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Abstract

Capsule networks (CapsNets) have been introduced by Sabour et al.
(2017) to improve certain limitations in convolutional neural networks
(CNNs). This resulted in CapsNets, which need less training data and
are more robust to affine transformations on images than CNNs. This
paper researches if the domain of one-shot learning is able to benefit from
these improvements by incorporating the CapsNet model into a Siamese
neural network structure, called a Siamese capsule network with magni-
tude (SCNM). Experiments using the Omniglot dataset resulted in an
average improvement of 2.7% accuracy compared to a Siamese convolu-
tional neural network (SCNN) on ten affine tranformed test sets. The
SCNM structure has only roughly one-quarter the number of parameters
compared to that of the SCNN, showing that the SCNM structure is sig-
nificantly more robust than SCNNs on affine transformations and needs
considerably less parameters to achieve this.

1 Introduction

An increase in computer power and data has led to an increase in the popularity
of deep learning applications. This has resulted in state-of-the-art models that
are reaching human-level performance. This is the case in computer vision, in
which classification, recognition, and detection tasks are modelled with the use
of CNNs. These CNNs use convolutions to detect patterns from images. They
have a translation-equivariant nature. In other words, when the input shifts, the
output also shifts but stays otherwise unchanged. However, CNNs do not posses
other equivariant transformations, such as rotation (Goodfellow et al. (2016);
Cohen et al. (2016)). Thus, data augmentation is applied to replicate equivari-
ance to transformations (Linmans et al. (2018)). Pooling is introduced to reduce
the number of parameters and make CNNs more translation-invariant for clas-
sification. These implementations improve the performances of CNNs but do
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not solve their problems completely and even introduce some other problems,
such as a loss of relative spatial information (Honari et al. (2016)).

Recently, CapsNets were introduced by Sabour et al. (2017), which uses cap-
sules and stores transformation (i.e., pose) information into these capsules. This
makes the model transformation equivariant and as a result robust to transfor-
mations on input images. Hence, the necessity of data augmentation is less
needed. Pooling is replaced by a so-called routing-by-agreement algorithm,
which uses the pose information of local features to agree on the existence
of an whole entity (i.e., higher-level feature representation). This means that
CapsNets need less training data to reach the same performance as traditional
CNNs, are robust to affine transformations, and take relative spatial relation-
ships into account, as is shown by Sabour et al. (2017) on achieving state-of-
the-art performance on both MNIST and affNIST datasets.

Another field that may benefit from these advantages is image verification. The
major challenge in image verification is verifying a new class from small quan-
tities of training data. It is called ‘one-shot learning’ when a single observation
is used to verify a new class (Koch et al. (2015)). To do this, it is hypothesised
that once a few classes in the same domain have been learned, some of this
information can be utilised to make learning other classes more efficient (Fei-Fei
et al. (2006); Lake et al. (2011)). One way to achieve this is to use Siamese con-
volutional neural networks (SCNNs), which offer state-of-the-art performance
without imposing strong priors. O’Neill (2018) showed that Siamese capsule
networks (SCNs) are capable of achieving the same performance as SCNNs.
This paper researches if a different implementation of a SCN, named SCNM,
is able to outperform both the general SCN structure from O’Neill (2018) and
SCNN from Koch et al. (2015) with respect to robustness to affine transforma-
tions on images.

This is done by reviewing related work in Section 2. Section 3 explains what
the Omniglot dataset is and how datasets are extracted for learning. Section 4
introduces methods of learning and finding optimised hyperparameters for the
different models. Section 5 then explains the experimental setups and Section
6 showcases the results of the experiments. The paper concludes in Section 7
and 8 with, respectively, a discussion and conclusion.

2 Related work

Much work has been conducted in the field of one-shot learning using Siamese
structures. This network was used by Bromley et al. (1994) to verify writ-
ten signatures in 1994. To evaluate whether two signatures were the same,
they calculated a cosine of the angle of two extracted feature vectors from two
signatures. Around that time, the same Siamese structure was proposed for
fingerprint identification by Baldi and Chauvin (1993).
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Recently, the Siamese structure has been applied for face verification by Taig-
man et al. (2014). It achieved human-level performance on the ’Faces in the
Wild’ dataset and performed significantly better than previous methods. It uses
a lot of prepossessing steps before the images are forwarded into the Siamese
structure. The Manhattan distance is used to evaluate whether two extracted
features lie close in their dimensional space and is followed with a single logistic
unit to assess if the two input images are the same. The paper also mentions
that it does not use max pooling layers at each layer because of information
loss, which is a similar thought process used with CapsNets.

