
   

 
 

BWI-paper 
D.P. van Beusekom 

November 2003 
 

FORECASTING & DETRENDING 
OF 

TIME SERIES MODELS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Free University of Amsterdam 
Faculty of Sciences 
Study Bedrijfswiskunde & Informatica 
De Boelelaan 1081A 
1187 HV Amsterdam 
 
 



   

 



      Free University of Amsterdam 
      BWI paper: Forecasting & detrending of time series models 
      Author: Daan van Beusekom 
         

   

Table of contents 
 
Table of contents 1 
Preface 5 
Chapter 1 Introduction 7 
Chapter 2 Time series analysis 8 

2.1 History ........................................................................................................................... 8 
2.2 Enters the trend .............................................................................................................. 8 
2.3 Detrending a trend ....................................................................................................... 10 

Chapter 3 Use of the differencing operator 11 
3.1 The difference operator ............................................................................................... 11 
3.2 Tintners way of differencing ....................................................................................... 11 
3.3 Fitting a polynomial function to a time series ............................................................. 14 
3.4 Removing the time lag of differenced data ................................................................. 16 

Chapter 4 ARIMA and the differencing operator 17 
4.1 The ARIMA model ...................................................................................................... 17 
4.2 Random walk models and ARIMA ............................................................................. 18 
4.3 The Box & Jenkins Method ......................................................................................... 19 

4.3.1 Determining the order of differencing ................................................................. 19 
4.3.2 Assuming stationarity after differencing .............................................................. 20 
4.3.3 Comparing the response function and the random walk model ........................... 21 

Chapter 5 Trend estimation by signal extraction 25 
5.1 Signal extraction basics ............................................................................................... 25 

5.1.1 A general lag operator ......................................................................................... 26 
5.2 Model-based methods of trend estimation .................................................................. 27 

5.2.1 Hillmer and Tiao .................................................................................................. 28 
5.2.2 A rational lag operator ........................................................................................ 31 

5.3 Filtering short data sequences ..................................................................................... 32 
Chapter 6 Trend estimation by heuristic methods. 36 

6.1 The Hodrick-Prescott and Reinsch filter ..................................................................... 36 
6.1.1 The Reinsch smoothing spline .............................................................................. 37 
6.1.2 Extending the Reinsch filter ................................................................................. 39 
6.1.3 Square wave filters ............................................................................................... 39 

6.2 Future research ............................................................................................................ 40 
6.2.1 Data smoothing using eighth order algebraic splines ......................................... 41 
6.2.2 Spectral analysis using Fourier and wavelet techniques ..................................... 41 
6.2.3 The Hodrick-Prescott and Baxter-King Filters .................................................... 41 

 
 
 
 
 
 
 
 
 



    Free University of Amsterdam 
      BWI paper: Forecasting & detrending of time series models 
      Author: Daan van Beusekom 
     

  

 
 
Appendix A Theoretical explanations 43 

A.1 Power spectra .............................................................................................................. 43 
A.2 Periodograms .............................................................................................................. 44 
A.3 Unobservable series .................................................................................................... 44 

Appendix B Programming of all figures 45 
B.1 Weekly observations of the TESO boat company ...................................................... 45 
B.2 Effect of the difference operator ................................................................................. 45 
B.3 The difference operator and polynomial fit ................................................................ 46 
B.4 Creating periodograms ................................................................................................ 46 
B.5 A modified difference operator ................................................................................... 47 
B.6 Signal extraction filter ................................................................................................ 47 
B.7 The Reinsch smoothing filter ...................................................................................... 48 

References 50 
Weblinks 51 

 
 
 



  

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



       
      
  

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



     Free University of Amsterdam 
      BWI paper: Forecasting & detrending of time series models 
      Author: Daan van Beusekom 
            
 

 5 
 

Preface 
 
One of the last subjects of the study Business Mathematics & Computer Science is 
writing a paper about a subject that is related to the study. The study is a combination of 
three fields, which are Economics, Mathematics and Computer Science. 
The reason I chose this subject has a couple of reasons. 
First, I wanted to extend my knowledge of the course Mathematical Systems Theory and 
apply it to the field of economics. 
Secondly, I wanted to find a subject where I could apply the three fields of my study. 
 
The final result is the subject Forecasting & Detrending of time series models. 
The subject looked interesting, since it has a link to optimizing business processes, a field 
I am particularly interested in, and I could learn something from the statistical theories 
that are used, since it is one of my weakest points throughout my study. 
 
I would like to thank my supervisor Dr. A. Ran from the Free University (Amsterdam, 
the Netherlands) for his time, advice and critics, which have been a great help writing this 
paper. I would also like to thank A. Cofino of the TESO boat company for supplying me 
with data which has been used in the paper.  
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Chapter 1 Introduction 
 
 
The development of new techniques and ideas in econometrics has been rapid in recent 
years and these developments are now being applied to a wide range of areas and 
markets. 
 
Especially the area of forecasting and control is a hot issue these days since a lot of 
companies try to optimize their business processes and want to have a good estimate of 
production planning throughout a large time period. Therefore, better ways of data 
analysis are being developed to ensure promising forecasting methods. 
 
There are a lot of theories known that can make good trend estimations, however there 
are still a lot of problems that cannot be fully resolved when it comes to trends. It is often 
unclear where the trend ends and the fluctuations begin, and the desiderata for separating 
the two, if possible, have remained in dispute. Secondly, it is still hard to extract the 
trend, even when it is a clearly defined entity. 
 
The purpose of this paper therefore is to make a review of some methods which are 
available for obtaining estimates of the trend and of the detrended series. Using an 
example some techniques will be discussed and compared to each other. 
 
In order to accomplish these ends several topics will be discusses. First, the general 
meaning of forecasting and trend will be discussed. Secondly, the effects of one of the 
principal tools of time series modeling, the difference operator, will be discussed. Next, a 
few model-based methods of trend extraction shall be discussed within the context of 
ARIMA models and signal extraction. Finally, some enhanced en currently used methods 
of trend extraction shall be discussed which are independent of any model.  
 
In general the paper will use peaces of the book System dynamics in economic and 
financial models as basis in which parts of the theory will be explained. The figures 
throughout the paper are programmed using a data sequence of the TESO boat company 
and a data sequence of the course Mathematical Systems Theory. The programmed parts 
can be found in Appendix B. 
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Chapter 2 Time series analysis 
 

2.1 History 
 
Macroeconomic and microeconomic time series often have an upward drift or trend 
which makes them non-stationary. Since many statistical procedures assume stationarity, 
it is often necessary to transform data before beginning analysis. There are a number of 
familiar transformations, including deterministic detrending, stochastic detrending and 
differencing. In recent years, methods for stochastic detrending have received much 
attention.  
Trying to predict the market has been a hot issue for most companies. For many years 
forecasts were made using data of previous years. Yet it seemed that even though data of 
previous years resulted in quite adequate production plans a lot of plans were still not 
optimal and new workloads appeared that were not calculated in the plans. So trying to 
forecast the future became even more important and a better analysis on available data 
had to be done. These are the times that time series analysis became more and more a 
standard in company forecasting and new methodologies were invented to improve 
forecasting for companies and eventually try to optimize profits. 
 
Though time series analysis is a broad area of research it is mostly used to optimize 
planning and consists of two primary goals: identifying the nature of the phenomenon 
represented by the sequence of observations and forecasting (predicting future values of 
the time series variables). Both of these goals require that the pattern of observed time 
series data is identified and more or less formally described. Once that pattern is 
established, it can be interpreted and integrated into other data. Regardless of the depth of 
our understanding and the validity of our interpretation of the phenomenon, one can 
extrapolate the identified pattern to predict future events. 
 

2.2 Enters the trend 
 
As in most other analysis, in time series analysis it is assumed that the data consist of a 
systematic pattern and random noise which makes a pattern difficult to identify. 
Therefore, most time series techniques involve some form of filtering out noise in order 
to make the pattern more salient. 
 
