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Abstract

In queuing theory, closed-form expressions for key performance met-
rics (such as the waiting time distribution, numbers of customers in the
system, etc.) are useful as they show how the performance of a queuing
systems depends on the system parameters. Unfortunately, many queu-
ing systems prohibit derivation of closed-form expressions. Alternatively,
mathematical approximations or simulation approaches are very useful,
but they fail to give fundamental insight in the functional relationship be-
tween system parameters and the performance measures of a queuing sys-
tem. This paper proposes a data-driven approach to obtain closed-form
expressions for key performance metrics by symbolic regression. Search-
ing the mathematical expressions space is performed by genetic program-
ming, an evolutionary algorithm variant. Data sets are created by selecting
system parameters for a variety of single node queuing systems and ob-
taining the key performance metrics by simulation when these metrics are
not derivable. Three different sampling techniques are used for selecting
parameters: single random sampling, stratified sampling and systematic
sampling. This research shows that for the M/M/1, M/G/1 and M/M/s
queuing systems, genetic programming is able to obtain exact performance
metrics. Prior knowledge, such as the heavy-traffic behaviour, can improve
the speed of convergence when for example this behaviour is implemented
in the form of a explanatory variable. Furthermore, it is shown that none of
the sampling techniques resulted in improving the speed of convergence.
For the M/G/s queue, genetic programming is able to find accurate ap-
proximations for some performance metrics when using prior knowledge
on the heavy traffic behavior and the probability on waiting.
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1 Introduction

Congestion is a common phenomenon in our urbanized society. One result
of congestion is that we have to wait in a queue before services can be pro-
vided. Companies are interested in achieving a certain service level while also
minimizing the corresponding costs of the service capacity. One example is a
call centre with agents that provide customer services. This call centre wants to
meet a certain service level, such as helping 80 percent within 20 seconds. How
many agents are required to meet this service level? In the queuing theory, we
try to answer this type of questions.

One issue in queuing theory is the unavailability of closed-form expressions for
key performance metrics of certain queuing systems. This led to an increasing
interest in approximation techniques and simulation approaches. Narayan Bhat,
Shalaby, and J. Fischer (1979) distinguish three categories approximation tech-
niques: system approximations (simplify the system), process approximations
(diffusion/ fluid approximation and asymptotic/ limiting results) and numer-
ical approximations (point/ interval approximation). These techniques are
proven to be very accurate in practice (Narayan Bhat et al., 1979). In approx-
imation techniques, results are analytically obtained by simplifying queuing
systems. However, this is at the possible expense cost of losing generality and
ignoring some of the complexity of reality. Another approach to get key perfor-
mance measures for given queuing instances is by simulation. In Monte Carlo
simulation, a queuing instance is simulated multiple times to get confidence
intervals on the key performance measures. This approach, however, is com-
putationally expensive if systems are heavily loaded. Simulation a system that
is heavily loaded requires a longer period to obtain accurate results. While this
method is useful to obtain results for complex queuing systems, it will only
give results for the predefined queuing system instances.

The approximation techniques and the simulation approach have in common
that they are not seeking for the closed-form expressions of key performance
metrics of queuing instances. Instead, a machine is much better in searching
the mathematical expressions space to approximate key performance metrics.
This task is also called symbolic regression. The evolutionary computation
variant genetic programming (GP) is an algorithm that is able to perform this
task. GP is an algorithm that can be positioned in the machine learning area
(Eiben & Smith, 2015). Using GP instead of other machine learning algorithms
has the advantage that the solutions obtained by GP are functions and can be
mathematically analysed. Furthermore, GP does not make assumptions on the
form of the function and can uncover surprising relationships.

In this research paper, we are interested in finding the relationship between
the input variables and the output variables for single node queuing systems
by using GP. For these queuing systems, the input variables are the properties
of the inter-arrival/service time distribution (e.g., first moment, second mo-
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ment), and the output variables are the performance measures (e.g., expected
waiting time). By using GP, we do not simplify reality and we can extract the
complexity of queues which are not algebraically solvable. In section 2 we
discuss the related literature on the subject. Section 3 outlines some of the fun-
damentals of the queuing theory. In section 4 the methodology to solve the
symbolic regression task is discussed. Section 5 shows how the data is gener-
ated for this research. In section 6, two experiments are performed and their
results discussed. Section 7 gives the discussion of this paper. At last, Section
8 gives the conclusions of this report and Section 9 states some further research.

6



2 Literature review

An introduction to queuing theory is given in the books (Gross & Harris, 1998)
and (Koole, 2014). Some important distributions for queuing modelling can be
read in (Koole, 2014). Symbolic regression performed by GP is discussed in
the books (Koza, 1998) and (Poli, B. Langdon, & Mcphee, 2008). Other vari-
ants of evolutionary computation can be read in (Eiben & Smith, 2015). There
are several studies in combining queuing theory and evolutionary computa-
tion. Raman, Nagalingam, and Gurd (2009) use genetic algorithms and queu-
ing theory for a facility layout problem. Semen, Sergey, Viktor, and Sergey
(2006) study a similar approach for a scheduling problem with switching times.

Onderwater, Bhulai, and van der Mei (2016) combine GP with Markov Deci-
sion Processes to learn value functions. The authors apply GP to a queuing
system which has a single queue and two servers: a fast and a slow server. The
goal here is to minimize the number of jobs in the system by determining when
to assign jobs to the fast server. Another experiment performed here is using
symbolic regression to obtain the value function for a single server single type
queue. Hristov (2018) performs symbolic regression by GP to obtain a perfor-
mance metric for a given queuing system. In this study, the analysed queuing
system is a two-stream blending system with two classes of jobs with different
priority. The class with the highest priority are helped by all servers while the
class with inferior priority can only be helped by a subset of all servers. To
be determined is how many servers will only help jobs with a higher priority.
The searched performance metric is the mean waiting time for both job classes.
This research paper is a follow up study of Hristov (2018) on searching closed-
form expressions for performance metrics.

