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Abstract

Hate speech is currently of broad and current interest in the domain of
social media. The anonymity and flexibility afforded by the Internet has
made it easy for users to communicate in an aggressive manner. And as
the amount of online hate speech is increasing, methods that automatically
detect hate speech is very much required. Moreover, these problems have
also been attracting the Natural Language Processing and Machine Learn-
ing communities a lot. Therefore, the goal of this paper is to look at how
Natural Language Processing applies in detecting hate speech. Further-
more, this paper also applies a current technique in this field on a dataset.

As neural network approaches outperforms existing methods for text clas-
sification problems, a deep learning model has been introduced, namely
the Convolutional Neural Network. This classifier assigns each tweet to
one of the categories of a Twitter dataset: hate, offensive language, and neither.
The performance of this model has been tested using the accuracy, as well
as looking at the precision, recall and F-score. The final model resulted in
an accuracy of 91%, precision of 91%, recall of 90% and a F-measure of 90%.
However, when looking at each class separately, it should be noted that a
lot of hate tweets have been misclassified. Therefore, it is recommended to
further analyze the predictions and errors, such that more insight is gained
on the misclassification.
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1 Introduction

Research on safety and security in social media has grown substantially in
the last decade [24], as people are using more and more social interactions
on online social networks. This leads to an increase in number of hateful ac-
tivities that exploit such infrastructure. The anonymity and mobility given
by these social media allows people to protect themselves behind a screen
and made the breeding and spread of hate speech effortless.

Moreover, social media companies like Twitter, Facebook and Youtube are
criticized for not doing enough to prevent hate speech on their sites and
have come under pressure to take action against hate speech. As a matter
of fact, the German government has threatened to fine the social networks
up to 50 million euros per year if they continue to fail to act on hateful post-
ings (and posters) within a week [10].

Due to the massive scale of the web, the need for scalable, automated meth-
ods of hate speech detections has grown substantially. These problems
have been attracting the Natural Language Processing (NLP) and Machine
Learning (ML) communities quite a lot in the last few years. Despite this
large amount of work, it remains difficult to compare their performance,
largely due to the use of different datasets by each work and the lack of
comparative evaluations [43].

The main aim of this paper is to find out how Natural Language Processing
techniques can contribute to the detection of hate speech. This research pa-
per also focuses on exploring and applying a current effective method for
this classification task on a Twitter dataset.

In the following, Section 2 first discusses some background and related
work of this research that is relevant for applying a model. Section 3 then
describes the model that has been chosen for detecting hate speech, includ-
ing a description of the tasks and the specification of the model. In Section
4 a description of the data is given, followed by the results of the experi-
ments. Finally, the paper ends with a conclusion and discussion in Section
5 and 6, respectively.



2 | Background and Related Work

This section discusses the background necessary to conduct the research
of this paper as defined by the research objective in Section 1. First, an
overview of hate speech and the need of detecting hateful speech is given.
Then the different techniques of Natural Language Processing is described,
which is followed by a review on existing literature where the two disci-
plines have been fused together.

2.1 Hate Speech Detection

Identifying if a text has hate speech is not an easy task, even not for hu-
mans. That is why it is important to give definitions of hate speech before
applying machine learning in order to identify hate speech. Given a proper
definition makes it easer to tackle this problem. However, there is not one
formal definition of hate speech, but a commonly definition is given by
Nockleby (2002), that defines it as "any communication that disparages a
person or a group on the basis of some characteristic such as race, color,
ethnicity, gender, sexual orientation, nationality, religion, or other charac-
teristic.” Examples are ':

1. Go kill yourself, You're a sad little f*ck.
2. Wipe out the Jews.
3. Women are like grass, they need to be beaten/cut reqularly.

In the very first work of hate speech the term was referred to as abusive and
hostile messages or flames. But, in defining this phenomenon, the words
hate speech tends to be used the most. More recently, many authors have
shifted to employing the term cyberbullying [35]. However, there are also
more concept related to hate speech that are used in the NLP community,
such as: discrimination, flaming, abusive language, profanity, toxic language or
comment [9].

Examples of hate speech can include racist cartoons, anti-Semitic symbols,
ethnic slurs or other derogatory labels for a group, burning a cross, polit-
ically incorrect jokes, sexist statements, anti-gay protests...etc [39]. Even
though the amount of hate speech online has grown, hate speech itself is
not new nor is the aim of it. According to McElwee (2013) hate speech has

1t should be noted that these examples are taken from actual web data and thus not
reflect the opinion of the author of this paper.



the intention of achieving at most two goals: an attempt to tell bigots that
they are not alone and to intimidate the targeted minority, leading them to
question whether their dignity and social status is secure.