When conducting an analysis of a data sequence one of the first things that can be done is 
to find out if a trend is present. The first way to check is to look if the data sequence 
shows a repeating periodical entity which shows growth or decay. Looking at figures 2.1 
through 2.41 one can see that all variables show a periodical entity. However, in this case 
nothing can be said about periodical growth or decay since the difference between each 

 
1 See Appendix B.1 for the programming of the figures  
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week of two following years may point out growth, but more years are required to make a 
firm assumption about growth or decay. Accordingly, the dataset of the course 
Mathematical Systems Theory will be used which has a sequence of 128 monthly 
observations.  
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

 
 
 
 
Figures 2.1- 2.4   A series of 104 weekly observations on 4 important variables in forecasting the number of 
ferry’s that are required throughout a year of the TESO boat company 

 
 
Most time series patterns can be described in terms of two basic classes of components: 
trend and seasonality. In economic time series the trend is often the dominant feature. A 
trend resembles the trajectory of a massive, slow moving body which is barely disturbed 
by collisions with other, smaller bodies which cross its path.  
 
In the economic time series that will be discussed a trend can be defined as a general 
systematic linear or nonlinear component, which can contain cycles and must be less 
volatile than the fluctuations that surround it.    
 
This definition of a trend is flexible enough to allow for a motion which is a fluctuation in 
one perspective to be regarded as a trend in another. The justification of this assumption 
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rests upon a distinction which shall be drawn between trend estimation and data 
smoothing. Data smoothing is a justifiable activity even when a meaningful distinction 
cannot be drawn between the trend and the fluctuations. 
 

2.3 Detrending a trend  
 
We now know basically how a trend can be described. But what is the reason that we 
want to extract the trend when trying to forecast a time series? 
There are a couple of reasons that can be called upon. First, economists are often far more 
interested in the patterns of fluctuations which are superimposed upon the trends than 
they are in the trends themselves. In that case it is useful to remove the trend in order to 
see the patterns more clearly.  
Another reason, and one of the most important ones when forecasting a time series, to 
most criteria of statistical estimation, the object in modeling the trajectory of a variable is 
to explain the variance as much as possible. If there is a trend present, however smooth 
and monotone the trend may be, it contributes a large proportion of the explained 
variance. So if a trend is not removed, the parameters of a model, which is supposed to 
explain the patterns of the fluctuations, will only be explaining the trend. 
Now the only thing left to explain is how to achieve this goal. There have been made 
numerous methodologies that try, or even succeed to a certain level, in removing the 
trend of a time series. Amongst others there are the signal extraction method which will 
be discussed in chapter 5 and the Hodrick-Prescott filter which will be discussed in 
chapter 6. 
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Chapter 3 Use of the differencing operator 
 
 
A big reason for using a stationary data sequence instead of a non-stationary sequence is 
that non-stationary sequences, usually, are more complex and take more calculations 
when forecasting is applied to a data series. 
One of the methodologies that can be used to make a non-stationary time series stationary 
is to apply a difference operator to a data series.     
 

3.1 The difference operator 
 
When faced with a time series that shows irregular growth, differencing can be seen as 
predicting the change that occurs from one period to the next in a time series Y(t). In 
other words, it may be helpful to look at the first difference of the series, to see if a 
predictable pattern can be discerned there. For practical purposes, it is just as good to 
predict the next change as to predict the next level of the series, since the predicted 
change can always be added to the current level to yield a predicted level.  
 
Within forecasting, backward differencing is normally used. Now, given the data series 
Y(t) we can create the new series: 
 
         (3.1) 
 
The differenced data will contain one point less than the original data. This imposes a 
time lag which shall be discussed later. Although one can difference the data more than 
once, one difference is usually sufficient and recommended. The more times one 
differences the data the bigger the chance will be that important parts of the data without 
trend are thrown away, which explain the data so a reasonable forecasting can be made. 
 

3.2 Tintners way of differencing  
 
There are many ways differencing can be applied to data series, but not all ways of 
differencing are favorable for the end result one is searching for. In general the first 
objective of differencing is to make the time series stationary, yet some differencing 
methods remove more then the non-stationary part of a time series and thus remove 
important information that is vital to the forecasting. One of the first econometricians that 
worked with differencing was Tintner (1940).  
In his vision differencing could make sure that a sequence of ordinates of a polynomial of 
degree m, corresponding to equally spaced values of the argument, can be reduced to a 
constant by taking m differences. Next to that, if the trend also described a polynomial 
function the effect would be that, when taking a finite number of differences, a great deal 

)1()()( --= tYtYtZ
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of the systematic part in the data could be eliminated. This sounds like a good way to 
remove the trend, and in fact it is, but the total effect will be much larger then actually 
intended. By taking differences and “throwing the original data away” other information 
that could be interesting to the economist might be thrown away as well.  
 
What actually happens when applying a difference operator can be seen in figure 3.12. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
            Figure 3.1    The frequency response function D of the second order difference operator , 

            together with the power spectrum W of a first order random walk , where  is a    
           white-noise process. The power spectrum of   is represented by the horizontal line N 

 
 
In this figure the curve labeled D represents the frequency-response function of the 
second-difference operator 
 

   (3.2)  
 
This function indicates the factors by which the operator attenuates or amplifies the 
amplitudes of the sinusoidal components of a time series to which it is applied.  
To explain this, imagine that all stationary stochastic processes, and other processes 
besides, can be regarded as combinations of an indefinite number of sinusoidal 
components whose frequencies, denoted by , lie in the interval , which is the 
range of the horizontal axis of the diagram. 
Now take the frequency response function of a linear operator or filter , which can 
be defined by: 

 
2 See Appendix B.2 to see how the figure can be created 
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,  (3.3) 

 
where z, a complex exponential whose locus is on the unit circle, can be denoted by 

. Or, in other words,  denotes the modulus of the complex function 
. 

 
When rewriting the second difference operator in the form of equation (3.3) one gets the 
following equation: 
 
        

      (3.4) 

 
 
On setting here as well, and using the identity that 

equation (3.4) becomes 
 
         (3.5) 
 
Now, when one looks a bit closer to the frequency response function in figure 3.1 a few 
more interesting points can be seen. Apparently the (second) difference operator nullifies 
a time series at zero frequency, which might be called a linear or a quadratic trend. 
To see this, first take the first difference operator which can be defined by: 
 
        (3.6) 
 
Furthermore suppose that 
 
   with   (3.7) 
 
Now if formulae (3.6) and (3.7) are combined one gets: 
 

 
    (3.8) 

-------------------------------------------------  -  
 

 
Applying the second difference, that is, computing  gives 
 
  ,      (3.9) 
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which indeed proves the statement above. 
Furthermore, on a range of , the difference operator applies a higher and higher 
frequency to the data series until point , where the data series is magnified by a factor 
4. This already shows that Tintners method of differencing has a few flaws, since it is not 
desired that the data is scrambled when applying a difference operator. 
 
To illustrate how inappropriate the method of differencing can be, when trying to remove 
a trend, first a way that works better then the differencing method of Tintner will be 
described. After that, the two methodologies will be applied to the data series of the 
course Mathematical Systems Theory, so the difference between the two can be seen. 
 

3.3 Fitting a polynomial function to a time series 
 
When trying to remove the non-stationary components from a polynomial data sequence 
one of the possible methodologies is to fit a polynomial function. In this case the 
residuals of the polynomial function and the original data sequence can be plotted to 
obtain a differenced sequence, but preserving important data. 
To see this, first a subset of 128 observations is plotted in figure 3.23 together with a 
seventh degree polynomial that has been fitted onto the data sequence. Figure 3.3 shows 
the residuals after the polynomial time trend of degree 7 has been extracted. Figure 3.4 
shows the effect of applying the difference operator to the series.  
 