In Chopra et al. (2005), face verification is also applied using a Siamese struc-
ture. The Manhattan distance is used to evaluate the distance between two
extracted features. However, a contrastive loss function is used, which drives
the similarity metric to be small for a pair of matching input images and large
for a pair of different images.

A loss function with the same idea is implemented by Schroff et al. (2015), which
is called the triplet loss function. This paper uses a deep convolutional network
in a Siamese structure without imposing a multi-stage prepossessing phase as
in Taigman et al. (2014). It achieved state-of-the-art performance on the ‘Faces
in the Wild’ dataset. The same ideas of a deep Siamese network were applied
by Koch et al. (2015), who used the Omniglot dataset to train and evaluate the
model. The Manhattan distance was used followed by a sigmoidal output unit
to compare both input images. A regularised cross-entropy loss function was
used for training the network, and it achieved state-of-the-art performance on
the Omniglot dataset compared to previous methods.

Further, the paper by O’Neill (2018) is the only research that combines a Siamese
structure with CapsNets. It does this by replacing the subnetworks of the
Siamese structure with the CapsNet structure but excluding the reconstruction
network. Finally, it uses a l2-normalised contrastive loss from Chopra et al.
(2005) to maximise interclass variance and minimise intraclass variance.

We see that in many of the related works, the Manhattan distance is used as the
distance metric in the distance layer of Siamese neural networks. As for the loss
function, a standard cross-entropy is regarded or, in many cases, a contrastive
loss function is used.

3 Dataset

The Omniglot dataset is used during the research. In this section, the dataset is
described and how datasets are extracted to do training, validation and testing
is explained.
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3.1 Omniglot dataset

A dataset of characters was collected by Lake et al. (2011) to research appli-
cations for one-shot learning. The dataset consists of 50 different alphabets
from around the world and even includes some alphabets from science fiction
novels. The 50 alphabets have a total of 1600 different characters, in which
every character has only 20 examples and for which all characters are drawn by
20 different persons. This means that only 20 training examples are provided
for every character class. Hence, they are excellent for experiments in one-shot
learning applications. The characters are depicted in greyscale with a size of
105 x 105 pixels. Some characters from the dataset are shown in Figure 1.
Further, Lake et al. (2011) split the data into a 40 alphabet ’background set’
and 10 alphabet ’evaluation set’. The use of these terms is maintained, wherein
the test set creation refers to the ’evaluation set’ and ’background set’ refers to
the creation of the training- and validation sets. Ten alphabets are randomly
chosen from the ’background set’ for the validation set. The other 30 alphabets
are used to construct training sets.

Figure 1: Two characters each from eight alphabets.

3.2 Dataset creation

The Omniglot dataset does not provide labelled data and therefore an algorithm
is implemented to create training, validation, and test sets. The Siamese struc-
ture has an input of two images that are compared and assessed as to whether
they are the same. Hence, datasets of pairs need to be constructed including a
binary label. This is done by creating a balanced dataset for all three different
sets and uniformly picking pairs. The pseudocode for building datasets is shown
in Algorithm 1. The full code can be found in Appendix A.1.

Test sets are created to investigate robustness against affine transformations.
In Figure 2 the transformations that were used are shown graphically. At first,
the algorithm to produce the initial test sets that was mentioned previously is
used. Thereafter, a uniform rotation is applied to both pairs independently,
with a range of [−20, 20] degrees. The pairs are then independent sheared1

1Information about shearing: https://en.wikipedia.org/wiki/Shear_mapping
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Algorithm 1 Balanced dataset generation

1: Given a character dataset N = {I1, ..., Im}, with j ∈ {1, ...,m}, Ij a char-
acter class and m the total amount of different character classes. Then
Ij = {1j , ..., lj , ..., 20j} is a set of drawn characters from the class j, with
l ∈ {1, ..., 20}.

2: Generate K balanced training pairs from the set N .
3: for t = K do
4: Randomly sample a character class Ij1 from N .
5: Randomly sample one character lj1 from Ij1 .
6: if t < K/2 then
7: Randomly sample a character class Ij2 from N while Ij1 6= Ij2 .
8: Randomly sample one character lj2 from Ij2 .
9: Store the character pair [lj1 , lj2 ] with a negative label.