While hate speech itself is not new, hate speech detections is a recent area.
Detecting hate speech has become an important part for analyzing public
sentiment of a group of users towards another group, and for discouraging
associated wrongful activities [4]. Manually filtering these hateful text on
the web is seen as a lot of work and thus not scalable at all, which is why
researcher were determined to find automated ways to detect hateful text.

An important note when detecting hate speech is that it should not be
mixed with offensive language. Because, someone using offensive lan-
guage is not automatically abusive. People tend to use terms that are tech-
nically speaking highly offensive, for all sorts of reasons. Some in a playful
way, others in qualitatively different ways. For example, people use some
terms in everyday language or when quoting rap lyrics or even for fun,
such as n*gga, h*e and b*tch. Such language is prevalent on social media,
making this boundary condition crucial for any usable hate speech detec-
tion system [7].

2.2 Natural Language Processing

Natural Language Processing or NLP (also called Computational Linguis-
tics) can be defined as the automatic processing of human languages. As
NLP is a large and multidisciplinary field, but yet comparatively a new
area, there are many definitions out there practiced by different people.
One definition that would be part of any knowledgeable person’s defini-
tion is [22]:

Natural Language Processing is a theoretically motivated range of computational
techniques for analyzing and representing naturally occurring texts at one or more
levels of linguistic analysis for the purpose of achieving human-like language pro-
cessing for a range of tasks or applications.

Thus, NLP is a field of computer science and linguistics concerned with
the interaction between computers and human (natural) languages. More-
over, it is driven by advances in Machine Learning (ML) and also has an
integral part of Artificial Intelligence (Al). The techniques of NLP are de-



veloped in such a way that the commands given in natural language can be
understood by the computer and also be able to perform according to it. It
should be noted that natural language processing can be divided into two
parts, namely written and spoken language °. Written languages play a
less central role than speech in most activities, as the largest part of human
linguistic communication occurs as speech. However, written language can
be understood easier than spoken language, as spoken languages deal with
a lot of noise and ambiguities of the audio signal. Because there is a lot of
ambiguity found in language, NLP is seen as a hard problem in computer
science.

Research in natural language processing has been going on since the late
1940s. Machine translation (MT) was one of the first computer-based ap-
plication related to natural language. Cambria and White (2014) comments
that NLP research has evolved from the era of punch cards and batch pro-
cessing, in which the analysis of a sentence could take up to 7 minutes, to
the era of Google and the likes of it, in which millions of webpages can be
processed in less than a second.

The most explanatory method for presenting what actually happens within
a Natural Language Processing system is by means of the ‘levels of lan-
guage’ approach [22]. These levels are used by people to extract the mean-
ing from text or spoken languages. This is because language processing
mainly relies on formal models or representation of knowledge related to
these levels [19]. Moreover, language processing applications distinguish
themselves from data processing systems by using the knowledge of lan-
guage. The analysis of natural language processing have the following lev-
els: Phonology, Morphology, Lexical, Syntactic, Semantic, Discourse and
Pragmatic. The meaning of each and every level can be found in the ap-
pendix.

2.2.1 Major Tasks in Natural Language Processing

There are a range of applications available that have both theory and im-
plementations in it. As a matter of fact, any application that makes use
of text is a candidate for natural language processing. An overview of
the most used applications in NLP can be found in the appendix. Most

2This paper focuses on the language understanding part, thus speech understanding
will be beyond the scope of this paper. Moreover, work on speech processing has evolved
into a separate field.



of these problems can be formalized as five major tasks, namely classifica-
tion, matching, translation, structured prediction, and sequential decision
process [21]. Table 2.1 gives an overview of these tasks.

Task Description Applications

Classification Assign a label to a string Text classification,
Sentiment analysis

Matching Matching two strings Search,
Question answering

Translation Transform one string to another Machine translation,
Speech recognition

Structured prediction Map a string to a structure Named entity recognition,
Word segmentation,
Semantic parsing

Sequential decision process Take actions in states in dynamically Multi-turn dialogue
changing environment

Table 2.1: Five Tasks in Natural Language Processing

2.2.2 Approaches in Natural Language Processing

Liddy (2001) describes that Natural Language Processing approaches fall
into four categories:

Symbolic approaches perform deep analysis of linguistic phenomena and
are based on explicit representation of facts about language through well-
understood knowledge representation schemes and associated algorithms
[31].