 

 

 

 

 

 

 

 

 
 Figure 3.2   A series of 128 monthly observations on the number of passengers that boarded a ferry  

 
3 See Appendix B.3 to see how figures 3.2 through 3.4 are created 
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 Figure 3.3   The residuals from fitting a seventh-degree polynomial to the data on boarding passengers 

 

 

 

 

 

 

 

 

 

 
 Figure 3.4    A series generated by applying the difference operator to the data on boarding passengers 
 
 
Here it can be seen that when applying the difference operator not only the relative sizes 
of the peaks are misrepresented, but also another effect is evident. By applying the 
difference operator a time lag has been induced which scrambles the data even more, 
while the polynomial fit does not induce the time shift. 
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3.4 Removing the time lag of differenced data 
 
As mentioned in paragraph 3.3 differencing has, next to scrambling the data, another 
undesired effect which can easily be avoided. This is the so-called phase effect whereby 
the transformed series suffers a time delay. This delay simply occurs since differences of 
two points are taken each time, thus the differenced data will have one data point less 
then the original series and when two successive differencing operations are applied to a 
series of weekly observations, a time lag of one week is induced. 
 
To correct this phase effect another time shift will have to be applied to get the series in 
sync with the original time line again. The desired result can be achieved by simply 
shifting the affected series forward in time. This can be done without harming the data 
series, since the difference operator imposes the same time lag on all components 
regardless of their frequencies.  
 
It is possible that more complicated operators have been used, such as those which are 
formed from the ratios of lag-operator polynomials, which have different time lags at 
different frequencies. In this case the phase effect can be removed by applying the 
operator again, but in reversed time.  
To explain this, let denote the inverse of the lag operator which can be described 
as the forward shift operator. If one then takes a sequence z(t) the effect of this operator 
on z(t) will be .  
Now if one assumes that the operator has been used upon the data 
sequence y(t) and thus invokes the time shift, then this will be removed by applying the 
reversed time operator to the transformed series . Thus x(t) will 
suffer no phase effect if it is formed from y(t) in two stages: 
 
        (3.10) 
   
 
Combining these two equations gives the expression for x(t): 
 

      (3.11) 

 
Here the combined operator  may be described as a bidirectional filter. 
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Chapter 4 ARIMA and the differencing operator 
 
 
Although differencing isn’t always an optimal way of achieving a nice fit, it is still 
widely used as data transformation because it plays a central role in a lot of 
methodologies by which ARIMA models are fitted to non-stationary time series. 
To explain this, the subjects that will be discussed in this chapter will give a better idea at 
what ARIMA models actually are and give a review of how ARIMA models and random 
walk models can be combined. After that the Box & Jenkins method will be described, 
which uses ARIMA and differencing as basis. 
 

4.1 The ARIMA model 
 
ARIMA models are, in theory, the most general class of models for forecasting a time 
series which can be stationarized by transformations such as differencing and logging. In 
fact, the easiest way to think of ARIMA models is as fine-tuned versions of random walk 
and random-trend models. The fine-tuning consists of adding lags of the differenced 
series and/or lags of the forecast errors to the prediction equation, as needed to remove 
any last traces of autocorrelation from the forecast errors.  
 
The acronym ARIMA stands for Auto-Regressive Integrated Moving Average. Lags of 
the differenced series appearing in the forecasting equation are called auto-regressive 
terms, lags of the forecast errors are called moving average terms, and a time series which 
needs to be differenced to be made stationary is said to be an integrated version of a 
stationary series.  
 
A non-seasonal ARIMA model is classified as an ARIMA(p,d,q) model where: 
 

- p is the number of autoregressive terms, 
- d is the number of non-seasonal differences, and 
- q is the number of lagged forecast errors in the prediction equation. 

 
To identify the appropriate ARIMA model for a time series, one begins by identifying the 
order(s) of differencing needed to stationarize the series and remove the gross features of 
seasonality, perhaps in conjunction with a variance-stabilizing transformation such as 
logging or deflating. Different approaches and datasets will give different type of 
ARIMA processes. 
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4.2 Random walk models and ARIMA 
 
The simplest way to explain the meaning of a random walk model is by first taking the 
equation 
 

       (4.1) 
 
where is the mean of the first difference, i.e. the average change of one period to the 
next, which follows from the white noise process . If one rearranges this 
equation to put by itself on the left, one gets: 
 
         (4.2) 
 
In other words, the prediction holds that this period’s value will equal last period’s value 
plus a constant representing the average change between periods. This is the so-called 
“random walk” model. It assumes that, from one period to the next, the original time 
series merely takes a random “step” away from its last recorded position.  
If the constant term is zero one can talk about a random walk without drift.  
 
If the time series being fitted by a random walk model has an average upward (or 
downward) trend that is expected to continue in the future, one should include a non-zero 
constant term in the model. In that case it is said that the random walk undergoes drift.  
Since it includes (only) a non-seasonal difference and a constant term, it is classified as 
an ARIMA(0,1,0) model with constant term.  
 
When modeling, an advantage of using the ARIMA model option to fit a random walk 
model is that it easily allows adding terms to correct the model for autocorrelation in the 
residuals, if this should be necessary. In particular, if the random walk model has 
significant positive autocorrelation in the residuals at lag 1, one should try and use a so 
called ARIMA(1,1,0) model, which can be defined as a differenced first-order 
autoregressive model with equation: 
 
      (4.3) 
 
On the other hand, if the random walk model has significant negative autocorrelation in 
the residuals at lag 1, one should try and fit a ARIMA(0,1,1) model, which can be defined 
as a simple exponential smoothing model with growth with equation: 
 
        (4.4) 
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4.3 The Box & Jenkins Method 
 
One of the methodologies that use ARIMA processes and differencing as basis is the Box 
& Jenkins (B&J) method. According to the prescription of Box & Jenkins a few steps 
have to be taken when building an ARIMA model. 
 

4.3.1 Determining the order of differencing 
 
The first step is to determine if the series is stationary and if there is any significant 
seasonality that needs to be modelled. To achieve this one has to take as many differences 
of the original series as are needed to reduce it to stationarity. 
 
Normally, the correct amount of differencing is the lowest order of differencing that 
yields a time series which fluctuates around a well-defined mean value and whose auto-
correlation function plot decays rapidly to zero, either from above or below. If the series 
still exhibits a log-term trend, or otherwise lacks a tendency to return to its mean value, or 
if its autocorrelations are positive out to a high number of lags (10 or more), then it needs 
a higher order of differencing.  
Next to this, differencing tends to introduce negative correlation. If the series initially 
shows strong positive autocorrelation, then a non-seasonal difference will reduce the 
autocorrelation and perhaps even the drive the lag-1 autocorrelation to a negative value.  
If a second non-seasonal difference is then applied (which is occasionally necessary), the 
lag-1 autocorrelation will be driven even further in the negative direction. 
 
Now, if the lag-1 autocorrelation is zero or even negative, then the series does not need 
further differencing. In this case it is not recommended to difference another time, 
because this will only result in “overdifferencing” the series and end up adding extra AR 
or MA terms to undo the damage. If the lag-1 autocorrelation is more negative then –0.5 
the series probably has been overdifferenced already. 
 
Another symptom of possible overdifferencing is an increase in the standard deviation, 
rather than a reduction, when the order of differencing is increased. 
 
Fourthly, a model with no orders of differencing assumes that the original series is 
stationary. A model with one order of differencing assumes that the original series has a 
constant average trend or random walk. A model with two orders of total differencing 
assumes that the original series has a time-varying trend. 
 