10: else
11: Randomly sample one character lj2 from Ij1 while lj1 6= lj2 .
12: Store the character pair [lj1 , lj2 ] with a positive label.
13: end if
14: end for

with a uniformly chosen shearing factor between [−0.4, 0.4]. This is done by
multiplying the y coordinate by the shearing factor and adding that to the
x coordinate. At last, horizontal and vertical translations are applied to the
pairs independently, again uniformly, but with a dynamic range, such that the
characters do not fall off the 105 x 105 image edge.

Figure 2: Shows graphically the three transformation functions that are applied
on the images for the affine transformed test sets.
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4 Methodology

This section explains the methods that were used during the experiments. It is
essential to know how SCNNs work and how this structure can be improved by
the capsule philosophy. Therefore, some information regarding capsule networks
is explained in this section including possible structures that can incorporate the
advantages of capsule networks into the Siamese network. Selecting appropriate
hyperparameters to maximise accuracy is also an important part of machine
learning models in general, and this section explains which methods were used
to find these hyperparameters.

4.1 Siamese convolution neural network

Siamese neural networks were used in 1994 by Bromley et al. (1994) to verify
written signatures. The network consists of two identical subnetworks that are
joined by their output. The subnetworks extract features from two signature
images and join both subnetworks by computing a distance metric of the neu-
ron outputs of the highest-level feature representation. Verification is done by
assessing a certain threshold for the output of the distance metric. In addition
to applying Siamese structures to verify signatures, it has recently been suc-
cessfully used for image verification by Taigman et al. (2014) and Schroff et al.
(2015).

Further, in Figure 3, a Siamese neural network with one hidden layer and logistic
output p is depicted. It shows the structure of two subnetworks that are joined
with a distance layer. One important aspect to notice is that both subnetworks
are symmetric in their structure and share the same weights. This ensures that
two extremely similar images will lie close in the feature space, because both
subnetworks compute the same function. Another advantage of symmetric twin
networks is that it does not matter in which subnetwork either of the two images
is imputed to get the same output.

Many variations are possible in Figure 3, such as different distance metrics, mul-
tiple hidden layers, activation functions, fully connected layers before and/or af-
ter the distance layer, and different loss functions. However, one undeniable im-
provement is the use of convolution layers, which have achieved excellent results
in computer vision applications (Simonyan and Zisserman (2015); Krizhevsky
et al. (2012)). This is because of their weight-sharing property, which greatly
reduces the number of weights that need to be learned and consequently de-
creases overfitting. Hence, they have a built-in regularisation.

Another popular implementation is max-pooling. This is one specific tool from
a set of subsampling tools, one that ensures that the network becomes invari-
ant to small translations of the image input by reducing the resolution of the
feature maps (Scherer et al. (2010)). Scherer et al. (2010) and Britz (2015)
compared certain CNN structures with different pooling settings and datasets.
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Figure 3: A simple Siamese neural network with one hidden layer, a distance
layer, and logistic output.

They found out that max-pooling works better by faster convergence and lower
error rates than subsampling and average pooling. Pooling is in most cases used
together with convolutions, in which a convolution is performed first, followed
by a pooling computation. This combination of convolutions and max-pooling,
which are called convolutional neural networks (CNNs), is very successful and
is also used during this research to implement a SCNN (Simonyan and Zisser-
man (2015); Krizhevsky et al. (2012); Koch et al. (2015); Taigman et al. (2014)
Schroff et al. (2015)).

Different structures regarding the distance layer and loss function are also possi-
ble. In Figure 3, the structure shows a logistic output. A possible configuration
is that of a L1 distance layer (Manhattan distance) with a weighted sigmoidal

output p. The prediction vector would be given by p = σ(
∑N2

j=1 w
(2)
3,j |h1,j−h2,j |),

with σ as a sigmoid function (Koch et al. (2015)). A natural loss for this struc-
ture would be a cross-entropy function (Koch et al. (2015)). However, other
structures are also possible. A so-called constructive loss function is able to
use any distance score and uses a margin to separate dissimilar input images as
much as possible (Hadsel et al. (2005)).

Thus, many different variations are possible for the Siamese network. Some can
be chosen empirically or by domain knowledge. For others, it is better to decide
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by rendering a hyperparameter search. However, there are some limitations
in the general structure of CNNs that are inherited by SCNNs. Recently, a
paper was introduced that tries to solve some of these limitations (Sabour et al.
(2017)).