Statistical approaches employ various mathematical techniques and often
use large text corpora to develop approximate generalized models of lin-
guistic phenomena based on actual examples of these phenomena pro-
vided by the text corpora without adding significant linguistic or world
knowledge [22].

Connectionist approaches also develop generalized models of linguistic phe-
nomena, just like the statistical approaches. But what separates connec-
tionism, also known as "parallel distributed processing", "neural networks"
or "neuro-computing”, from other statistical methods is that connection-

ist models combine statistical learning with various theories of represen-



tation - thus the connectionist representations allow transformation, infer-
ence, and manipulation of logic formulae [22].

An increasing number of researchers combine data-driven and knowledge-
driven approaches, which is called the hybrid approaches [11].

From the above, it can be seen that there are similarities and differences be-
tween the approaches. For example, each approach has different assump-
tions, philosophical foundations, and source of evidence. Moreover, the
existing methods for text classification can be divided into two categories:
classical methods and deep learning methods.

Classical methods rely on manual feature engineering and rules in combi-
nation with statistical algorithms. The manually designing features of data
instances into feature vectors can be done in several ways. Studies have
shown that the most effective surface features in hate speech detection are
bag of words, word and character n-grams. In terms of classifiers, the most
popular algorithm used, is the Support Vector Machine. Algorithms like
Naive Bayes, Logistic Regression and Random Forest are also used for clas-
sification task.

Support Vector Machines

Support Vector Machines (SVMs) are a
set of related supervised learning meth-
ods used for classification and regression
Vapnik [40], but mainly target classification
problems. This technique does not make
any assumptions about the data (non-
parametric). Its basic concept is to design
a hyperplane that divides all instances into
two sets. The points on one of these two
hyperplanes are called the support vectors.
As not all data can be linearly separated,
SVM use a kernel function that maps train-
ing vectors to a higher dimensional space
where a maximal separating hyperplane is
constructed, which makes it non-linear. An
advantage of SVMs is that it does not calcu-
late all the points in the new feature space after applying the kernel func-

Figure 2.1: Maximum margin
hyperplane in SVM [2].
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tion, but performs the calculations in the initial feature space, also called
the kernel trick [12].

Deep learning methods make use of neural networks to automatically
learn multi-layers of features from the given data. By the early 2000s,
improvements in computer hardware and advances in optimization and
training techniques made it possible to train even larger and deeper net-
works, leading to the modern term deep learning [15]. NLP techniques
were mostly dominated by machine-learning approaches that use linear
models and are trained over high dimensional yet very sparse feature vec-
tors. However, lately non-linear neural-network over dense inputs have
been showing success. The most popular used networks are Convolutional
Neural Network (CNN) and Recurrent Neural Network (RNN), typically
Long Short-Term Memory network (LSTM). In the literature, CNN is well
known as an effective network to act as ‘feature extractors’, whereas RNN
is good for modeling orderly sequence learning problems [29].

Recurrent Neural Network

Recurrent models have been shown to pro-

duce very strong results for language mod-

eling. Recurrent neural networks (RNNs)

are so-called feedback neural networks

where the connections between neurons

can form directed cycles. This network an-

alyzes a text word by word and stores the

semantics of all the previous text in a hid-

den layer. A recurrent neural network is

a neural network that consists of a hidden

state i and an optional output y that op- Figure 2.2: A simple recur-
erates on a variable length sequence x = Tent network [41].
(x1,...,xT). At each time step ¢, the hidden

state h(;) of the RNN is updated by

hiy = f(hy-1),xt), (2.1)

where f is a non-linear activation function [20]. This function could be sim-
ple, but also very complex such as the long short-term memory (LSTM) unit.
LSTM is one of the most popular and efficient methods for reducing the ef-
fects of vanishing and exploding gradients [14]. It is thus capable of learn-



ing long-term dependencies.

RNN has its advantage of capturing the contextual information in a better
way, which could be helpful when dealing with long text. However, as this
model is a biased model, it could also reduce the effectiveness when used
for the entire document.

Convolutional Neural Network

To tackle the bias problem of a recurrent
neural network, an unbiased model has
been introduced, namely the convolutional
neural network, referred to as CNN or Con-
vNet. A CNN is a deep, feed-forward ar-
tificial neural network consisting of an in-
put, output and multiple hidden layers.
Figure 2.3: Concept of a Con-  The difference of a CNN is that there is
volutional Neural Network, 5 convolutional multi-layer that automat-
where only a small region ically identifies features within the input
of input layer neurons con- gpace. The networks are mostly known in
nect to neurons in the hidden  pplications as image and sound recogni-
layer [1]. tion, but have lately been used in more ap-
plications, such as text classification.