A last consideration in determining the order of differencing is the role played by the 
constant term in the model, if one is included. The constant represents the mean of the 
series if no differencing is performed, it represents the average trend in the series if one 
order of differencing is used, and it represents that average trend in the trend if there are  
two orders of differencing. Normally it is assumed that a trend in the trend does not exist 
and the constant is removed from the model.  
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4.3.2 Assuming stationarity after differencing 
 
When the differencing of the series is done successfully it is proposed that the differenced 
series can be treated in the same way as a stationary series, which has had no need of 
differencing. 
 
To clarify this step of the B&J prescription assume that many trends in economic time 
series can be represented by random walk processes of the sort which can be depicted by: 
 

,       (4.5) 
 
wherein v(t) represents a stationary stochastic process of the ARMA variety. In simplest 
instance, v(t) is a white-noise process which generates a sequence of independently and 
identically distributed random variables.  
 
The effect of the difference operator upon y(t) is no less drastic in the context of ARIMA 
modelling than in any other context. However, if the process generating y(t) is indeed a 
kind of random walk, which imposes that the data series y(t) is non-stationary, then the 
use of the difference operator to reduce it to stationarity is undoubtedly called for. 
Though this is a sound method, the question still arises if random walk models are 
appropriate analogies for the types of time series models which are likely to be 
encountered when forecasting a time series. 
One way to find out whether random walks are indeed appropriate analogies is to 
compare the power spectra of economic time series with the spectra which are generated 
by random walks. If a big difference can be detected between the two and are consistent 
on a selected range, then doubt may be cast upon the appropriateness of random-walk 
models. 
 
In figure 3.1, the function labelled W represents the spectral density function, or power4 
spectrum, of a first-order random walk y(t) which is described by: 
 
  ,       (4.6) 
 
wherein represents a white-noise process with a variance of  . 
The function indicates the power which is attributable to the sinusoidal components of 
which the random walk is composed. An evident feature of this spectrum is that there is 
infinite power at zero-frequency as can be seen in figure 3.1. This phenomenon 
corresponds to the theoretical condition that the values generated by a random walk 
defined on an indefinite set of integers in unbounded.  
 
The notion of power is synonymous with the notion of variance and, for a sinusoidal 
function, the variance is half the square of the amplitude. The white-noise process , 

 
4 See Appendix A.1 for more detailed information about a power spectrum  
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which is the motive force that drives the random walk, has a uniform distribution of 
power over the frequency interval . Therefore the power spectrum of y(t) is, in 
effect, the square of the frequency-response function of the operator scaled by 
the variance, or power, of the process . 
 
 

4.3.3 Comparing the response function and the random walk model 
 
To further understand the assumption that is stated above, two comparisons can be made 
to clarify the matter. The first comparison that can be made is between the functions W 
and D in figure 3.1. The frequency response operator D, which represents the second-
difference operator , can now also be seen as the square of the frequency 
response function of the operator which is effective in reducing the first-order 
random walk y(t) to the white-noise sequence . When multiplying curve W by curve 
D the horizontal line N is created, which represents the power spectrum of the white-
noise process . 
The second comparison that can be made is between the generated power spectrum of a 
typical economic time series and that of the first-order random walk. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 Figure 4.1   The periodogram of 128 observations on passengers that go with a ferry  
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Figure 4.2   The periodogram of a sequence obtained by applying the second difference operator to the data 
on passengers that go with a ferry 

 
 
The reason that periodograms5 are used is that the periodograms of empirical time series 
rarely show anything like the slew of power across the range of frequencies which is 
characteristic for a simple random walk. As one can see in figure 4.16 a trend is present 
since there is a strange peak at the beginning of the series which is characteristic for a 
trend. This is exactly the reason why random walk models are said to be inappropriate 
models for non-stationary economic time series. Figure 4.2 shows that when applying the 
difference operator the trend has indeed been removed, but also the peak that was present 
at  has almost vanished. But why is it then that random walk models feature so 
largely in econometric time series modelling? 
 
To explain this one needs to take a closer look at the ARMA part of an ARIMA model. 
The ARMA part of an ARIMA model provides a model for the v(t) process in equation 
(4.5). Now, define , where is white noise and  is close to unity, 
so equation (4.5) can be rewritten into: 
 
        (4.7) 
 
Here one can see that the effect of the operator , which induces the random walk, 
will be counteracted by that of the operator . The effect of this counter action 
will take the power of the process to the neighbourhood of . 

 
5 See Appendix A.2 for more detailed information about periodograms  
6 See Appendix B.4 to see how figures 4.1 and 4.2 are created 
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Seeing that this works one also needs to change the formula that removes the trend. 
Looking back at equation (3.10), one can add the parameter  here as well, which 
changes the difference operator into: 
 

      (4.8) 

 
This new defined operator has a few new features, which can be quite useful. For 
instance, the parameter  now serves to limit the effects of the difference operator. Next 
to that, the filter has a bidirectional filter which eliminates the phase effect.  
There has been added a factor on the right side of equation (4.8) to ensure that the 
frequency response function attains the value of unity when , which is when 

. To actually see the effect of this new operator figure 4.37 shows the frequency 
response function for the operator in the case where d = 2 and for various values of .  
The reason for taking d = 2 is that equation (4.8) is very similar to the Hodrick-Prescott 
detrending filter which shall be examined later. Two things can be learned from figure 
4.3. Even though the major effects of the modified filter are confined to the lower reaches 
of the frequency range, there is still a gradual transition between the effect of nullifying a 
frequency component, as happens at , and that of preserving it, as happens at 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3    The frequency response function of the modified difference operator of equation (4.8) when d = 
2 for the values of , , , together with the complementary trend estimation filter for 
the case of  

 
 

 
7 See Appendix B.5 to see how figure 4.3 is created 
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These two things can be a serious problem when examining time series models. When a 
periodogram shows a sharp distinction between those components which belong to the 
trend and those which belong to the fluctuations some problems may be encountered.  
It is arguable that such a distinction can be found in the periodogram of figure 4.3 where 
the power is virtually zero in the vicinity of . 
 
This is the point at which we should propose separating the trend from the fluctuations. 
The frequency of , which corresponds to the fundamental frequency, lies 
beyond the range of the frequencies which belongs to the trend. 
 
The next few chapters will be devoted to discovering the appropriate means of separating 
the trend and the fluctuations when a clear distinction is evident in the periodogram of the 
data. 
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Chapter 5 Trend estimation by signal extraction 
 
A trend has only a tenuous existence within the context of an ARIMA model. A trend 
represents nothing more than the accumulation of fluctuations, which are created by 
applying a filter to a white noise sequence of independently and identically 
distributed random variables. If the trend and the fluctuations are due to the same motive 
force, which is the white noise process, then it is meaningless to draw a distinction 
between them. 
 
If the trend and fluctuations of a data series indeed are due to separate sources a method 
will have to be used to define them as such. An obvious resource is to attribute a separate 
ARIMA model to each of them. In that case, the model which is generated by adding 
together the component ARIMA models is an ARIMA model itself.  
Given that the ARIMA models for the structural components of a time series combine so 
seamlessly to form a reduced-form ARIMA model, it might seem like wasted effort to 
attempt to separate the combined series into its constituent parts. Thus in the absence of 
any seams to show where the joints are to be found and where the cut is to be made, it is 
to be expected that whatever separation is achieved is liable to be a doubtful one. 
 
Though this has been a good argument not to separate the trend and fluctuations, 
econometricians have not been deterred by these difficulties and they have developed a 
sophisticated methodology for separating an ARIMA model into its putative components. 
The methodology, which can separate the trend from the fluctuations, is based on the 
signal extraction technique.  
 

5.1 Signal extraction basics 
 
To clarify this matter, one may begin by considering a general model of the processes 
which have generated the data. Assume that the trend, or signal sequence, is 
generated by a non-stationary ARIMA process and that the residual component, or noise 
process , which is its complement, is generated by an ordinary stationary 
autoregressive process. Furthermore assume that both processes are unobservable8 series 
which are assumed to be statistically independent.  
 