4.2 Capsule networks

It is first necessary to explain what those limitations are before speaking or
mentioning any improvements that can be made. The structure of CNNs is built
out of sequential layers of convolutions that preserve translation symmetry of
the images. When the input shifts, the output also shifts but stays otherwise
unchanged, or in other words, Φ(Tx) = TΦ(x), where Φ is the computation of
the convolution and T is the translation (Linmans et al. (2018)). However, these
convolutions are only translation-equivariant, whereas there exist many more
transformations that do not change the meaning of an entity that is presented
in the image. For example, rotation of an entity in an image does not change the
meaning of said entity. This, of course, imposes a problem and is countered by
extending the training data by augmentation and extending the model to give
it the ability to learn all these different transformations. However, this does
not guarantee generalisation of transformations to the test set, as is depicted in
Figure 4 (Linmans et al. (2018)). A better method is to construct a network that
is not only translation-equivariant but also equivariant to other transformations.

Figure 4: A CNN trained for classification is able to classify a person correctly
on the left image. However, it is unable to classify the image correctly after a
rotation transformation of 180 degrees on the image.

Subsampling or pooling also creates problems. It is a crude method to recog-
nise objects without exactly knowing where they are, i.e., a method to make
CNNs translation-invariant for classification (Hinton et al. (2011)). This means
that the network loses spatial information of local features and consequently
loses spatial relationships between local features. This is bad when, for exam-
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ple, dealing with facial identity recognition, which requires spatial relationships
between eyes, nose, and mouth. An example is shown in Figure 5, where the
relative spatial relationship between eyes, nose, and mouth are wrongly placed
for a person.

Figure 5: A CNN imputed with an image that has wrongly placed physical face
features still classifies the image as a person.

To improve these flaws, the focus needs to lie on making the network not only
translation-equivariant but also equivariant to other transformations and im-
plementing a pooling scheme that does not lose spatial relationships of local
features. Recently, a paper was introduced by Sabour et al. (2017) that aims to
do that. The major difference that was proposed by Hinton et al. (2011) was to
not only use scalars as output of neural activity, but to use vectors (capsules).
These vectors represent different properties (referred to as instantiation param-
eters by Sabour et al. (2017)) of a particular entity that is present in the image.
These properties can include the pose (position, size, orientation), deformation,
velocity, texture, etc. One important and special property is the existence of the
entity in the image, which in CNNs is referred to as the scalar neural activity
output. In Sabour et al. (2017), the magnitude of the vector is used to replace
the scalar neural activity of CNNs and the direction of the vector is used to
present properties of an entity. A squash function is used, which is shown in
Equation 1, to make sure the magnitude is between 0 and 1. Hence it represents
a probability of the presence of an entity.

This structure allows a vector (~u ∈ Rd) to orientate through their respective d
dimensional space with a fixed magnitude. This means that transformations are
independent of scalar neural activity and hence achieve equivariance to trans-
formations.
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~u =

∥∥~v∥∥2
1 +

∥∥~v∥∥2 ~v∥∥~v∥∥ (1)

The CapsNet is shown in Figure 6. A convolution is applied followed by a ReLu
activation function. Thereafter, another convolution follows, which creates the
capsules in the PrimaryCaps layer. In Figure 6, these exist out of 32 blocks of
capsules ∈ R8. Hence, the capsules are constructed of the feature maps from
the second convolution. This also means that the instantiation parameters are
learned by the model itself from the variations of the input images during train-
ing.

Routing-by-agreement is applied between the PrimaryCaps and DigitCaps layer
in which predictions are made with lower-level features (capsules from Prima-
ryCaps) for higher-level features (DigitCaps capsules). When multiple lower-
level features are in agreement to the same higher-level feature, a high-throughput
(magnitude) is directed to that higher-level feature. In other words, the presence
of the higher-level feature in the image is highly likely. The weights to make
predictions from lower level to higher level features are learned with back prop-
agation. The agreement algorithm between these layers has the same principles
as k-means clustering and can be found in Sabour et al. (2017). Another prop-
erty is that routing-by-agreement removes the local translation information and
has the ability to store this information in one of the instantiation parameters
of the capsules in the DigitCaps layer of Figure 6. From that point, it is very
easy to make the network completely transformation-invariant by only consid-
ering the magnitude of the DigitCaps capsules. In this figure, only 10 capsules
are left, all of which represent a specific higher-level feature. The magnitude of
every capsule can be calculated to determine the probability of the higher-level
feature in the input image.