In the context of hate speech classification, intuitively, CNN extracts word
or character combinations (e.g., phrases, n-grams), RNN learns word or
character dependencies (orderly information) in Tweets [42].

Ensemble methods. At last, researchers also tend to use ensemble meth-
ods to improve the performance of the model. This method is a method
that uses a combination of multiple independent models to aggregate the
predictions. Several papers have, in fact, shown that using an ensemble
method delivers outstanding performance on the training model and also
has much success in reducing the testing error. Since this research paper
will not be using ensemble methods, it is not needed to go into the depth
of this method. However, as these methods are applied in practice quite a
lot, naming it was important such that reader is aware of it.



2.3 Natural Language Processing in Hate Speech De-
tection

So far, both hate speech detection and natural language processing have
been discussed independently. In this section, the aim is to look at prior
work where hate speech has been detected with natural language process-
ing techniques.

The task of identifying hate speech and abusive language has been in the
research community for almost 20 years now, which lead to a lot of stud-
ies on computational methods in the last few years. A number of studies
that have been done on hate speech detection in terms of classifiers rely
on supervised learning approaches (classical methods). One of the most
used one are Support Vector Machines (SVM) [35]. Examples where SVMs
were used include the work by Malmasi and Zampieri (2017), Davidson
et al. (2017) and Robinson et al. (2018).

Badjatiya et al. (2017) deploy deep learning to detect hate speech in Tweets.
They used three neural network techniques, where the word embeddings
were initialize with either random embeddings or GloVe embeddings. The
following methods were deployed: (1) Convolutional Neural Network (CNN),
(2) Long short-term memory (LTSM) and (3) FastText. The experiments con-
ducted showed that CNN performed better than LSTM which was better
than FastText. Moreover, they concluded that embeddings learned from
deep neural network models when combined with gradient boosted deci-
sion trees led to best accuracy values, which significantly outperforms the
existing methods.

Pitsilis et al. (2018) also conducted a research on detecting hate speech in
Tweets using deep learning. They used an ensemble classifier (deep learn-
ing architecture) that uses word frequency vectorization for implementing
the given features. Their result also outperforms the existing methods.
Moreover, they also concluded that no other model has achieved better per-
formance in classifying short messages.

10



3 | Convolutional Neural Network

The literature study in Section 2 showed that deep learning models tend to
outperform classical models in text classification. This gives enough rea-
sons to further investigate and implement a deep learning model, such as
a convolutional neural network.

3.1 Architecture

There are a lot of variants of the architectures of a convolutional network
that are shown effective in classification tasks. Below an example of a sim-
ple convolutional architecture is shown.

Figure 3.1: Model architecture for an example sentence [17].

As mentioned before, a CNN consists of an input and output layer, as well
as multiple hidden layers. These hidden layers are connected in a feed-
forward manner (thus no cycles in which outputs of the model are fed back
into itself).

The input layer. This layer normally consists of an image that has 3D
inputs of size width x height x 3. This is because CNNs were originally de-
veloped for image data, which is fixed-sized, low-dimensional and dense.
This does not mean that CNNss can not be used to categorize other types of
data too. In order to use these models for other data types, first transform
it to make it look like an image. Thus, applying to text documents, these
need to be modified such that they are variable-sized, high-dimensional
and sparse if represented by sequences of one-hot vectors [13].

11



Embedding layer. In the embedding layer, words with similar meaning
tend to occur in similar context, which converts words into low-dimensional
vectors. As mentioned before, when dealing with text data, the words need
to be converted into vectors. However, converting words to vectors means
that each of these words have a one-hot vector. Representing words in this
way may lead to substantial data sparsity and thus if there is not enough
data, models can perform very poorly or may even overfit and lead to the
curse of dimensionality. Thus, to overcome these shortcomings, words or
characters are transformed into embeddings, where semantically similar
words are mapped to a nearby point. The main advantage of these vectors
is that they capture similarity between words.The embedding layer is often
used as the first data processing layer in deep learning models.

Measuring the similarity between vectors can be done in two ways: count-
based methods and predictive methods. The first method is based on the
Firth’s hypothesis from 1957 that the meaning of a word is defined "by the
company it keeps" and leads to a very simple albeit a very high-dimensional
word embedding [25]. The second method tries to predict a word from its
neighbors in terms of learned small, dense embedding vectors. Commonly
used ones are the GloVe and Word2Vec models.