Thus the data sequence , which is an observable time series and a function mapping 
from the set of integers onto the real line, may be represented by 
 
                (5.1) 
 

 
8 See Appendix A.3 for more detailed information about unobservable series 
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The object is to infer the trajectory of the trend from the observations on given a 
knowledge of the covariance structures of and . To achieve this one can use the 
signal extraction method in which one needs to find the best estimate, or minimum mean 
squared error, of the signal , for any fixed t given the observed data and taking 

as (white) noise. However, the analogy may be misleading since, in the case of trend 
extraction, the residue contains information which is of primary interest whereas, in the 
usual case of signal extraction, the noise sequence is liable to be regarded as a nuisance 
which is to be discarded. 
 

5.1.1 A general lag operator 
 
If an estimate of  has to be defined, one way to obtain this by filtering the data series 

, which can be denoted by 
 

       (5.2) 
 
Here is a function of the lag operator L which may be a polynomial or a 

rational function. A single element of the sequence at time t can be denoted by 
. When both succeeding and preceding values of are available for the 

purpose of estimating the current value of , then is liable to be a two-sided 
function containing both positive and negative powers L. This fact is true since t is 
chosen between time points 0 and a last observed point T. 
 
The coefficients of the filter are estimated by invoking the minimum mean square 
error criterion. The errors in question are the elements of the sequence . 
The principle of orthogonality, by which the criterion is fulfilled, indicates that the errors 
must be uncorrelated with the elements in the information set . 
Thus  
 

  
 
      (5.3) 

 
  

 
for all k = 0. The equation may be expressed, in terms of the z-transform, as 
  

        (5.4) 
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where 
 
   and    (5.5)  
 
are respectively the auto covariance generating function of and the cross covariance 
generating function of and . It follows from equations (5.4) and (5.5) that  
 

       (5.6) 

 
Now by setting , one can derive the frequency response function of the filter, 
which is used in estimating signal . The effect of the filter is to multiply each of the 
frequency components of by the fraction of its variance which is attributable to the 
signal. The same principle applies to the estimation of the residual detrended component. 
The trend elimination filter is just the complementary filter 
 

        (5.7) 

 
It has been shown by Cleveland and Tiao (1976) and, more recently, by Bell (1984) that 
these formulae apply equally to stationary ARMA processes and to non-stationary 
ARIMA processes using the Wiener Kolmogorov theory. This however, shall not be 
discussed in this paper. 
 
 

5.2 Model-based methods of trend estimation 
 
It has been argued that the best way of separating the trend from the fluctuations is to 
model both of them at the same time within the framework provided by a structural 
ARIMA model which assigns separate parameters to the components. There have been a 
lot of examples of detrending which follow this prescription.  
Two of them that will be discussed are the method described by Hillmer and Tiao, which 
are concerned with extracting the hidden components from existing seasonal ARIMA 
models, and a methodology which is concerned with filtering short sequences using a 
rational operator. 
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5.2.1 Hillmer and Tiao 
 
The model in question of Hillmer and Tiao is specified by the equation 
 
        (5.8) 
 
where s is the number of observations within the span of an annual cycle.  
When taking , will be denoted by the same period of the previous year plus the 
amount of a white noise disturbance. The accumulation of such disturbances over the 
years will cause the seasonal value to follow a first-order random walk. 
The elaboration of the model which introduces a non-zero value of  has the same effect 
in limiting the random walk as it does in the analogous non-seasonal equation under 
(4.7). In the context of the seasonal model, it increases the concentration of the power of 
the process in the vicinities of the seasonal frequencies , thereby 
reducing the drift and regularising the cycles.  
The seasonal patterns which are typically exhibited by economic time series show a 
degree of persistence which is not found in the stochastic output generated by equation 
(5.8). There is no bound in the long run on the amplitude of the cycles generated by this 
equation. Also, there is a tendency for the phases of the cycles to drift without limit.  
 
The virtue of equation (5.8) is not a model of the processes generating the seasonal time 
series but as a device for forecasting the series. The forecasting rule which is implied by 
the equation when is that the most recent set of s observations, which represent an 
annual cycle, should be taken as the pattern for all future years. In the case where , 
the pattern of the annual cycle, which is to be extrapolated, should be formed from a 
weighted average of all previous cycles, with as a discount factor which is applied 
repeatedly to the cycles as the years recede. 
The autocovariance generating function of the model may be factorized into two partial 
fractions whose denominators contain, respectively, the trend operator 1 – z and the 
seasonal operator : 
 

   

 (5.9)

 

 
To solve this equation, multiply the equation by the factor and take z = 1: 
This will remove the B(z) component and leave the equation: 
 

     (5.10) 

)()()()( tLItyLI ss eq-=-

0=q )(ty

q

2/,.....,1;/2 sjsj == pw

0=q
0¹q

q

12 ....1)( -++++= szzzzS

)1)(1(
)1)(()( ss

ss
yy

zz
zzIz -

-

--
--

=
qqg

)()(
)(

)1)(1(
)(

11 -- +
--

=
zSzS
zB

zz
zA

)1)(1( 1--- zz

)1(
)1()1)(1(

)1(
)1(lim)1(

1

1 s
ss

zz z
zzz

z
zA -

-
-

® -
-

--
-
-

= qq



     Free University of Amsterdam 
      BWI paper: Forecasting & detrending of time series models 
      Author: Daan van Beusekom 
             
 

 29 
 

Now using the identity that 
 

          (5.11) 

 
equation (5.10) can be solved, and A(z) can be defined as  
 

          (5.12) 

 
Since this holds true, the partial fraction that is associated with the trend can be defined 
by: 

        (5.13) 

 
This is the autocovariance generating function of a random walk process. Setting 

in the function generates the pseudo spectral density function of the process. 
The function attains a minimum value of at the Nyquist frequency of 

. 
Now consider a horizontal line drawn at this height over the interval . The line 
represents the spectral density function of a white-noise component of variance 

which is an integral part of the trend component as it is currently defined. 
According to the principle of canonical factorization this white noise component should 
be subtracted from the trend component and attributed to the irregular component which 
is currently part of the residue. The subtraction of the white noise component leads to a 
revised trend component of the form: 
 

   

           (5.14) 

   

 
It follows that the filter which is appropriate to extracting the trend takes the form 
 

     (5.15) 
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The interesting thing about this formula is, when taking z = 1, the outcome of the 
equation is . This exactly the case when the filter should preserve the component 
of at zero frequency. This is what should be expected of a filter designed to estimate 
the trend component. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.1     The frequency response function of the model based trend estimation filter of equation (5.15) 
when s = 4 for various values of  

 
 
When looking at figure 5.1 it can be seen that the filter does not make a firm distinction 
between the components which belong to the trend and those which belong to the 
fluctuations. Its characteristics are attuned to those of an ARIMA model in which the 
frequency ranges of the two sets of components are bound to overlap substantially.  
Another remark that can be made is that the frequency response of the model based filter 
is barely distinguishable from that of the filter which is complementary to the modified 
differencing filter of equation (4.8). The latter could well be used in place of the model-
based filter. 
The recommendation that trend estimation should be conducted only within the context 
of a structural ARIMA model is now in doubt. If there is a manifest distinction between 
the frequency domains of the trend and the fluctuations, then sharper tools are needed for 
separating the two. 
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5.2.2 A rational lag operator 
 
Now consider using a rational lag operator, so the sequence can be defined by: 
 
   
           (5.16) 

  , 

 
where and are statistically independent sequences generated by normal white 
noise processes with and  respectively. 
Here and are proper rational functions of the lag operator L, which have all 
of their poles and zeros lying outside the unit circle. The operator , which is apt 
to be described as a summation or integration operator, is wholly responsible for the non-
stationary character of . 
Equation (5.16) may be multiplied throughout by the product of the denominators to give 
 