Figure 6: CapsNet architecture from Sabour et al. (2017) with which the MNIST
dataset is learned and predicted. The routing-by-agreement is done between the
PrimaryCaps and DigitCaps layer. The output of the routing-by-agreement is
the DigitCaps layer with 10 capsules that refer to the 10 classes from MNIST.
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4.2.1 Siamese capsule networks

The idea is to construct a combination of Siamese networks and capsule net-
works in such a way that the properties of equivariance and invariance of capsule
networks are incorporated. In Figure 7, a picture of a deep Siamese neural net-
work is shown. It exists out of two deep neural subnetworks. The idea is to
replace both of these networks with a capsule network that exists out of some
convolution layers, a primary capsule layer, and a routing-by-agreement layer
without the reconstruction network that is used by Sabour et al. (2017). A
similar structure was proposed by O’Neill (2018), where the Digitcap layer from
Figure 6 is vectorised and imputed into the concatenation (i.e., distance layer)
layer of Figure 7. The downside of this implementation is that the instantia-
tion parameters are forwarded, wherein the Siamese capsule network loses its
equivariance property after this layer. Rotating or other transformations on the
input image will have a direct effect on the fully connected layers of the Siamese
capsule network. Hence, another proposition is to forward only the magnitude
of the DigitCaps capsules so that equivariance and the advantages of robustness
against affine transformation might not be lost. This network is named the
Siamese capsule network with magnitude or SCNM.

Figure 7: Architecture of a deep Siamese neural network with two CNN sub-
networks.

4.3 Hyperparameter search

A hyperparameter search is very important in comparing and evaluating dif-
ferent models with each other. Melis et al. (2017) showed that in the neural
language models community, older models seemed to outperform newer mod-
els by conducting a better and more extensive hyperparameter search. In this
research, two algorithms are used to search these optimal hyperparameters.

4.3.1 Bayesian optimisation

Some of the most popular hyperparameter tuning methods are grid search and
random search. However, these brute force methods are very expensive and
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waste time by trying out silly hyperparameter configurations. Bayesian search
is a method that offers some of the most efficient approaches in terms of func-
tion evaluations and is therefore particularly useful when evaluations are costly,
which is the case with deep learning models (Brochu et al. (2010)). Hence in
this research Bayesian optimisation is used to derive optimal hyperparameter
settings.

For the first N iterations, random search is applied, which is visible in Algo-
rithm 2. A hyperparameter set is generated from prespecified boundaries and
inserted into the function f , from where the function is evaluated (i.e., accuracy
on validation set). These random iterations are used to build an initial Gaussian
process (GP) in the next phase.

Then for the other M − N iterations, the Bayesian loop from Algorithm 3
is used. Using the derived observations from Algorithm 2, a GP with which
new observations are estimated is built. It returns a mean and variance of a
univariate Gaussian at new point x. This means that f(x) ∼ N(µ, σ2), with
estimated µ and σ2. An acquisition function is used to derive which point x is
valuable to evaluate next. For this, the expected improvement (EI) acquisition
function is used and is defined as u(x) = −EI(x) = −E[f(x) − f(x+)], where
x+ is the best point observed so far with respect to f(x). After the iterations
are finished, the hyperparameter set x, which maximises the function f(x), is
chosen as the final hyperparameters.

Algorithm 2 Generate N random evaluations

1: for i = 1 : N do
2: xi = random(x) {Generate random hyperparameter set}
3: yi = f(xi)
4: end for

Algorithm 3 Bayesian optimisation loop

1: for t = N : M do
2: Given observations (xi, yi = f(xi)) for i = 1 : t build a Gaussian process

(GP) for the objective f .
3: Find xt+1 by optimising the acquisition function over the GP: xt+1 =

argmax
x

u(x).

4: Sample the next observation yt+1 at xt+1 (i.e., yt+1 = f(xt+1)).
5: end for
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train/val/test size
Hyperparameter

iterations
Epochs

Affine transformations
on test set

SCNN Experiment 1 10,000/3,000/3,000 40 10 No
Experiment 2 10,000/3,000/3,000 40 10 Yes

SCN Experiment 1 10,000/3,000/3,000 40 10 No
Experiment 2 10,000/3,000/3,000 40 10 Yes

SCNM Experiment 1 10,000/3,000/3,000 40 10 No
Experiment 2 10,000/3,000/3,000 40 10 Yes

Table 1: Shows the experimental settings that are performed with the three
different Siamese structures.