The embeddings have proven to be efficient in capturing context similar-
ity, analogies and due to its smaller dimensionality, are fast and efficient in
computing core NLP tasks [37].

Convolutional layer. When working with

convolutional networks, the convolutional

layer is the core building block that does

most of the computational heavy lifting

[16]. The function of convolutional lay-

ers is to reduce the number of weights

by extracting higher level features from

the input matrix. As known, each row

of a matrix is a vector that represents a

word. Typically, these vectors are word

embeddings (low-dimensional representa-

tions) like word2vec or GloVe, but they Figure 3.2: An illustration
could also be one-hot vectors thatindex the ¢ . nvolutional filter from
word into a vocabulary [5]. As seen in Fig. [38].

3.2 every node in this layer corresponds to

12



a filter (or 'kernel’) that connects it to a lo-

cal region. In the case of an image, filters of size F' x F x d slide over local
patches of the image, while in text data, filters of size m x d slide over the
input matrix. Note that the width of the filters is the same as the width of
the input matrix, so the connection is only limited in height. The filter is
then applied to each possible window of words in the sentence to produce
a feature map.

Pooling layer. Other than using convolutional layers, CNNs also use pool-

ing layers to reduce the size of the representations, thus reducing its vari-

ance. Pooling layers are designed to subsample their input, which is the

output of the convolutional layer that is passed to the these layers.
The purpose of pooling is to transform
the joint feature representation into a
more usable one that preserves impor-
tant information while discarding irrele-
vant details [8]. Moreover, as classifi-
cation requires fixed size output matrix,
this layer also provides that. This al-
lows the use of variable size sentences,
and variable size filters, but always ob-
taining the same output dimensions to
feed into a classifier [23]. Formerly,
the most common way to do pooling
was to compute averages, but it has

Figure 3.3: The pooling over been shown that applying the maximum

time operation [32]. to the result of each filter works bet-
ter.

Fully-connected layer. After the convolutional and pooling layers, the final
layer in the network is called the fully-connected layer. This layer basically
gives every value a vote and thus activating the output of each convolu-
tional layer. It flattens the high-level features that are learned by the previ-
ous layers and combines them. Afterward, the output of this layer is passed
to the output layer where a non-linear function, like a softmax classifier or
a sigmoid activation, is used for prediction.

IF is the region where the filter slides, which is called the receptive field.
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3.2 Hyperparameters

While there are many aspects of CNNs that can be learned automatically
(such as the backpropagation and gradient descent), there are also aspects
that cannot be learned by the computer and needs to be guessed by the
user. Building a CNN architecture means that there are many decisions to
make, thus many hyperparameters to choose from. While some parameters
have been presented in the section above, there are a few more parameters
that need to be tuned. A list of these parameters will be described below.

Input representations.  Using one-hot encoding or word embeddings,
one can consider to train a CNN from scratch, thus not implementing pre-
trained word vectors like word2Vec or Glove and directly applying convo-
lutions to one-hot vectors. However, studies have shown that using one-
hot encoding performs well on long text. While pre-trained word embed-
ding showed better performances for short text.

Convolution filters. Sliding the filters over the input volume needs to be
specified by:

the number of filters

the size of the filters

the stride size, determining the number of shifts at each step

the amount of zero-padding, which can be used to adjust the size of the
input (by symmetrically adding zeroes to the input matrix)

Ll

Typical choices are to slide over 2-5 words at a time. When one uses large
filters, it is then useful or in some cases even necessary to add zero-padding.
Moreover, when looking at the stride size, it was noticeable that a lot of
studies used sizes of 1.

Pooling strategies. Asmentioned before, there are two conventional pool-
ing methods: max pooling and average pooling. Choosing between these
two highly depends on the kind of application one wants. However, in the
literature it has been found that max pooling is used more often and works
quite well in a lot of experiments. A few results that stand out even con-
cludes that max-pooling always beats average pooling [5].

14



Activation functions. Every neural network applies activations functions
which are used to find out which node needs to be fired. There are many
different functions that can be used, the most common onces are: Sigmoid,
Tanh, Softmax, and rectified linear unit (ReLU). For the hidden layers, a
recent study of Ramachandran et al. (2017) shows that the current most
successful activation function is the ReLU function with f(x) = max(0, x).
When looking at the output layer (the very last layer), typically softmax
or sigmoid functions are used. The choice between these two depends on
whether the classes are independent or mutually exclusive. In the latter
case, the soft-max activation should be used [3], as it outputs a probability
distribution, while the sigmoid function outputs marginal probabilities.