      (5.17) 
 
where and are polynomials of finite degree. From now on assume that both 

and are finite degree polynomials too. This assumption entails only a small 
loss of generality, but serves to simplify the exposition. 
It follows that  
 
         (5.18) 
 
In the more general case, where and are rational functions, there would be 
an additional factor in the mapping from  to compounded from the 
denominators of and . 
Now, if an estimate of the sequence is to be made, the process needs to be filtered to 
remove the phase shift which has been induced. This gives 
 

        (5.19) 

 
where 
 

      (5.20) 
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with   

        (5.21) 

 
An estimate k(t) of the sequence can be obtained from via similar operations 
which are summarised by the equation 
 

        (5.22) 

 
The filter of equation (5.19) will generate the minimum mean-square-error estimate of the 
stationary sequence provided that the smoothing parameter has the value of 

. Since the Wiener Kolmogorov theory applies equally to non-stationary 
processes the filter of equation X also generates the mean-square-error of . 
Though this approach seems solid it is beset by two problems. On the one hand, there is 
the difficulty posed by the initial conditions. On the other hand, there is the danger that 
the unbounded nature of the data sequence and the disparity of the values within it 
will lead to problems of numerical representation. Therefore, in pursuit of an alternative 
approach, consider the equation 
 
   
           (5.23) 

   

 
The equation suggests that one may begin by estimating the stationary sequence by 
applying the filter of 5.22 to which is the differenced version of the data sequence. 
Thereafter, an estimate of the stationary sequence can be obtained by a d-fold 
process of accumulation. Finally, the estimate of can be obtained by a simple 
subtraction. 
 
 

5.3 Filtering short data sequences 
 
Though the signal extraction methodology, which was described in the previous 
paragraph, wasn’t flawless it has been used in combination with the HP filter to obtain a 
new methodology which filters short data sequences. 
To explain this, imagine that instead of long data sequences, there are only T observations 
of the process of equation (5.18) which run from t = 0 to t = T – 1.  
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These are gathered in a vector  
 
         (5.24) 
 
where  is the trend vector and  is the residual vector which is generated by a 
stationary process with  
 
   and       (5.25) 
 
The estimates of these vectors are denoted by x and h respectively. To find the finite 
sample the counterpart of equation (5.19), the d-th difference operator of 

 needs to defined in the form of a matrix. Therefore, let the 
identity matrix of order T be denoted by 
 
         (5.26) 
 
where  represents a column vector in the position j and with zeros elsewhere. Then the 
finite sample lag operator is the matrix 
 
  ,       (5.27) 
 
which has units on the first sub diagonal and zeros elsewhere. This matrix is formed by 
deleting the leading vector of the identity matrix and by appending a zero vector to the 
end of the array. The lag operator polynomials can then be converted to matrix operators 
of order T simply by replacing the lag operator L by the matrix . Thus, the matrix, 
which takes the d-th difference of a vector of order T, is given by . Taking 
differences within a vector entails a loss of information. Thus, if , where  
has d rows, then the d-th differences of the vector  are the elements of 
the vector  which is found in the equation  
 

          (5.28) 

 
The vector in this equation, which is a transform of the vector 

 of the initial elements, is liable to be discarded. The matrix of the 
transformations is the operator .  
Premultiplying equation (5.24) by  gives 
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where  and  and where  and  are the corresponding 
estimates. The first and second moments of the vector may be denoted by 
 
   and     (5.29) 
   
and those of  by 
 
   and  
           (5.30) 

  
 

where both  and  are symmetric Toeplitz matrices with a limited number of 
nonzero diagonal bands. The generating functions for the coefficients of these matrices 
are, respectively,  and , where  and  are defined by 
equation (5.20). 
The optimal predictor z of the vector  is given by the following conditional 
expectation: 
 

      (5.31)  

 
The optimal predictor k of  is given, likewise, by 
 

     (5.32) 

 
It may be confirmed that z + k = g. 
The estimates are calculated, first, by solving the equation 
 
         (5.33) 
 
for the value of b and, thereafter, by finding 
 
   and      (5.34) 
 
The solution of equation (5.34) is found via a Cholesky factorisation which sets 

, where G is a lower triangular matrix. The system  may be 
cast in the form of and solved for p. Then can be solved for b. 
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Observe that the generating function for the matrix  is the polynomial  
defined in (5.19). The next step in this process would be to recover the trended sequence. 
This can be done by recovering from z or from k an estimate x of the trend vector .  
To obtain the estimate x first recover h, which is the estimate of , from , which 
is the estimate of . After that x can be easily found by the simple subtraction 

. This, however, shall not be discussed in this paper. 
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Chapter 6 Trend estimation by heuristic methods. 
 
The Wiener-Kolmogorov theory of signal extraction depends upon the availability of a 
statistical model which can represent the processes generating the data. The task of 
specifying the model can be approached in various ways. 
Econometricians have often favoured a structural approach. This has two objectives. 
First, it is intended that the output of the model should mimic the data series as closely as 
possible. Secondly, it is proposed that the model should contain as many separate 
elements as there are discernible components in the data. Motivating this approach is the 
notion that the quality of the signal extraction filter will be a function of the degree of 
realism in the underlying model. 
A heuristic approach is one in which the model is determined solely with a view to 
ensuring that the resulting signal extraction filter has certain preconceived properties. A 
common objective is to derive a low pass filter with a designated cut-off frequency for 
which the transition from the pass band to the stop band is as rapid as possible, given the 
constraints of the filter order and the need to maintain numerical stability. 
To illustrate this heuristic approach the Hodrick-Prescott (HP) filter is introduced. 
  

6.1 The Hodrick-Prescott and Reinsch filter 
 
The HP filter has a lot of similarities with the Reinsch smoothing spline (see below), 
which is used a lot in industrial surroundings and can be derived from the following 
model: 
 

         (6.1) 

 
The common goal of both filters is to pursue a criterion of curve fitting which balances 
the conflicting objectives of smoothness and goodness of fit, which can be seen as the 
filter and the smoothing spline. A parameter is introduced, which is used to regulate the 
trade-off between the two and thus can point out if the balance between filter and spline 
is good enough. 
The real difference between the HP filter and Reinsch smoothing spline follows from the 
use of the parameter. If the parameter is chosen correctly, the HP filter can be seen as an 
optimal predictor of the trajectory of a discrete-time second order random walk observed 
with error. 
The Reinsch spline, on the other hand, represents the optimal predictor of the trajectory 
of an integrated Wiener process of which the periodic observations are obscured by 
white-noise errors. This result has been used as basis in deriving an algorithm for fitting 
the spline. 
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6.1.1 The Reinsch smoothing spline 
 
The equation (6.1) represents nothing more then a second order random walk  which 
is obscured by disturbances or errors of observation which form a white noise sequence 

. 
Now to take a look at how close the HP filter resembles the Reinsch smoothing spline 
take an integrated Wiener process which can be defined as a discrete time integrated 
moving average IMA(2,1) process described by 
 
        (6.2) 
 
Here  and  are solutions of the equations 
 

   and     (6.3)  

  
where is a scale parameter which affects only . 
The autocovariance generating function of the IMA(2,1) signal process is 
 

       (6.4) 

 
whilst that of the observable noise corrupted process is 
 

       (6.5) 

 
Applying this tot the signal extraction equation (5.15) gives 
 

   (6.6) 

 
whereas the formula for the complementary “detrending” filter is 
 

    (6.7) 