Another study that is close to this research paper is the research paper by
Van der Stap (2016), who tries to approximate key performance measures with
data mining techniques. By simulating queues, data such as the load of the
queue and expected waiting in the queue are generated. Using simulated data,
key performance measures are approximated with decision trees. It is shown
in this research that only for certain cases it was possible to fit a function on the
simulated data. Unfortunately, it was unknown if the approximation functions
generalizes well.

Similar to the research paper of Van der Stap, the symbolic regression will
result in approximations of performance measures. However, symbolic re-
gression will discover closed-form expressions which can be analysed. Both
Onderwater et al. (2016) and Hristov (2018) are focused on Markov Decision
Processes, while this research is also focused on queues where the Markov
property does not hold.
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3 Basics of queuing theory

In this section, the fundamentals of the queuing theory are discussed. First, a
representation of queues is given and the standard notation to describe these
queues is stated. Secondly, the mathematical notation for all parameters will
be discussed. At last, the closed-form expressions for algebraically solvable
queuing models are given.

3.1 Classification

All queuing systems share the same characteristic: customers/jobs competing
for certain services. Figure 1 gives a visual representation of a queue with six
components that define it: 1) the arrival pattern, 2) the service pattern, 3) the
number of servers and service channels, 4) the system capacity, 5) the queuing
discipline (e.g. FCFS: First Come First Serve) and 6) the number of service
stages.

Figure 1: Example of a single node queuing model

The Kendall notation is the standard notation to describe the characteristics of a
queuing system by a sequence of symbols and slashes of the form A/B/c/d/e.
A determines the arrival distribution, B the service time distribution, c the
number of parallel servers, d the total number of places in the system and e
the queue discipline. In this notation, we assume one service stage. The sym-
bols A and B are either M (Markovian, Poisson arrivals or exponential service
times), D (deterministic) or G (general inter-arrival or service times). c and d
are integer values with the constraint c ≤ d. When d is not explicitly given, it
is ∞ and e is by default FCFS.

3.2 Notation

This section will give the mathematical notation for each parameter.

• S is the service time distribution; A is the interarrival time distribution;
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• λ denotes the parameter of the Poisson arrival process;

• µ denotes the parameter of the service time distribution when it is expo-
nential;

• s is the number of servers;

• π is the stationary distribution of the number of customers in the system;

• L is the limiting number of customers in the system;

• W is the time an arbitrary customer spends in the system;

• LQ and WQ denote the same results when only considering the queue.

3.3 Closed-form expressions

In this section, we will give the analytic solutions for key performance indica-
tors in time-stationary queuing models. It is assumed that the reader has some
knowledge on the basics of queuing theory.

The steady state probabilities of a M/M/s queue can be obtained by modelling
the M/M/s queue as a birth-death process. The performance metrics for this
queue can be calculated using these steady state probabilities and the PASTA
property. Furthermore, the Pollaczek-Khintchine formula is used to calculate the
mean waiting time distribution for the M/G/1 queue. Proof on these results
are given in (Gross & Harris, 1998). Table 1 shows how the offered load a and
the offered load per server ρ is calculated.

load M/M/s M/G/1
a λ

µ λ ∗ ES
ρ a

s a

Table 1: Offered load per server

Using the information of Table 1, the performance metrics can be calculated
in Table 2 for the given queues. EL is read as the expected steady-state mean
number of customers in the system. The last row in Table 2 is interpreted as
the probability on waiting for a service. The c2 term is the squared coefficient

of variation and it is defined by c2(X) = E(X−EX)2

(EX)2 for random variable X. For
the M/M/s queue, π(0) can be calculated as follows:

π(0)−1 =
s−1

∑
j=0

aj

j
+

as

(s− 1)!(s− a)
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KPI M/M/1 M/M/s M/G/1

EL ρ
1−ρ

ρP(WQ>0)
1−ρ + a ρ2(1+c2(S))

2(1−ρ)
+ ρ

ELQ
ρ2

1−ρ
ρP(WQ>0)

1−ρ
ρ2(1+c2(S))

2(1−ρ)

EW 1
µ∗(1−ρ)

P(WQ>0)
sµ−λ + 1

µ
ρES(1+c2(S))

2(1−ρ)
+ ES

EWQ
ρ

µ∗(1−ρ)
P(WQ>0)

sµ−λ
ρES(1+c2(S))

2(1−ρ)

P(WQ > 0) ρ π(0) as

(s−1)!(s−a) No expression available

Table 2: Exact equations for performance metrics of algebraically solvable
queues

4 Methodology

This section will discuss the method of finding closed-form solutions for per-
formance measures of complex queues by using Genetic Programming. Section
4.1 will give a introduction to evolutionary computing. In section ?? a descrip-
tion will be given of an evolutionary algorithm. Section 4.2 will discuss genetic
programming. In section 4.3, we will discuss the Tree-based Genetic Program-
ming algorithm and its components.

4.1 Evolutionary Computing

Evolutionary Computing is a research area that is concerned with problem
solving using a trial-and-error method and is inspired by the process of nat-
ural evolution. One motivation for using evolution as a source of inspiration
is that it is the most powerful natural problem solver. Engineers have always
looked at natural problem solvers, such as the brain, to be able to develop
automated problem solver. Another motivation is the fact that the growing de-
mand for problem-solving automation outpaced the available research options
and development capacity. As problems become more complex, obtaining the
optimal solution is hard, if not impossible.