In addition to the above, there are also other architectural decisions that
may need some attention. For example, some neural networks can have a
lot of layers while other networks do not. This means that it is also needed
to look at the number of the layers that needs to be included. Moreover,
one can also think of the order in which these layers take place.

3.3 Evaluation

To evaluate the model with certain features and parameters, the data is di-
vided into three separate sets: training, validation and test set.

The training set is used to optimize the parameters of the model, while the
validation set is used to tune in the hyperparameters in order to improve
the performances. The validation set can be used to set a stopping criteria
for learning and thus avoids overfitting [12]. However, the more the mod-
els are tuned on the validation set, the more biased it becomes. This is why
a test set is used, such that it can obtain an unbiased evaluation.

When dealing with small datasets, it is best to use the limited data in the
best possible way. One approach is to apply k-fold cross validation that
splits the training data into k chunks and then uses k-1 k chunks to train
on and one chuck to test on. However, as this approach repeats the hold-
out method k times, it can be computationally quite expensive, especially
when using a convolutional network and the use of a large k. But, taking
a smaller value for k, might lead to poor performances and less accuracy.
This paper however will not focus on determining k in finding a good bal-
ance. This is why this approach is beyond the scope of this research paper.

15



Furthermore, it is also important to evaluate the performance of the differ-
ent classifiers. This can be done by evaluation measures that can be divided
into a loss and metric functions.

Loss function is used to optimize the model and thus measures how well
the algorithm is doing on the dataset. A few popular loss functions that are
currently being used are: mean squared error (MSE), likelihood loss and
cross entropy loss.

For the loss function the categorical cross-entropy loss function is used to ob-
tain the results. This function is preferred rather than the other commonly
used function , because from the literature it is know that the cross-entropy
tend to be more effective on classification tasks [26].

The categorical cross-entropy loss measures the dissimilarity between the
true label distribution y and the predicted label distribution 7, and is de-
fined as cross entropy [18].

Metric function is used to judge the performance of the model and has
nothing to do with the optimization process. These are often based on con-
fusion matrix: a table that describes the performance of the classifier as
seen in Fig. 3.4. The example of the matrix is used for a binary classifica-
tion, but can easily be applied to a multiclass classification by adding more
rows and columns to the confusion matrix [6].

Figure 3.4: Confusion matrix for binary classification from [36].

Based on the values in the table above, a couple of measurements were cre-
ated. One of the well-know metric and probably the most straightforward
one is the accuracy that measures the total correct predictions as a percent-
age of the total instances. It is defined as follows:

16



tp+tn
tp+ fn+ fp+tn
However, looking at the accuracy only to decide whether the model is
good, is not enough to make this decision. Another popular metric for

classification problems is the Fi-score, which is the harmonic mean of preci-
sion and recall measurements. These are defined as:

Accuracy =

recall - precision

t t
Recall = P Precision = P and F; =2 —
recall + precision

tp+fn’ tp+fp’
In case of an unbalanced dataset, a Fi-score would also give a better unbi-
ased representation of the performance than an accuracy measure.

17



4 | Experiments

4.1 Data

To see how well the proposed method performs, the experiments have
been done on the Hate Speech Identification dataset distributed via Crowd-
Flower !. This dataset features 24,783 English tweets that has been classi-
fied into three classes:

1. Hate: tweet contains hate speech
2. Offensive: tweet contains offensive language but no hate speech
3. Neither: tweet does not contain hate speech nor offensive language

The distribution of the tweets across the

three clas.ses‘is shown in Tab'le 4.1. These  (jass # of Tweets
numbers indicate that approximately 5% of

the tweets contain hate speech, while the Hate 1,430
majority of the tweets (77%) contains offen- Offensive 19,190
sive language. This means that the num- Neither 4,163
ber of tweets belonging to the three classes  Total 24,783

are quite skewed, leading to an unbalanced
dataset. The size of the dataset is rather Table 4.1: Summary classes
small, but will still be used for this research.

4.2 Preprocessing

Given a tweet, the following preprocessing procedure has been adopted to
normalize its content. This has been done with the Keras package in Python
using its Tokenizer class.

- removing characters
- lowercase and stemming, to reduce word inflections
- splitting text into tokens

There are also many tools available to clean Twitter datasets, but were not
taking into consideration, meaning that it is beyond the scope of this paper.