 
The smoothing parameter is the ratio of the variance of the error process 

which obscures the observations and the variance of the process which is the 

)(tx

)(th

)()1()()( 2 tvLtLI µx +=-

32 -=µ 2)}({ vtvV s=

),1(
3
2 22 µsk += v

22

6
µsk

v=

k 2
vs

)(tx

212

1
2

)1()1(
)1)(1()( -

-

--
++

=
zz
zzz v
µµsg xx

)()()( ttty hx +=

2
212

12

)1()1(
)1)(1(

)( hs
µµs

g +
--
++

= -

-

zz
zz

z vyy

)1)(1()1()1(
)1)(1(

)(
)()( 122122

12

--

-

+++--
++

==
zzzz

zz
z
zz

v

v
yy µµss

µµs
g
gy

h

xx

)1)(1()1()1(
)1)(1(

)(1 122122

12

--

-

+++--

--
=-

zzzz
zz

z
v µµss

s
y

h

h

22 / vssl h=
)(th )(tv



     Free University of Amsterdam 
      BWI paper: Forecasting & detrending of time series models 
      Author: Daan van Beusekom 
             
 

 38 
 

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

128 

16 

4 

1 

motive power of the signal. Note that the ratio is the same one that has been used already 
in equation (5.19).  
Since equation (6.6) is optimal for the IMA(2,1) process, it is also optimal for extracting 
the signal from the sequence 
 
  ,     (6.8) 
 
where the equation has been multiplied throughout by . 
One can now obtain the HP filter by setting the smoothing parameter = 0. Figure 6.1 
shows the frequency response function of the Reinsch smoothing spline, which in 
general, does not differ that much from the HP filters frequency response function.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.1    The frequency response function of the Reinsch smoothing filter for various values of the 
smoothing parameter 

 
 
One of the advantages of the Reinsch filter is that it has a sharper transition than that of 
the filter of equation (5.8). Yet when equation (5.8) is multiplied by a factor , 
which gives 
   
       (6.9) 
 
the trend component of the model follows a second order random walk, which makes the 
differences in transition of the Reinsch filter and that of equation (6.9) a lot smaller.  
Though the Reinsch filter attenuates noisy and distracting detail a clear distinction should 
still be made when one wants to smooth the data and trend estimation.  
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When trend estimation is the main objective, the Reinsch filter alone is not enough and a 
different type of filter will have to be used, which is capable of selecting the frequencies 
needed to make a correct estimation. 
 

6.1.2 Extending the Reinsch filter    
 
Though the HP filter has almost the same effect as the Reinsch filter, it has one flaw 
which can occur. When choosing the smoothing parameter incorrectly, the HP filter can 
fail to remove motions in the data set that should have been removed together with the 
trend component. Also, when the transition rate in the frequency response function is not 
rapid enough for separating the trend component and fluctuations not all data which 
should be removed are in fact removed. 
To solve this, a group of filters of type (6.8) may be used to increase the transition rate of 
the process. In this case we get the observable equation 
 
       (6.10) 
 
The optimal filter will then be denoted by 
 

    (6.11) 

 
Now by taking  the appropriate filter is obtained which increases the transition 
rate and should result in a satisfactory separation of trend and fluctuations. 
The HP filter can be depicted as a special case when setting . 
By raising the value of n, the sharpness of the transition can be increased. Now if the 
smoothing parameter is varied as well, the midpoint of the transition, or the 
nominal cut-off point, will create a new type of filter which may be described as a square- 
wave filter. 
 

6.1.3 Square wave filters  
 
A square wave filter is usually defined by a bidirectional form of equation (6.11):   
 

      (6.12) 

 
The filter is chosen in this form since expressions for the roots of the polynomial factors 
can be found more easily. In general, it is impossible to find analytic expressions for the 
roots of polynomials of a degree in excess of four. However, in the present case, it is 
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possible to find analytic expressions. When taking  the expressions become 
reasonably tractable since one then gets the equation 
 

     (6.13)  

  
Though the square wave filter is very useful in extracting a trend, programming a square 
wave filter is much more complex. In order to construct the constituent filters 

 and  which are used in the forwards and 
backwards passes, it is necessary to factorize the numerator and the denominator of the 
filter. 
There is no difficulty in factorizing the numerator, yet factorizing the denominator is far 
more complex. 
One should first find a suitable solution for by solving the equation 
 

    (6.14) 

 
which gives: 
 

    (6.15) 

 
And thus  
 

     (6.16) 

 
To find the zeros of knowledge of complex function theory is required. This 
shall not be discussed in this paper. 
All in all the square wave filter poses to be a very useful extension for business cycle 
analysts who might wish to define a smoother trend in terms of a narrower range of 
frequencies.  
  
  

6.2 Future research 
 
Though all mentioned methodologies resulted in a pretty good method for trend 
extraction using the HP filter and Reinsch smoothing spline the research in the field of 
forecasting is still not at an end. The HP filter and Reinsch smoothing spline are used as 
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basis for new methodologies that are being created to further improve forecasting since 
however much science would like it the future can still only be estimated at best. 
As a conclusion a few methodologies that have been researched and have the HP filter or 
Reinsch smoothing spline will be described to give an idea on which fields new 
improvements have risen. 
 

6.2.1 Data smoothing using eighth order algebraic splines 
 
A new type of algebraic spline is used to derive a filter for smoothing or interpolating 
discrete data points. Splines have many practical applications, including image 
processing and robot path planning. The spline is dependent on control parameters that 
specify the relative importance of data fitting and the derivatives of the spline. A general 
spline of arbitrary order is first formulated using matrix equations. After that the attention 
goes to eighth order splines because of the continuity of their first three derivatives 
(desirable for motor and robotics applications). The spline’s matrix equations are 
rewritten to give a recursive filter that can be implemented in real time for lengthy data 
sequences. The filter is low pass with a bandwidth that is dependant on the spline’s 
control parameters. Numerical results, including a simple image processing application, 
show the tradeoffs that can be achieved using the algebraic splines.  
 

6.2.2 Spectral analysis using Fourier and wavelet techniques 
 
This methodology tries to illustrate the properties of various measures of New Zealand's 
output gap. Measures of the output gap are estimated using a number of different 
methods: a Structural VAR model, a multivariate unobserved components model, the 
Hodrick-Prescott filter, a multivariate time series filter, and a linear time trend filter. In 
the research, spectral densities, calculated using the Fourier transform, highlight a 
number of important differences in the cyclical properties of the various output gap 
measures. However, the Fourier transform requires time series to be (weakly) stationary. 
Additionally, the research also uses time-dependant spectra, calculated using wavelet 
analysis, to further illustrate the cyclical characteristics of the different techniques used to 
estimate the output gap. 
 

6.2.3 The Hodrick-Prescott and Baxter-King Filters  
 
Recently, Baxter and King have found a new type of filter. As a result a test has been 
conducted which examines how well the HP and the band-pass filter proposed by Baxter 
and King (BK) extract the business-cycle component of macroeconomic time series. It is 
assessed that these filters use two different definitions of the business-cycle component. 
First, define that component to be fluctuations lasting no fewer than six and no more than 
thirty-two quarters; this is the definition of business-cycle frequencies used by Baxter and 
King. Second, define the business-cycle component on the basis of a decomposition of 
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the series into permanent and transitory components. In both cases the conclusions are the 
same. The filters perform adequately when the spectrum of the original series has a peak 
at business-cycle frequencies. When the spectrum is dominated by low frequencies, the 
filters provide a distorted business cycle. Since most macroeconomic series have the 
typical Granger shape, the HP and BK filters perform poorly in terms of identifying the 
business cycles of these series. This is another example which has new outcomes that 
have positive properties and negative ones as well. 
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Appendix A Theoretical explanations  
 
This appendix is devoted to explain some terms used in the paper, which are assumed to 
be known to the reader. 
 

