
a set of routes that minimize the costs for each vehicle, such that each node is vis-
ited once in the preferred time window. Other objectives could be, minimize the
number of vehicles, minimize travel distance or maximize volume delivered per
mile. Because of the difficulty of the VRPTW and its wide applicability to real-
life situations for service providing companies, many heuristic solution techniques
capable of producing high-quality solutions in limited time have been proposed,
see [12], [13].

The Dynamic VRPTW (DVRPTW) is based on the VRPTW but for this prob-
lem there are two types of customers, ”known customers” and ”new customers”.
The known customers are already scheduled into a route, but new customers are
not. When a new customer call comes in, the company must immediately specify
a time window in which the start of the service will be provided. Therefore the
software must have a fast response time. There are two types of methods that will
be discussed for solving this problem.

6.1 BARTOC method
The Booking Algorithm for Routing and Timing Of Customers (BARTOC) is a
heuristic approach for dispatching servicemen and is dated from 1995 [14]. The
time windows for this method consist of a length of two hours in which the cus-
tomer can be placed. The customers are interested in a narrow time window, while
the company is interested in a wide time window for flexibility.
The goal of the BARTOC method is to define for a fixed service level a near op-
timal strategy of route design and time window settings so that the total distance
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travelled is minimized over the given time horizon. The customers are given an
immediate answer which requires that the system needs to be interactive, fast re-
sponse time and preferably usable on a personal computer.

6.1.1 Heuristic

The BARTOC method is based on a heuristic called, the cluster-first route-second
principle and has four phases. After these phases a new customer is inserted into
the existing routes, or is transferred to the next planning period if it could not fit
into the existing routes.

Phase 1: The nodes are divided into N districts which is equivalent to the number
of vehicles of the planning horizon. Each district has his own ”route center” or
”seed point”. It has not been defined how these seed points are calculated, but I
assume k-means clustering could be used for this.

Phase 2: For each new customer the seed points are recalculated on all the known
customers locations. This means that all seed points locations are influenced by a
new customer. After this N2 clusters are defined in which the new customer can
possibly be added.

Phase 3: The new customer is added to the route with the insertion heuristic
of Clark and Wright. All the routes that are selected in phase 2, N2, are checked,
and the route with the shortest new route length is chosen. If a new customer can-
not be added, it will move to the next planning period.

Phase 4: In this phase the time windows and the sequence is checked.

Madsen (1995) showed that the BARTOC method compared with a standard sav-
ings based sequential insertion heuristic (Mole and Jamison [15]) performed well.
This insertion heuristic had other criteria than the BARTOC method namely; the
customers were all known, no time windows were imposed and the customers
were not grouped in days. The results of this comparison were of good quality
according to several evaluation criteria. All customers could be planned into the
routes and the system had a fast response time. The computation time was less
than two seconds and 20 different routes were planned. The BARTOC method was
tested on an IBM 3033 computer which is dated from 1978. Although only four
tests were performed in which the BARTOC method showed on average 1.6%
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worse results in tour length than the insertion heuristic, Madsen considers the
BARTOC results as reasonable and of good quality. (Note that the goal of the
BARTOC method is to give a near optimal route).

6.2 ORTEC DVRPTW
In the Netherlands, ORTEC is a leading company in commercial optimization
software. They have software for solving all different types of VRP variants. One
of their largest clients in PostNL, a leading Dutch company in packages deliver-
ing. ORTEC have several software programs to solve the DVRPTW. One of the
methods they use is the insertion method with multiple improvement heuristics.
Since the number of constrains for optimization problems is very high, it is im-
possible to give a solution within a short time period. This is also mentioned in a
study by the university in Denmark [6].

”Even though the rapid development in computer hardware along with a long
line of improvements in optimization software has pushed the boundaries of what
is possible to solve in a reasonable amount of time, it is still computationally hard
to solve real-life static VRP’s. This is mainly due to the wide variety of side con-
straints that are often present in a real-life routing problem.” (Larsen, 2000)

Therefore the software of ORTEC, first makes an estimation if the new customer
can be added to a route. After this estimation the optimization will start. With this
method ORTEC satisfy the desire of the customer to give a solution within a short
time period of five seconds.
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7 Conclusion
The goal of this paper was to find a good optimization method and software prod-
ucts for different variants of the VRP problem. The TSP, the VRP and the DVR-
PWT were discussed.
The TSP problem can be solved best with the Concorde solver. It was already
known that this solver was one of the best, but this paper has shown that it per-
formed better than the solver in R with a 3% better tour length.
The VRP problem has many applicable software products. Two open source prod-
ucts were tested and the VBA algorithm preforms better, since it had more im-
provement heuristics.
The BARTOC method worked very well in 1995, but today’s optimization prob-
lems are much more complex with more constrains. Larsen (2000) showed that
an exact approach of the DVRPWT is very complex and not realistic, and it can-
not provide an answer within the required time. This vision was also endorsed
by Prof. Dr. Gromicho (VU University and ORTEC). Therefore ORTEC check
first with an estimation if the new customer can be added to a route. After this
estimation the optimization starts.
The BARTOC method was tested on an IBM computer from 1978. Computers
are much faster today, which means that the BARTOC can be extended and is
still be able to compute a solution in the preferred time. The results of the BAR-
TOC method were of good quality according to several evaluation criteria. All
customers could be planned into the routes and the system had a fast response
time. In general, if the BARTOC method can be extended so it can handle more
constrains and more improvement heuristics, I believe that this is a good method
for today’s optimization problems. Correctly balance the number of heuristic used
and the associated computation time, is something every developer must keep in
mind. Since an algorithm that has a computation time of several days is not usable
for today’s optimization problems.
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