Ihttps:/ /data.world /crowdflower /hate-speech-identification
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4.3 Experimental setup

As mentioned before, the experiments have been done in Python. Here
the neural network and machine learning libraries are utilized. To be more
specific, for the training of the model, the Keras library with Tensorflow
back-end has been used. This subsection describes the setup of the experi-
ments that assessed the performance of the convolutional neural network.

Data splitting. For this research paper it has been decided to split the data
into the three separate sets, instead of using cross-validation. The reason
for this is the short time span of this research. Training a CNN is compu-
tationally expensive and with the use of cross-validation it would take too
much time. Thus, the division has split the dataset in a training, validation,
and test set of 50%, 30%, and 20% respectively. The rationale behind this
ratio comes from the size of the whole dataset. To evaluate the model and
refine the parameters, a larger validation set is needed.

Architecture. The previous section showed that convolutional networks
are commonly made up of only three layer types: convolution, pooling
and fully-connected. Several studies have shown that it is very uncommon
to have resources to succesfully train a full convolutional neural network
from scratch. Karpathy (2017) even says that is it more sensible to look at
the current architecture that works best for your problem and then down-
load a pre-trained model and fine-tune it on your data. Following this ad-
vice, the CNN model that has been used on the dataset is the architecture
used by Kim (2014) (see Fig. 3.1), which consists of a non-linear convolu-
tion layer, max-pooling layer, and softmax layer. The architecture of Kim is
used for a sentence classification, which is why it is expected that a big part
of the model is transferable to this hate speech problem.

Input + word embedding.  The input of this model is a preprocessed
tweet, that is treated as a sequence of words. To set the weight of the
embedding layer, this work used the publicly available word2Vec word
embedding with 300 dimensions pre-trained on the 3-billion-word from
Google News with a skip-gram model.”

2h’ctps: / / github.com/mmihaltz/word2vec-GoogleNews-vectors
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Hyperparameters.  As described above, the model parameters will be
based on default values or on (empirical) findings that have been reported
earlier. However, the batch size and epoches are derived from the training
model, which will be explained later. It should be noted that these values
may not lead to optimal results, as each setting is dependent of the data.
Nonetheless, this work will show that using these parameters leads to ob-
taining good performances even without tuning the parameters.

CNN. The dimension of the word vector is set to d = 100 at first and thus
the embedding layer passes an input feature space that has a 3-dimensional
tensor of shape (None, 100, 300). The output of this layer is then fed into
a 2D convolutional layer with filter layers of 3, 4, and 5, each having a 100
feature map. The rectified linear unit function is used for activation. In or-
der to build the convolutional layers followed by max-pooling, it is needed
to convert the output of the embedding in a 4-dimensional tensor shape®.
The layer of the shape then becomes (None, 100, 300, 1). As this net-
work deals with filters of different sizes, each filter has its own layer, which
is then merged into one feature vector. The filters are then slided over the
sentences without padding the edges. For example, the filter that slides
over 3 words gives a tensor of shape (None, 94*, 1, 100). This input
feature space is then further down-sampled by a max pooling layer with a
stride size of 1, which gives a tensor of shape (None, 1, 1, 100). Once
all the output tensor from the pooled layers are created, each filter size
is then combines into one long feature vector. Then, the activations are
dropped randomly with the probability p = 0.5 and the dimension is flatten
when possible. At last, the output feature vector is then taken as input in
a softmax layer. This layer then predicts the probability distribution over all
possible classes.

Optimization. To train the model, the Adam algorithm has been used.
Furthermore, default parameters given in the paper of Kim (2014) are used
and if necessary are adjusted to get a better performance. The batch size is
set to 64 and the model will be trained with 10 epochs.

3When using a 2D convolution, the Tensorflow in Python only takes a 4-dimensional
tensor with dimensions corresponding to batch, width, height and channel.
4(= sequence length - filter size + 1)

20



4.4 Results

Before finalizing the model, it is important to see how the model performs
by using the validation set. This will give an indication whether the pa-
rameters needs to be tuned in for a better performance. Fig. 4.1 gives an
overview of how the classifier with the given parameters (as discussed pre-
viously) has performed.

Initially, a learning rate of « = 1073, batch size of B = 64 and a dropout
probability of p = 0.5 have been applied. A plot of the loss function is
given in Fig 4.1a.

(a) Loss (b) Accuracy

Figure 4.1: The loss and accuracy for the initial model.

Fig. 4.1b shows the accuracy performance of the model. This shows whether
the classifier is overfitting the training data. Looking at both plots, it can
be seen that the model tends to overfit the training data. Moreover, these
plots indicates that the learning rate may be decreased °.