5 Experiments

Three Siamese neural network structures are constructed to research whether
a different implementation of a SCN, named SCNM, is able to outperform an
implementation that is based on O’Neill (2018)’s SCN structure and Koch et al.
(2015)’s SCNN structure, with respect to robustness to affine transformations.
In this section, the experimental setup and the precise use of models are ex-
plained.

5.1 Experimental setup

Two experiments are conducted, but first hyperparameter search is carried out
for all three models. This is done with 40 iterations of the Bayesian algorithm
from section 4.3, from which the first 10 iterations are generated with random
Algorithm 2. In every iteration, 10,000 training pairs and 3,000 validation pairs
are sampled using Algorithm 1. The model structures with optimal hyperpa-
rameters from Bayesian optimisation is depicted in the next two sections. The
number of epochs is set at 10 for every training cycle. The main motivation to
choose these values is computational costs.

Then, experiment 1 is conducted. The found optimal parameters are used and
10 datasets are constructed for both training and testing. Again, training sets
with 10,000 pairs and testing sets (normal test sets) are used, with 3,000 pairs
chosen from the evaluation set. Every model is trained and tested on each
of these datasets. This means that the three different model architectures are
trained on the same training and validated on the same test sets. This is chosen
to control for experimental variability, such that factors as random dataset cre-
ation and random affine transformations do not affect the results between the
three architectures.

The same data generating structure is applied to the second experiment that
researches the robustness to affine transformations. However, after the 10 test
sets (affine test sets) are generated, affine transformations are applied using the
methods mentioned in section 3.2. In Table 1 the different settings of the two
experiments are shown.
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5.2 Siamese neural network architecture

To create a baseline, the same SCNN architecture from Koch et al. (2015) is
implemented. It has 5 layers in both subnetworks, a manhattan distance layer
to connect both subnetworks and a sigmoidal output unit. A regularised cross-
entropy loss function is used. The learning rates are identical for every layer
with a rate of 5.49e-5. The Adam optimiser was used to update the weights, for
which β1 = 0.5745 and β2 = 0.9999. A batch size of 48 is used.

In both subnetworks, the first four layers have a convolution followed by a rec-
tified linear (ReLu) unit. The ReLu units are followed by max pooling with a
filter of 2 x 2 and stride of 2 for only the first three layers. The feature maps
after the ReLu in the fourth layer are vectorised and imputed into the fifth
layer, which is a fully connected layer with 1536 nodes and a sigmoid activation
function. The regularisation is set at 4.8e-4. Then, the Manhattan distance
of both outputs of the subnetworks from the fully connected layers are taken
in the distance layer. This result is forwarded to the final sigmoidal output unit.

The filters and regularisation values, in the subnetworks, varies per layer. Every
stride of the convolutions filters are set at 1. The convolution of the first layer has
a filter of 5 x 5, 64 channels, and regularisation is set at 1.2e-6. The convolution
of the second layer has a filter of 12, 112 channels and regularisation is set at
1e-8. The third layer has a convolution with a filter of 7 x 7, 96 channels and the
regularisation is set at 2.73e-5. The convolution of the fourth layer has a filter
of 2 x 2, 144 channels, and a regularisation set at 0.0056. In total, including
shared parameters, this architecture has 15,976,705 parameters.

5.3 Siamese capsule network architectures

Two Siamese capsule networks are constructed. Both models use the exact
same implementation from Sabour et al. (2017) until the DigitCaps layer in the
Siamese subnetworks. Only the reconstruction layer is excluded. The first one
is based on O’Neill (2018)’s structure, is called SCN and the structure is shown
in Figure 8. The second network is the SCNM. It includes the magnitude (i.e.,
Euclidean distance) of the capsules from the DigitCaps layer. The structure of
this network is shown in Figure 9. Both models have a regularised cross-entropy
objective function, with regularisation in the ReLu Conv1, PrimaryCaps, and
DigitCaps layer. The SCN also has a fully connected layer that is regularised.
Both models are learned using the Adam optimiser with a batch size of 48 and
equal learning rate for all layers.