An evolutionary algorithm (EA) can be described as follows: a population
of individuals (solutions) live in some environment. As there are limited re-
sources, competition between these individuals causes natural selection, or
let’s say, survival of the fittest. As a consequence, the fitness of the population
changes over time. Individuals with a higher fitness are more able to survive
compared to individuals with a low fitness. New individuals arise in the en-
vironment by recombining individuals in the environment and mutating these
new individuals. This process of creating new individuals and natural selec-
tion proceeds until a certain stopping criteria is met. Figure 2 shows a high-
level scheme for the common basis for all variants of EA.
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Figure 2: Flow chart of an evolutionary algorithm

The two main forces that form the basis of an evolutionary system are the vari-
ation operators (recombination and mutation) and the selection mechanism. By the
variation operators, diversification of the population can be achieved, while
selection increases the mean quality of the solutions in the population.

4.2 Genetic programming

In 1992, Koza introduced the evolutionary computation technique named ge-
netic programming (GP). Koza shows that various problems, such as symbolic
regression, can be automatically solved by evolving computer programs. By
letting computer programs evolve, it is not required in GP to know or spec-
ify the form or structure of the solution in advance (Poli et al., 2008). Ini-
tially, Koza expresses programs as syntax trees rather than lines of code (1998).
GP computer programs are also described by linear data structures (Brameier
& Banzhaf, 2007), graphs (Miller, 2011) or data stacks of instructions (Perkis,
1994). As the interest of this paper is to obtain closed-form solutions, the tree-
based syntax has the preference above other representations.

4.3 Tree-based genetic programming

In this section, we will describe the main components of a Tree-based Genetic
Programming. Poli et al. (2008) is used as guidance to discuss all components.

4.3.1 Representation

In GP, programs are represented as a tree. One example is shown in Figure
3. This is a tree representation of the function (x + y)− 5 ∗ (x/y). A GP tree
consists of two components: the leaves and the internal node. The highest
internal node is called the root of a tree. Internal nodes can only contain the
arithmetic operations (e.g., +,−, ∗, /). These operations are called the functions
of the tree. At the leaves are the constants and the variables, which are the
terminals of the tree. Together the terminals and the functions form the primitive
set of a Genetic Programming system. A property of a GP tree is its depth. The
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depth of a node is the minimal number of edges that needs to be traversed
between the starting node and the root of the tree. The depth of a tree is the
depth of its deepest leaf. For example the tree in Figure 3 has a depth of 3.

Figure 3: GP tree representing (x + y)− 5 ∗ (x/y)

4.3.2 Initialization

The first step in an evolutionary algorithm is generating a population of indi-
viduals. These individuals need to be randomly generated. An initialization
method that ensures diversity in the initial population is the Ramped half-and-
half. This method combines the full and grow method, which are both insuffi-
cient to create diversification in the initial population.

Both the full and grow methods require a user defined maximum tree depth.
At this depth, only terminals can be randomly chosen by both methods. In the
full method, trees are created in which all leaves have the same depth. On the
contrary, the grow does not require all leaves to have the same depth. The grow
method allows each node to be of the primitive set (terminals and functions).
Figure 4 gives two examples of both initialization methods with a maximum
tree depth 2.

(a) Full method
(b) Grow method

Figure 4: Full and grow initialization method with max depth 2

As both grow and full methods do not provide a very wide array of sizes and
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shapes, Koza (1998) proposed the Ramped half-and-half method. In this method,
half of the population is constructed by the grow method, while the other half
is constructed by the full method. By setting a range of maximum depth limits,
the population can differ in sizes and shapes. In this range of maximum depth
limits, a maximum tree depth can be chosen randomly and for both methods a
tree can be constructed.

Poli et al. (2008) state that it is hard to control statistical distributions such as
the sizes and shapes of generated trees. Both methods seem sensitive to the
size of the function and terminal sets. Changing the ratio between the two sets
can significantly change the shapes and sizes of trees generated.

4.3.3 Selection

In comparison to other evolutionary computation variants, GP has only one
selection mechanism. This mechanism selects individuals on which variation
operators are performed. The population with off springs will form the next
generation. Individuals with a higher fitness are more likely to have more child
programs compared to inferior individuals. A frequently used selection mech-
anism in GP is tournament selection.

In tournament selection, we randomly select a subset of the population and let
these individuals compete for survival. The individual with the highest fitness
will win a tournament and recombination or mutation operators are applied
on this individual. Tournament selection has the useful property that it does
not require any global knowledge of the population. It only relies on the or-
dering relation of multiple individuals. Therefore, this selector mechanism is
simple and fast to implement. The only parameter used in tournament selec-
tion is the tournament size. This is denoted with the parameter k. The larger
the tournament, the greater the chance that the tournament contains members
of above-average fitness. Therefore, as k increases, the selection pressure in-
creases. This is the case when the population is not converging. When con-
verging occurs, most programs will have the same fitness and therefore the
tournament selection becomes random (Gustafson, 2004). Xie (2008) studies
the relationship between population size, tournament size and selection pres-
sure. One finding in this study is that tournament size has a large impact on
the selection pressure while population size does not have any impact unless
the population size is very small. Choosing k is still open for experimentation.
Hancock (1994) compares multiple selection mechanisms and states that each
selection mechanism has errors and that only by experimentation the best se-
lection mechanism can be obtained. Although there are other selection tech-
niques, we choose for the tournament mechanism. We consider comparing
other techniques beyond the scope of this study.
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4.3.4 Recombination and mutation

In contrast to other evolutionary computation fields are crossover and muta-
tion in GP not sequential. Winners of tournament selection are changed by
either crossover or mutation operators. We will now discuss the crossover
operator and the mutation operators which are commonly used in GP. Other
operators are possible, but as the research is focused on finding closed-form
expressions, comparing different operators is out of scope.

Subtree crossover is a recombination mechanism. Each winner of a tournament
is changed by this operator with probability psc. When performing this oper-
ator, a donor parent is required. By selecting another winner of a tournament,
the crossover operator is performed on the parent and the donor parent. In
both the parent and the donor, a random node is selected, which is called the
crossover point. An offspring is then created by copying the subtree of the
donor node at the crossover point to the crossover point of the parent. Figure
5 gives an example of performing the subtree crossover operator.