A.1 Power spectra 
 
Let y be a stationary process with zero mean and covariances 
 
       (A1)  
 
The spectrum of the process can the be defined by the formal power series  
 

        (A2) 

 
The autocovariances of a process with spectrum S, which satisfies the condition 

, are given by 

 

        (A3) 

 
Next consider the spectrum of a MA process  
 

  ,       (A4) 

 
where  is a white noise process. 
In this case the spectrum of the MA process (A4) is given by 
 

        (A5) 

 
where  
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A.2 Periodograms 
 
A cyclical process has covariance  
 

       (A6) 

 
In this case the spectrum is given by  
 

  ,      (A7) 

 
where is the Dirac distribution with the property that  
 

         (A8) 
 
So the frequency of a cyclical process is easily determined from the spectrum 

. A natural estimate of the spectrum is obtained by replacing 

the covariances by the sample autocovariances. This is called a periodogram.   
The periodogram of the N observations , is defined by 
 

        (A9) 

 
where the autocovariances are estimated by  

and with for k < 0. 

A.3 Unobservable series 
 
A state space system is called observable if the state vector can be reconstructed from the 
inputs and outputs. By one can denote the output at time t generated by the 
input u and initial state in the system 
 

       (A10) 

 
Next to this a state x in the state space is said to be unobservable over the time interval 
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Appendix B Programming of all figures 
 
This appendix is made to let the reader see how all figures can be made using Matlab. 
 

B.1 Weekly observations of the TESO boat company 
 
Using the dataset of 104 weekly observations the figures can be created by inputting the 
following code into Matlab: 
 
 pas = TESOweek(:,1); vracht = TESOweek(:,2); 

bus = TESOweek(:,3); persAuto = TESOweek(:,4); 
 

subplot(2,1,1); 
plot(pas) 
title('Number of passengers') 
axis([0, 104, 0, 18e3]) 
subplot(2,1,2); 
plot(vracht) 
title('Number of freight wagons') 
axis([0, 104, 0, 10e2]) 
subplot(2,1,1); 
plot(bus) 
title('Number of Busses') 
axis([0,104,0,75]) 
subplot(2,1,2) 
plot(persAuto) 
title('Number of cars') 
axis([0,104,0,1500]) 

 
 

B.2 Effect of the difference operator 
 
To make a plot of the frequency response function and the power spectrum of a first order 
random walk the formulae  and its complement, this can be seen as the power 
spectrum of the first order random walk, has to be rewritten. Using equation (3.4)  
This will give no problem and one can input the following command lines: 
 
 t = 0:0.0025*pi:pi; 
 

g = 0; 
 

for x = 1:401 
freqResp(x) = 2 - 2*cos(g*pi); 
firstOrder(x) = 1/(2 - 2*cos(g*pi)); 
product(x) = freqResp(x)*firstOrder(x); 
g = g + 0.0025; 
end; 

2)( LI -
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plot(t, freqResp); hold on; 
plot(t, firstOrder); hold on; 
plot(t, product); 
axis([0 pi 0 5])  

 
 

B.3 The difference operator and polynomial fit 
 
First the data of the 128 monthly series has to be plotted. After that a polynomial function 
can be fitted to the series using a tool within the Matlab tool itself. 

 
passagiers = Veerdata(:,1); 

 
plot(passagiers); 
axis([0 128 0 80000]); 
 

After that the difference between the original series and the created polynomial function 
can be plotted. 

 
verschil = passagiers - polyPas; 
plot(verschil); 
axis([0 128 -30000 40000]); 

 
The difference operator can be implemented by simple using the command diff(). 
 

diffOp = diff(passagiers); 
    

plot(diffOp); 
axis([0 128 -30000 40000]); 

 

B.4 Creating periodograms 
 
The periodograms of a time series can easily made using the command ifft() in Matlab.  
In this cased it has been applied to the original time series and the series after applying 
the second order difference operator. 
 

perioPas = (abs(256*ifft([passagiers' 
zeros(1,128)]))).^2/(2*pi*128); 
w = [0:255]*pi/128; 
plot(w, perioPas); 

 
secDiff = diff(diffOp); 
perioDif = (abs(252*ifft([secDiff' zeros(1,126)]))).^2/(2*pi*126); 
q = [0:251]*pi/126; 
plot(q, perioDif); 
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B.5 A modified difference operator 
 
In this case the equation 
 

    (B1) 

 
had to implemented for the values of d = 2 and , , .  
Using equation (3.4) equation (B1) can first be rewritten into: 
 

       (B2) 

 
This can be easily be implemented into Matlab: 
 

g = 0; 
 

for x = 1:401 
filter1(x) = (1/16)*(((2 - 2*cos(g*pi))^2)/1); 
filter2(x) = (81/256)*(((2 - 2*cos(g*pi))^2)/((1 + (1/4) –  
 cos(g*pi))^2)); 
filter3(x) = ((49/64)^2)*(((2 - 2*cos(g*pi))^2)/((1 + (9/16)  
 – 1.5*cos(g*pi))^2)); 
filterC3(x) = 1 - ((49/64)^2)*(((2 - 2*cos(g*pi))^2)/((1 +  
 (9/16) – 1.5*cos(g*pi))^2)); 
g = g + 0.0025; 

end; 
 

plot(t, filter1); hold on; 
plot(t, filter2); hold on; 
plot(t, filter3); hold on; 
plot(t, filterC3);  
axis([0 pi 0 1.25]); 

 

 

B.6 Signal extraction filter 
 
The signal extraction filter is given by  
 

   (B3) 
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One has to rewrite this equation so it can be plotted. Basically it can be done in the same 
way as in appendix B.5. In this case and  which gives the 
equation: 
 

   (B4) 

 
Using the fact that can be rewritten as gives: 
 

  (B5) 

 
Now one can implement this into Matlab with various values for . 
The coding for and is: 
 
 g = 0; 
 

for x  = 1:401 
newFilter(x) = (1/64)*(((2 + 2*cos(g*pi))*(4 + 6*cos(g*pi) +  

4*cos(2*g*pi) + 2*cos(3*g*pi)))/1); 
newFilter2(x) = (9/1024)*(((2 + 2*cos(g*pi))*(4 +  

6*cos(g*pi) + 4*cos(2*g*pi) + 2*cos(3*g*pi)))/(1 +  
(1/16) - (1/2)*cos(4*g*pi))); 

newFilter3(x) = (1/256)*(((2 + 2*cos(g*pi))*(4 + 6*cos(g*pi)  
+ 4*cos(2*g*pi) + 2*cos(3*g*pi)))/(1 + (1/4) –  
cos(4*g*pi))); 

g = g + 0.0025; 
end; 

 
plot(t, newFilter); hold on; 
plot(t, newFilter2); hold on; 
plot(t, newFilter3);  
axis([0 pi 0 1.25]); 

 

B.7 The Reinsch smoothing filter 
 
As given in chapter 6 the Reinsch smoothing filter can be denoted by 
 

   (B6) 

 
with and . 
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This equation can be rewritten into: 
 

     (B7) 

 
Implementing this into Matlab with gives the following code: 
 
 mu = 2 - sqrt(3); 
 

g = 0; 
 

for x = 1:401 
Reinsch(x) = ((1 + mu^2 + 2*mu*cos(g*pi)))/((128*(2 –  

2*cos(g*pi))^2) + (1 + mu^2 + 2*mu*cos(g*pi))); 
Reinsch2(x) = ((1 + mu^2 + 2*mu*cos(g*pi)))/((16*(2 –  

2*cos(g*pi))^2) + (1 + mu^2 + 2*mu*cos(g*pi))); 
Reinsch3(x) = ((1 + mu^2 + 2*mu*cos(g*pi)))/((4*(2 –  

2*cos(g*pi))^2) + (1 + mu^2 + 2*mu*cos(g*pi))); 
Reinsch4(x) = ((1 + mu^2 + 2*mu*cos(g*pi)))/(((2 –  

2*cos(g*pi))^2) + (1 + mu^2 + 2*mu*cos(g*pi))); 
g = g + 0.0025; 

end; 
 

plot(t, Reinsch); hold on; 
plot(t, Reinsch2); hold on; 
plot(t, Reinsch3); hold on; 
plot(t, Reinsch4); hold on; 
axis([0 pi 0 1.25]); 
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