5.3.1 Siamese capsule network with fully connected layer

The SCN in Figure 8 shows that the first convolution of a subnetwork has a filter
of size 10 x 10, a stride of 3 and is followed with a ReLu unit. The regularisation
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is set at 8.097e-6. The PrimaryCaps layer is constructed by a convolution with
a filter of size 14 x 14, 4 times 48 channels and a stride of 3. The regularisation
for these weights is set at 1.4e-8.

The weight matrixes to predict the DigitCaps capsules with the PrimaryCaps
have a dimension of 4 x 8. In total, every PrimaryCaps capsule makes 32
predictions, which is shown by the 32 capsules in the DigitCaps layer. The
regularisation value for the weight matrix parameters is set at 4.705e-6. The
routing-by-agreement makes two rounds to calculate the DigitCaps capsules.

The capsules from the DigitCaps layer are vectorised and imputed into a fully
connected layer of size 64, with a regularisation value of 4.17e-4. From here on,
the Manhattan distance is taken of the output of both subnetworks. This result
is imputed into a sigmoidal unit. A learning rate of 0.0161 is used with β1 is
0.9999 and β2 is 0.9647. This SCN structure has a total of 6,403,713 parameters.

Figure 8: Structure of Siamese capsule network with a fully connected layer at
the end of both subnetworks.

5.3.2 Siamese capsule network with magnitude layer

In Figure 9, the second model is depicted. It has in general the same structure
as the model in Figure 8, but is different in the final layer of both subnetworks.
Instead of a fully connected layer, it calculates the Euclidean distance of the
DigitCaps capsules.

The first convolution has a filter of 15 x 15, a stride of 3, a regularisation of 1e-8
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and is followed by a ReLu unit. The PrimaryCaps layer is constructed by a con-
volution with a stride of 2 and regularisation for these weights is set at 1.185e-5.
The regularisation is set at 1e-7 for the weight matrix parameters. The routing-
by-agreement algorithm makes four routing rounds. A learning rate of 0.00288 is
used with a β1 of 0.00986 and β2 of 0.398. The model has 4,924,081 parameters.

Figure 9: Structure of Siamese capsule network with a magnitude layer at the
end of both subnetworks and without a fully connected layer.

5.4 Evaluation measures

A simple accuracy measure is used for evaluation. The data pairs are equally
distributed between negative and positive samples. Hence, accuracy is a fine
measure to use. The non-parametric Wilcoxon matched pairs signed rank test
is used to infer if two architectures are performing equal or different. Depending
on the assumption, which is formed by graphical analysis, one-sided or two-sided
hypothesis tests are performed.

6 Results

This section gives the results of both experiments as well as statistical inferences
between the model architectures.

In Figure 10, some validation curves are shown. It is visible that all three struc-
tures are learning, as both training and validation accuracy increases with more
iterations. However, it seems that there exists some overfitting with the SCNN
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(a) SCNN (b) SCN

(c) SCNM

Figure 10: Validation curves for the three model architectures. Every iteration
defines a batch calculation for either training and validation samples. Hence,
variation is somewhat high. The data are smoothed for better visual represen-
tation.

and SCN architectures. This seems not to be the case for the SCNM architec-
ture in Figure 10c.

6.1 Performance comparison

In Figure 11, the results on the 10 test set datasets are depicted. In Figure
11a, the results of the three architectures on the normal datasets are shown. It
appears as though performance is approximately equal between the three struc-
tures. In Table 2a, and b, the results of the Wilcoxon rank tests are shown to
see if one of the architectures performs significantly differently. For all the tests,
an α of 0.05 is used.

The boxplots in Figure 11b shows the results of the models on the test datasets
on which affine transformations are applied. There is an understandable de-
crease in performance compared to Figure 11a. The SCNM performs on average
2.7% and 3.0% better than the SCNN and SCN, respectively.

17



(a) Normal test set (b) Affine transformation test set

Figure 11: Boxplot of the three architectures with the performance on the 10
normal and affine test sets.

Table 2: Statistical performance between the three architectures.

Test W P-value
SCNN = SCNM 39 0.28
SCNM = SCN 15 0.23
SCNN = SCN 20 0.49

(a) Statistical tests on the normal test
datasets.

Test W P-value
SCNN < SCNM 0 9.8e-4
SCNM > SCN 51 6.8e-3
SCNN = SCN 28 1

(b) Statistical tests on the affine trans-
formed test datasets. The first two
rows are one-sided tests.