Figure 5: Subtree crossover on parent 3
y ∗ (5− x) and donor 2 + (x ∗ y)

Subtree mutation is an equivalent of subtree crossover. Instead of having a donor
parent, the subtree under a mutation point is replaced by a random generated
sub-tree. The probability of performing this operator is denoted by psm. Figure
6 gives an example subtree mutation.
Hoist mutation is a mutation operator that is a good solution to prevent bloat,
which we will discuss in section 4.3.5. In this mutation operator, we select a
sub-tree of the parent tree. This subtree is then removed from the parent tree.
By this, the offspring tree will be smaller than its parent. The probability of
performing this operator is denoted by phm. Figure 7 gives one example.
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Figure 6: Subtree mutation on parent 3 ∗ (2 + y)

Figure 7: Hoist mutation on parent ( x
y ) ∗ (

x
y − y)

Point mutation is an operator where we select a random node and replace it
with a different random primitive of the same arity. The probability of per-
forming this operator is denoted by ppm.

GP requires that the sum of the probabilities on the recombination and muta-
tion does not exceed one. If the sum is less than one, the remainder belongs to
the probability on reproduction of the parent to its offspring. This means that
the offspring is identical to its parent. The name of this operator is reproduction
and its probability it denoted as pr.

There are more recombination and mutation operators available for GP. Poli et
al. (2008) give a list of optional operators to create diversity in solutions. In
the earlier works of Koza, mutation is seen by Koza as unnecessary to apply
GP. Chellapilla (1997) shows that the combination of six mutation operators
can outperform previously published GP on some simple problems. Luke and
Spector (1997) state that it is not clear whether mutation or crossover is better
and in their revised work (1998) this observation is confirmed.
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4.3.5 Bloat

The phenomenon of trees becoming too big in size and shape is called bloat.
We define bloat as program growth without significant return in terms of fit-
ness. One method to prevent bloat is the parsimony pressure method. Here, we
penalize the size of the program. All fitness functions are therefore replaced
by f (x) = f (x)− c ∗ l(x) where f (x) is the original fitness, l(x) is the size of
the program and constant c is known as the parsimony coefficient. Poli and
McPhee (2014) suggest that c should be c = Cov(l, f )

Var(l) in order to penalize in the
correct way. Here, Cov(l, f ) is the covariance between the program size and the
program fitness f in the population. The Var(l) is the variance of the program
size. This constant c should be updated for each new generation.

5 Data

In this section, we describe how data sets are created for the GP algorithm.
First, the parameter space of the system parameters are discussed. Second, we
discuss tree different sampling techniques to choose data points in the parame-
ter space. Third, a dynamic scheme is given how single node queuing systems
are simulated. At last, the batch-means method will be discussed.

5.1 Parameters

Different queuing instances are created by varying the system parameters. The
distributions of interest for the service-time and inter-arrival time time are the
exponential, the beta, the gamma and the log-normal. By this limitation, we
only have to vary the first and second moment of these distributions. If we set
A and S to a certain distribution, we only have to set the following parameters
with the according restrictions:

• A ∼ P, S ∼ Q; P, Q ∈ {Beta, Gamma, Exponential, Lognormal}

• E[A] ∈ R>0; E[S] ∈ (0, E[A])

• Var(A) ∈ R>0; Var(S) ∈ R>0

• s ∈ Z+

The offered load per server in Erlang is defined as ρ = ES
EA . This offered

load indicates the percentage time a server is busy. By the second restriction,
ρ ∈ (0, 1). For the exponential distribution only the first moment needs to be
determined as Var(X) = E(X)2.

16



5.2 Sampling

From section 5.1 it can be seen that there is an infinite number of different queu-
ing systems possible. Even though there are a limited number of parameters
to be determined, the number of instances is infinite. GP however requires a
finite number of instances to search the mathematical expression space. This
finite number of instances should represent the entire population. By limiting
this this subset, selection is unavoidable. Selecting individuals from a popula-
tion to gain information about the population is called by statisticians sampling.
Normally, sampling is performed for finite population to perform statistical in-
ference. In contrast to sampling on a finite population size, the population in
this research is infinite by all different queuing systems that can be modelled
by simulation. Therefore, while the population is infinite, we can still select a
subset of all possible queuing instances by sampling to perform symbolic re-
gression by GP.

In statistical sampling, there are several sampling methods available, listed in
Liu and Motoda (2002) and Taherdoost (2016): probabilistic and non-probabilistic
sampling methods. From one side, the probabilistic method, probabilities of se-
lection are attached to individuals, while from the other, the non-probabilistic
method is biased on choosing individuals based on characteristics. Problems
occurs in both methods: the probabilistic is time consuming while non-probabilistic
is seen as subjective and biased. In this research, there is a need for a sample
that represents the population and generalization is required, the probabilistic
method has preference. We will describe a subset of sampling methods which
will be used to choose the parameters settings.

5.2.1 Simple random sampling

In simple random sampling, each individual has the same probability on being
chosen. In a finite population of size n, each individual has probability 1

n on
being selected. Suppose we want to draw samples in y ∈ [a, b] where b >
a, then we draw a random sample in x ∈ U(0, 1) and apply the following
operation y = x ∗ (b − a) + a. Figure 8 gives an example of simple random
sampling on two dimensions with 25 samples.

5.2.2 Systematic sampling

Systematic sampling is a method where each nth observation is chosen after
a random start. In a finite population setting, if we order the population, we
select for example each tenth individual. This technique is applicable to sam-
pling in y ∈ [a, b]. Suppose n observations are drawn in this range, then the
skip interval is k = b−a

n and a random start r can be drawn from U(0, k). The
drawn sample set using these fixed parameters is then:

{a + r + i ∗ k : i ∈ {0, 1, ..., (n− 1)}}
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Figure 8: Example simple sampling

. Figure 9 gives an example of systematic sampling on two dimensions.