Thus, based on these observations, the training model has been retrained
with the same batch size and probability, but with a lower learning rate of
a = 107*. The results of this attempt is given in Fig. 4.2. Here it can be
seen that the model did benefit from the lower learning rate. It can also
be seen that the model overfits the training data a bit. However, the per-
formance of the accuracy for the training and validation do not differ too
much. Therefore, a little overfitting of the training is somewhat affordable.

5See Appendix on how to derive these developments
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(a) Loss

E‘EI 7‘5 1[i 0
Epochs

(b) Accuracy

Figure 4.2: The loss and accuracy after the first changes.

It should also be noted again that this model has been tested on a fairly

small dataset. Therefore, to reduce overfitting, it is probably desirable to

collect more data.

Final results. The parameters described
above results in the model predicting each
category with 91% accuracy and a loss of
36%. The final model gives an overall pre-
cision of 0.91, a recall of 0.90 and a F;-score
of 0.90. Looking at Fig.4.3, it can be ob-
served that the model overall did not iden-
tify many tweets as hate-speech tweets: al-
most 80% of the hate class is misclassified.
This may be due to insufficient and unbal-
anced training data, as mentioned in Sec-
tion 4.1. Which leads the model to be bi-

Figure 4.3: Confution matrix

ased towards classifying tweets as offensive. Furthermore, the model also
incorrectly identified some non-hate speech as hate speech. However it did
perform better in identifying the offensive class. This is because the number
of tweets that are categorized as offensive are larger than the other two cat-

egories.
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5 | Conclusion

In this paper, the aim was to detect hate speech using a Natural Language
Processing technique. To enable successful execution of the research it
was first necessary to understand what hate speech is. To accomplishing
this, an overview of this topic has been conducted. Here it can be con-
cluded that hate speech has several definition, all coming from different
platforms. Hate speech detection is a classification-related tasks, and that
is why further literature was reviewed to understand the idea behind Nat-
ural Language Processing and the application of various techniques. Pre-
vious work showed that deep learning models improve the state-of-art ap-
proaches within hate speech classification tasks. Therefore, a deep learn-
ing method, namely a Convolutional Neural Network (CNN), has been ap-
plied on a Twitter dataset. This data contains tweets annotated with three
labels: hate, offensive language and neither.

From the results it can be concluded that the simple CNN architecture
used by Kim (2014) obtained good performances (91% accuracy). How-
ever, while the overall precision, recall and F-score were also good, the
model incorrectly identified some non-hate speech as hate speech. More-
over, the majority of the hate class is misclassified, while the majority of the
offensive class is correctly identified. This is because the majority of the
classes of the data contains offensive language. This leads the model to be
biased towards classifying tweets as offensive.

Nevertheless, as mentioned in Section 2 identifying hate speech is not an
easy task. The fact that hate speech is a difficult phenomenon to define,
makes it even harder for users to classify a text as hate. These classifica-
tion namely tend to reflect the subjective biases. However, if datasets are
richer, both in size and quality, CNNs have great potential to give good
performances.
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6 = Future Work

Error analysis. As seen in Fig. 4.3 there are a lot of tweets that have been
misclassified, namely in classifying hate speech. An error analysis could
therefore help to provide insights about the performance of the model.
For example, when examining the wrong predictions of the hate class, this
could help with clarifying why this class is so hard to predict. It would
be interesting to see if and how certain terms are useful for distinguishing
between hate speech and offensive language.

Data. There are three ways of showing hate on Twitter: directly to a per-
son or group, in a conversation between people, and randomly to nobody
in particular. In future work, when looking at hate speech, it can also be
interesting to look at the distinguish between the three ways that people
show hatred on Twitter. Future work can also focus on the individual char-
acteristics and motivation of a user for example. And of course, if possible
it would be better to collect more data to make a more accurate distinction
between the model performances..

Ensemble. In Section 2, there is also a subsection about ensemble meth-
ods. Previous work have used ensemble methods and achieved success in
classification tasks. Therefore, it is expected that these methods can further
improve the results that has been obtained.
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Appendix

A. Levels of Language

(a) Development of the loss with differ-
ent learning rates [16]

Phonetics and Phonology — knowledge of linguistic sounds
Morphology — knowledge of the meaningful components of words
Syntax — knowledge of the structural relationships between words
Semantics — knowledge of meaning

Pragmatics — knowledge of the relationship of meaning to the goals
and intentions of the speaker

Discourse — knowledge about linguistic units larger than a single
utterance

(b) Ilustration of strong or little overfit-
ting

Figure 1
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