7 Discussion

Looking at the performance of the three architectures in Figure 11a, it shows
they perform equally well. This assumption is strengthened by accepting the
null hypothesis for the three tests in Table 2a. Also, it is assumed that the cap-
sule network structures require less data to perform equally well compared to
classical CNNs, because data augmentation is less necessary. We cannot really
conclude this for the Siamese structures, because the three structures perform
equally. However, the SCNN architecture has approximately three times as
many parameters than the SCN and SCNM architecture. Hence, the Siamese
capsule network structures are able to achieve the same performance with con-
siderably fewer parameters. A side note is that it seems that the SCNN and
SCN are slightly overfitting. Reducing this by using less convolutional layers
for the SCNN or not using the fully connected layer for the SCN could have an
impact on the conclusions.

In Figure 11b, the results of robustness against affine transformations is shown.
Interestingly, the SCNM seems to do better than the other two structures. This
is also validated by the tests in Table 2b, which show significantly better per-
formance of the SCNM against the other architectures. Therefore, it looks as
though the SCNM is more robust against affine transformations than the SCNN
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and SCN architectures.

These results look promising. However, in the original CapsNets paper, the Cap-
sNets model was implemented including a reconstruction layer. This provided
regularisation, but also enforced the network to store transformation informa-
tion into the instantiation parameters. The SCNM and SCN structures do not
allow for such a layer to work in the way it is implemented in the CapsNets
model. Hence, if something can be found that works the same it can boost
performance.

More research needs to be conducted to see if these results also apply with
using more training epochs, more data, and different datasets. The obstacle at
this moment is that capsule networks are very demanding on memory and are
therefore not easy to scale, especially in the Siamese structure, for which hard
boundaries needed to be set to not get out-of-memory issues.2 Hence, research
should also focus on making the capsule network model more memory efficient.

8 Conclusion

This research focuses on looking for a different implementation of a SCN that is
able to outperform a SCN based on the structure from O’Neill (2018) and SCNN
from Koch et al. (2015) with respect to robustness to affine transformations. The
Omniglot dataset was used to investigate this, and a different implementation
than SCNs was tested. This resulted in the SCNM structure that outperformed
both the SCNN and SCN structure on robustness against affine transformations
and it performed equally well on the test sets without affine transformations
using roughly one-quarter the number of parameters compared to that of the
SCNN.3
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Appendix

A.1 Generating datasets

This section provides the full code of generating dataset pairs from the Omniglot
dataset with balanced positive and negative pairs.

def c r e a t e t r a i n d a t a ( s i z e , s=’ t r a i n ’ ) :
#ge t t r a i n data and shape
X=data [ s ]
n c l a s s e s , n examples , w, h = X. shape

#i n i t i a l i z e 2 empty arrays f o r the input s i z e in a l i s t
p a i r s =[np . z e r o s ( ( s i z e , h , w, 1 ) ) for i in range ( 2 ) ]

#i n i t i a l i z e v e c t o r f o r the t a r g e t s
t a r g e t s=np . z e ro s ( ( s i z e , ) )

for x in range ( s i z e ) :
#randomly sample one c l a s s ( charac t e r )
category = rnd . cho i c e ( n c l a s s e s , 1 , r e p l a c e=False )
#randomly sample one example from c l a s s (1−20 charac t e r s )
i dx 1 = rnd . rand int (0 , n examples )
p a i r s [ 0 ] [ x , : , : , : ] = X[ category , idx 1 ] . reshape (w, h , 1)
#randomly sample again one example from c l a s s and add l a s t c l a s s
# . . wi th modulo to ensure not same c l a s s pa i r s are crea t ed
i dx 2 = ( idx 1 + rnd . rand int (0 , n examples ) ) % n examples
#pick images o f d i f f e r e n t c l a s s f o r 1 s t h a l f and same
# . . . c l a s s f o r 2nd h a l f
i f x >= s i z e // 2 :

ca t egory 2 = category
t a r g e t s [ x ] = 1

else :
#add a random number to the ca tegory modulo n c l a s s e s to ensure 2nd
# . . image has d i f f e r e n t ca tegory

i dx 2 = rnd . rand int (0 , n examples )
ca t egory 2 = ( category + rnd . rand int (1 , n c l a s s e s ) ) % n c l a s s e s
t a r g e t s [ x ] = 0

p a i r s [ 1 ] [ x , : , : , : ] = X[ category 2 , idx 2 ] . reshape (w, h , 1 )

return pa i r s , t a r g e t s
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