Figure 9: Example systematic sampling

5.2.3 Stratified sampling

In stratified sampling, the population is divided in equally sized subgroups
and a random sample is taken from each subgroup. Choosing a random indi-
vidual from every subgroups (or "stratum") results in representing each part of
the population. Applying this technique to sampling on [a, b] can be performed
by dividing [a, b] in n equal ranges where n is the number of observations. Each
range has length l = b−a

n and the drawn set is the following:

{U(a + l ∗ (i− 1), a + l ∗ i) : i ∈ {1, 2..., n}}

. Figure 10 gives an example of stratified sampling on two dimensions. The
space is divided in 25 equal sub regions and from each region a sample is gen-
erated.
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Figure 10: Example stratified sampling

5.3 Simulation

Using the sampling method, a set of queuing instances are generated. As there
are no performance metrics for generic queues, performance metrics are ob-
tained by simulation. Simulating a queue requires agents arriving at the sys-
tem and servers helping these agents. First, a mathematical procedure is given
to simulate a queue. Second, in order to get good approximations for the per-
formance metrics the batch means method is used and discussed.

5.3.1 Procedure

In this section, a description will be given how a queue is simulated and results
are mathematically obtained. Table 3 shows the variables required to model a
queue.

Variable name Description
ak Arrival time of customer k
sk Service start of customer k
ck Completion time of customer k
xk Inter arrival time between customer k and k− 1
yk The service time of customer k

Table 3: Variable description for simulation

The simulation can be executed by generating N customer arrivals. We need to
draw N inter-arrival time samples from distribution A and the same number
for distribution S. Therefore, we have x1, x2, ..., xN ∈ A and y1, y2, ...., yN ∈ S.
The equations given in (1) show how the arrival times, the service times and
the completion times can be calculated. The service time of customer k starts
when a server is available. The arrival time of customer k is the sum of the inter
arrival times of previous customers. The completion time is the start service
time plus the service time itself.
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ak =
k

∑
n=1

xk, sk = max{ck−s, ak}

ck =

{
sk + yk, if k ≥ 1
0, otherwise

(1)

Using these variables and relations, performance measures can be calculated
for each customer separately. Table 4 gives the description of the variables used
to calculate the performance metrics. The equations given in (2) show how
these variables can be determined. These results calculate the waiting time for
each customer by looking at the time of arrival and the completion time. The
number of customers when a customer arrives is calculated by looking at the
completion times of previous customers.

Variable name Description
wQ

k Waiting time of customer k in the queue
wk Total time of customer k in the system
lk The number of customer in the system when customer k arrives
lQ
k The number of customer in the queue when customer k arrives

Table 4: Performance indicator variables

wk = ck − ak, wQ
k = sk − ak,

lk =
k−1

∑
n=1

1ak≤cn , lQ
k =

k−s−1

∑
n=1

1ak≤cn

(2)

The average waiting time (in the queue) is calculated by taking the average
waiting time over all customers. The same can be done for the number of
customers in the system (or in the queue).

5.3.2 Batch means method

Now that the performance metrics is determined for each agent, the goal is to
get an estimate for the average performance metrics. There are several options
to get a average. One idea is simulating a queue multiple times and taking
the average over the simulation end-average. This however is time consuming
and computational expensive. A more convenient choice is using the batch
means method (Alexopoulos & Seila, 1996). In this method, we simulate a queue
only once and divide the data in ordered batches which are equally sized. One
issue when considering all data is the warm-up period. As queuing systems do
not necessarily start in an equilibrium, the start of a queue needs to converge
to this equilibrium. This is visually given in Figure 12. This issue is solvable by
removing the first batch. One instance is created by simulate 100,000 customers
and dividing their customers performance measure in 10 batches.
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Figure 11: Batch means method Figure 12: Warm-up period

6 Experiments and results

The experiments performed in this study are described in this section. First,
simple queues are analysed to show that GP is able to obtain the performance
metrics. Afterwards, GP is applied to the M/G/s queue to find the underlying
performance metrics.

6.1 Case 1: Finding closed-form approximations of derivable
performance metrics for single node queuing systems

In this section, we will apply GP to obtain closed-form approximations for per-
formance metrics for single node queues. The rationale behind starting with
simple queuing instances is that it is verifiable if GP has obtained the under-
lying function. It will serve as a benchmark. The performance metrics are
used to obtain performance measures. First, we will show the parameter sub-
space. Secondly, the used parameters for the sampling methods will be stated.
Thirdly, the GP algorithm settings that are used to search the parametric space
are given. At last, the results for the M/M/1, the M/G/1 and the M/M/s
queuing systems are shown.

6.1.1 Parameter bounds

Table 5 shows the used parameter bounds. It can be seen that the upper bound
for ρ is set below the theoretical upper bound of 1. The rationale behind this
choice is that if ρ is close to 1, the variance of the dependent variable (one per-
formance metric) increases drastically compared to the change in ρ. As a con-
sequence, the occurrence of bloat in GP is unavoidable when bloat preventing
mechanisms are not sufficient. For the parameter ES, the lower bound is set to
0.1. A rationale here is the impact of ES on the squared coefficient of variation
of the service time distributions. Other bounds are chosen in such way that the
range can represent the whole space.
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Queues Parameter Lower bound Upper bound Category
M/M/1,M/M/s,M/G/1 ρ 0 0.99 Continuous
M/M/1,M/M/s,M/G/1 ES 0.1 1 Continuous
M/G/1 var S 0 1 Continuous
M/M/s s 1 50 Discrete

Table 5: Parameter bounds for case 1

6.1.2 Sampling settings

In this section, we describe the sampling method settings. For the simple ran-
dom sampling, only the bounds in section 6.1.1 are required. For the stratified
and the systematic sampling system, we require to determine some param-
eters. The settings for these parameter depends on the sample size. In this
research, 10 data points are considered to be sufficient to represent one vari-
able. This means that if there are p parameters to be varied, the total number
of samples is 10p. Table 5,6 and 7 show the parameters of the sampling method
that satisfies the 10 data points per variable requirement.

Parameter Skip k Random start r
ρ 0.1 U(0, 0.09)
ES 0.1 U(0, 0.1)
var S 0.1 U(0, 0.1)
s 5 bU(1, 5)c

Table 6: Systematic sampling settings

Parameter Interval length l
ρ 0.1
ES 0.1
var S 0.1
s 5

Table 7: Stratified sampling settings

6.1.3 Genetic programming parameter setting

The python library gplearn (Stephens, 2018) is used to perform GP. Table 8
gives the parameters used in the GP algorithm for this case. These settings are
used to obtain performance metrics for the simple queues.

Parameter Value Parameter Value Parameter Value
Population size 500 Init method Ramped half and half psc 0.9
Generations 10 Function set [*,-,+,/] psm 0.01
Tournament size 20 Metric Mean Absolute Error phm 0.01
Stopping criteria 0 Parsimony coefficient 0.001 ppm 0.01
Init depth (2,6) Constant range (1,1) ppr 0.05

Table 8: Genetic Programming parameter settings for case 1
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6.1.4 Evaluation metric

To measure how well the function fits the data, we use the coefficient of deter-
mination (r2). Suppose we have data y1, ..., yn and prediction values f1, ..., fn.
Then the r2 can be calculated by the following formulas given in (3).

r2 = 1− SSres

SStot
, ŷ = ∑

i
yi/n

SSres = ∑
i
(yi − fi)

2, SStot = ∑
i
(yi − ŷ)

(3)

6.1.5 M/M/1

For the M/M/1 queue, the objective is to find the relation between the input
parameters λ and µ and the performance metrics. Table 9 shows the results of
applying GP to different sampling methods and testing it with 10-fold cross-
validation. In almost all folds, the actual underlying function was obtained.
Table 10 shows which functions are obtained with the highest r2. GP is able to
get the underlying function in relatively few generations because the function
is rather simple.

Sampling method EL ELQ EW EWQ
Simple 1.0 1.0 1.0 0.999927
Stratified 1.0 1.0 1.0 1.000000
Systematic 1.0 1.0 1.0 0.999991

Table 9: Average r2 in 10-fold GP using different sampling methods M/M/1
queue

Metric Best function Exact
EL λ

µ−λ
ρ

1−ρ

ELQ λ
µ
λ ∗(µ−λ)

ρ2

1−ρ

EW 1
µ−λ

1
µ∗(1−ρ)

EWQ
λ
µ

µ−λ
ρ

µ∗(1−ρ)

Table 10: Functions with r2 = 1.0

Conclusion: For the M/M/1 queue, it can be observed that the closed-form
approximation equals the exact function. As the function is rather simple, it is
not hard for GP to obtain the actual closed-form expression.
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6.1.6 M/G/1

Finding the closed-form expressions for the performance metrics of the M/G/1
queue is harder compared to the metrics of the M/M/1. In this setting, we try
to find a relationship between λ, ES and σ2(S) and one of the performance met-
rics (EL, ELQ, EW, EWQ). 1000 samples are gathered by the sampling meth-
ods. Table 11 gives the r2 results when applying GP.

Sampling method EL ELQ EW EWQ
Simple 0.667 0.725 0.635 0.711
Stratified 0.746 0.689 0.642 0.682
Systematic 0.657 0.666 0.661 0.698

Table 11: Average r2 in 10-fold GP using different sampling methods M/G/1
queue

Table 12 shows two functions which have a high r2 and are interpretive. We
can observe that the structure of the function resembles the actual performance
metrics of the M/G/1 queue.

Metric Best function r2

EL
1.0λ(ES3λ2−ES−λσ2(S))

ES2λ2−1 0.999677

EW ES2(ESλ−1.0)(2ESλ−2.0)+ES+λσ2(S)
2ESλ−2.0 0.925971

Table 12: Interpretable functions with the highest r2

Only using the parameters to learn the relationship is a rather naive approach.
Researchers can of course use professional knowledge on some part of the re-
lationship (Lu, Ren, & Wang, 2016). The results from the M/M/1 queue gives
us an indication that the load ρ = λ

µ is an important feature. Furthermore,
the heavy traffic behaviour should also be included. When a system is heav-
ily loaded (ρ goes to 1), the asymptotic behaviour around 1 can be used to
speed up the convergence of obtaining a accurate approximation. Therefore,
the asymptotic behaviour around 1 and the behaviour at 0 for all performance
metrics can be approximated by using the relationship R = 1

1−ρ . In addition
to our original variables we use these expressions to learn the relationship, the
underlying relationships can be easier obtained. Table 13 shows that using this
prior knowledge, the underlying function can be obtained because the GP was
pushed in the right direction. In the Appendix A is shown that indeed the best
functions are the exact functions but in another format.

Conclusion: For the M/G/1 queue, at first sight, GP is not able to obtain
the exact closed-form expression. As is shown in for this queue, some prior
knowledge about the heavy-traffic behaviour R helped GP to actually obtain
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Metric Best function Exact function r2

EL λ
(
0.5ESRρ + ES + 0.5Rλσ2(S)

) ρ2(1+c2(S))
2(1−ρ)

+ ρ 1.0

ELQ
0.5Rρ(ESρ+λσ2(S))

ES
ρ2(1+c2(S))

2(1−ρ)
1.0

EW 0.5ES (R + 1) + 0.5Rλσ2(S) ρES(1+c2(S))
2(1−ρ)

+ ES 1.0

EWQ 0.5R
(
ESρ + λσ2(S)

) ρES(1+c2(S))
2(1−ρ)

1.0

Table 13: Interpretable functions with the highest r2 using prior knowledge
M/G/1

Sampling method EL ELQ EW EWQ
Simple 0.970 0.988 0.965 0.976
Stratified 0.982 0.997 0.932 0.975
Systematic 0.981 0.989 0.940 0.943

Table 14: Average r2 in 10-fold GP using different sampling methods M/G/1
queue with prior knowledge

the actual closed-form expressions for the performance metrics. It is not clear
that using a different sampling technique lead to better results.

6.1.7 M/M/s

The last queue analysed in this section is the M/M/s queue. Table 15 shows
the 10-fold cross-validation r2 score using different sampling techniques. It
can be observed that the highest score is obtained for the ELQ metric, while
the lowest score is obtained for the EWQ metric. One interesting function that
is obtained in GP was the relation ELQ = λ5

µ4s4(−λ+µs) . This function had a r2

of 0.9999999 in one of the folds.

Sampling method EL ELQ EW EWQ
Simple 0.509 0.803 0.575 0.215
Stratified 0.267 0,899 0.592 0.090
Systematic 0.445 0.755 0.576 0.137

Table 15: Average r2 in 10-fold GP using different sampling methods M/M/s
queue

Similar to the M/G/1 queue, prior knowledge can be used for the M/M/s
queue. For the M/M/s queue, the prior knowledge we use is the probabil-
ity on waiting C = P(WQ > 0) and the load per machine in Erlang ρ =

λ
µ∗s . In this setting with prior knowledge, the goal is to find the relationship
between the independent variables λ, µ, s, ρ, C and the performance metrics
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(EL,ELQ,EW,EWQ). Table 16 shows the accuracy that can be achieved when
using this prior knowledge. As can be seen, the accuracy improved compared
to the results in Table 15. Table 17 shows the functions with the highest r2 in one
of the folds. In Appendix B, the best functions are checked to show that these
functions are indeed the exact functions. These functions actually achieved a
r2 of 1.0 and it can be easily verified that these obtained function are the actual
functions.

Sampling method EL ELQ EW EWQ
Simple 0.825 0.874 0.710 0.717
Stratified 0.894 0,873 0.610 0.690
Systematic 0.850 0.816 0.741 0.657

Table 16: Average r2 in 10-fold GP using different sampling methods M/M/s
queue with prior knowledge

Metric Best obtained function Actual function
EL λ(−Cµ+λ−µs)

µ(λ−µs)
ρC

1−ρ + ρs

ELQ − Cρ
ρ−1

ρC
1−ρ

EWQ − C
µs(ρ−1)

C
sµ−λ

Table 17: Interpretable functions with the highest r2 using prior knowledge
M/M/s

Conclusion: Similar to the M/G/1 queue, using prior knowledge in the
M/M/s system improves the speed of convergence to obtain the exact closed-
form expressions for the EL, ELQ and EWQ performance metrics. Further-
more, there is no sampling technique that results in better approximations.

6.2 Case 2: Finding closed-form approximations of non-derivable
performance metrics for single node queuing systems

In this second part, we try to obtain performance metrics for the M/G/s queue.
First, we show the parameter bounds of the used parameters. In this case, we
only use simple random sampling to narrow down the amount of computation.
The performance metrics are here obtained by simulating queuing instances.
Afterwards, we give the result of 10-fold cross-validation and the best obtained
functions with the highest r2.

6.2.1 Parameter bounds

Table 18 shows the bounds of the parameters used. For the service time dis-
tribution, we consider the gamma, beta and lognormal distribution. For the
beta distribution it holds that the range is between (0, 1) and the variance is
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between (0, ES(1− ES)). Therefore, these are the bounds on which we sample
for the σ2(S).

Parameter Lower bound Upper bound Category
ρ 0 0.99 Continuous
ES 0.1 1 Continuous
var S 0 ES*(1-ES) Continuous
s 1 50 Discrete

Table 18: Parameter bounds

6.2.2 Genetic programming parameter setting

Table 19 gives the parameters used in the GP algorithm for obtaining the per-
formance metrics for the M/G/s queues. As the M/G/s is more complex, the
initial depth is more varied.

Parameter Value Parameter Value Parameter Value
Population size 1000 Init method Ramped half and half psc 0.9
Generations 20 Function set [*,-,+,/] psm 0.01
Tournament size 20 Metric Mean Absolute Error phm 0.01
Stopping criteria 0 Parsimony coefficient 0.001 ppm 0.01
Init depth (2,10) Constant range (0,0) ppr 0.05

Table 19: Genetic Programming parameter settings

6.2.3 M/G/s

For the M/G/s queue, we can use some prior knowledge to obtain the rela-
tionship. We use ρ = λ

ES∗s , C = P(WQ > 0) and R = 1
1−ρ , which are all

gathered from the simulation. Another variable used is c2 = σ2(S)
ES2 . The inde-

pendent variables are λ, ES, σ2(S), s, C, ρ, R, c2 and the dependent variables are
the performance metrics. Table 20 shows the r2 obtained over 10-fold Cross-
validation. Table 21 shows the functions with the highest r2. For these best
functions, EWQ has a r2 of 0.926042 and EW 0.872583 in one of the fold. As can
be seen, the probability of waiting is a critical variable in determining these
performance metrics.

Sampling method EL ELQ EW EWQ
Simple 0.524 0.685648 0.569392 0.534159

Table 20: Average r2 in 10-fold GP M/G/s queue
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Metric Best function

EW
ESs+PWQ4(ESs+PWQ2(ES+PWQ)(PWQ3s+1))+PWQ(ES+PWQ)

s

EWQ
PWQ(PWQ2(PWQc2+varS)(PWQs(PWQc2+varS)(PWQ(PWQ−s)−varS)+c2ρ(PWQ−s))+c2ρ(PWQ−s))

c4s(PWQ−s)

Table 21: Interpretable functions with the highest r2 using prior knowledge

Table 21 shows that the expected waiting time is highly dependent on the prob-
ability on waiting. The probability on waiting term is frequently present in the
closed-form approximation. The r2 scores in Table 20 show that GP is more able
to obtain a better closed-form approximation for the ELQ compared to other
performance metrics. As would be expected, as the function becomes more
complex, it is harder to find a closed-form expression that has a high r2. How-
ever, giving the GP enough prior knowledge (such as the heavy-traffic limit)
can help GP in the right direction and, therefore, GP will converge faster.

Conclusion : For the M/G/s queue, finding a accurate closed-form approxi-
mation for the performance metrics is shown to be indeed hard.

7 Discussion

In this research paper, symbolic regression tried to find closed-form approxi-
mations for performance metrics of queuing instances. In the first experimen-
tation case, GP was shown to be able to find the closed-form expressions for the
performance metrics in the space of M/M/1 queues. Harder instances such as
the M/G/1 and the M/M/s required some prior knowledge to derive these
relationships. During the experimentation it was observed that giving GP the
right input it can uncover the underlying function. By using some prior knowl-
edge, the search is simplified, as complex parts of the equation are stored in
variables.

What did not seem to have a significant impact was the sampling method. It
was not clear that one sampling method outperformed other sampling meth-
ods. In this first experiment case, changing parameters of the GP is not investi-
gated so varying the parameter could lead to an algorithm that is better in find-
ing the closed-form expressions that belong to the performance metrics. The
data used in the first case did not have a measurement error. Therefore, check-
ing if the actual underlying function is obtained is easy as the error should be
0. Of course, in real life measurement errors are unavoidable.

In the last experiment, GP tried to find the performance metrics, the mean
number of customers in the system and the mean waiting time distribution,
for the M/G/s queue and found a function which might lead to more research.
Only three different service time distributions are considered in this experi-
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mentation and the subspace on which the parameters varied was rather lim-
ited. Increasing the subspace of the parameters does not necessarily push GP
in the right direction as big errors can lead to over-fitting when the bloat mech-
anisms are not sufficient working. By lack of time, further research can be done
on using different parameter settings for the GP. As was shown by giving the
GP prior knowledge can give GP the right direction.

8 Conclusion

This research paper investigates the approximation of key performance metrics
of single node queuing systems. Conclusions are:

• Derivable key performance metrics of single node queuing systems can
be exactly reproduced by genetic programming.

• Giving prior knowledge, such as the heavy-traffic behaviour, can help
genetic programming in the search for closed-form expressions of key
performance metrics and improve the speed of convergence.

• Using different sampling techniques does not necessarily result in faster
convergence.

9 Further research

Future research can investigate in for example the GI/M/s queue and the
GI/G/1 queue. Finding out which prior knowledge is required to obtain a
relationship can reduce the search in the form of the performance metric. Fur-
thermore, in this research there is no study in which parameter setting for the
GP might improve the speed of convergence and obtaining a closed-form ex-
pression with a higher r2 for queuing systems where performance metrics are
non-derivable. Experimenting with these parameters can result in better con-
vergence.
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Appendix A: Validation for obtained approximations
for M/G/1

In this section, it is shown that the best obtained functions for the performance
metrics of the M/G/1 queue are indeed their exact closed-form expression.

EL:
λ
(
0.5ESRρ + ES + 0.5Rλσ2(S)

)
= λ 1

2 ES ρ
1−ρ +λES+ 1

2
λ2σ2(S)

1−ρ = ρ2

2(1−ρ)
+ λ2σ2(S)

2(1−ρ)
+

ρ = ρ2+λ2σ2(S)
2(1−ρ)

+ ρ =
ρ2(1+ λ2σ2(S)

ρ2 )

2(1−ρ)
+ ρ = ρ2(1+c2(S))

2(1−ρ)
+ ρ

ELQ:
0.5Rρ(ESρ+λσ2(S))

ES =
ρ(ρ+ λσ2(S)

ES )

2(1−ρ)
=

ρ2(1+ λσ2(S)
ESρ )

2(1−ρ)
= ρ2(1+c2(S))

2(1−ρ)

EW:
0.5ES (R + 1) + 0.5Rλσ2(S) = 1

2 (
ES

1−ρ + ES) + λσ2(S)
2(1−ρ)

= 1
2 (

ES
1−ρ + ES(1−ρ)

1−ρ ) +

λσ2(S)
2(1−ρ)

= 2ES−ESρ
2(1−ρ)

+ λσ2(S)
2(1−ρ)

= 2ES−ESρ+λσ2(S)
2(1−ρ)

=
ρES( 2

ρ−1+ λσ2(S)
ρES )

2(1−ρ)
=

ρES( 2
ρ−2+1+c2(S))

2(1−ρ)
=

ρES(1+c2(S))
2(1−ρ)

+ ES(2−2ρ)
2(1−ρ)

= ρES(1+c2(S))
2(1−ρ)

+ ES

EWQ:

0.5R
(
ESρ + λσ2(S)

)
= ESρ+λσ2(S)

2(1−ρ)
=

ESρ(1+ λσ2(S)
ρES )

2(1−ρ)
= ρES(1+c2(S))

2(1−ρ)

Appendix B: Validation for obtained approximations
for M/M/s

In this section, it is shown that the best obtained functions for the performance
metrics of the M/M/s queue are indeed their exact closed-form expression.

EL:
λ(−Cµ+λ−µs)

µ(λ−µs) = (−Cλµ+λ(λ−µs))
µ(λ−µs) = −Cλµ

µ(λ−µs) +
λ
µ = −C

(1− µs
λ )

+ λ
µ

= −C
(1− 1

ρ )
+ ρs = ρC

(1−ρ)
+ ρs

ELQ:
− Cρ

ρ−1 = ρC
1−ρ

EWQ:
− C

µs(ρ−1) =
C

µs(1−ρ)
= C

sµ−λ
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