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Abstract 

When using machine learning algorithms to detect financial fraud in general, or 
more specific credit card or similar fraud techniques, some flaws exist that make 
this hard to detect automatically. Most algorithms require a fair distribution 
between fraud and non-fraud cases. In real life, however, there no such balance 
between cases. In general, there is one majority class (non-fraud), while the 
minority class (fraud) happens less frequently. This paper uses simulated 
transaction data where the minority class occurs less than 1 out of 750 times. 
 

Research Goal 
Imbalanced data creates a significant drawback in classification performance 
with standard classifiers. The goal of this paper is to review several methods that 
could improve the classification performance in case of imbalanced data. The 
focus is on sampling techniques, distance-based methods, and deep learning. 
The first part of this paper consists of a literature study conducted on two related 
subjects. The first part of the research involves finding methods for each 
approach to handle imbalanced data. In subsequent research, performance 
metrics need to be evaluated, as accuracy and error rate are not sufficient to 
make any conclusion as long as the data remains imbalanced. The second part 
of the paper involves implementing the most interesting methods and metrics 
on a fraud dataset. 
 

Modeling 
The conducted research is divided into two separate parts: traditional sampling 
methods and deep learning.  The first approach is based on traditional classifiers, 
such as random forest and logistic regression; the second approach utilizes deep 
neural networks, which are currently the center of many experiments in fraud 
detection. The sampling approach consists of three stages: data reduction, re-
sampling, and classification. This approach strives to preprocess the data such 
that the classification performance of traditional classifiers improves. The deep- 
learning approach overcomes the problem of preprocessing the data and consists 
of two types of neural networks. The first is a classic feed-forward network, and 
the second model is an autoencoder network.   
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1. Introduction 

Financial fraud is a growing issue with wide-reaching consequences in the 
financial industry and daily life. It is increasing with the development of modern 
technology and communication methods. Fraud can reduce confidence in 
industry, destabilize economies, and affect people’s cost of living. [1] In the past, 
fraud detection was performed manually by human analysts. As it can be really 
complicated to find fraudulent patterns by hand, which are often characterized 
by a large number of samples and multi-dimensional data, fraud detection 
systems are necessary to find these patterns. Financial fraud is an overarching 
term used to describe several varieties of fraud. The major types are: credit card 
fraud, securities and commodities fraud, financial statement fraud, insurance 
fraud, mortgage fraud and money laundering. This paper does not focus on a 
specific kind of fraud, but the used data is synthetic money transaction data that 
is similar to credit card data. 
 
Several problems arise when analyzing financial transactions to detect fraud. 
The main problem is obtaining a legitimate financial dataset that can be used for 
research. The confidential nature of this information means that it is difficult to 
obtain an open dataset. To overcome this problem, some researchers have 
created a financial payment simulator that simulates mobile money transactions 
in such a way that the simulated data becomes similar to the original financial 
data [2]. It is possible to analyze financial data just like real-world data. Further 
discussion this simulated data can be found in Chapter 3: Data Description and 
Exploration. The second problem, and the focus of this paper, is related to the 
distribution of fraud data. Since the number of legal transactions is much higher 
than that of fraudulent ones, the data is skewed towards non-fraudulent 
observations. In other words, the data is (highly) imbalanced. Imbalanced data 
is a common problem in real-world classification applications such as the 
diagnosis of rare diseases, machine component failure analysis and fraud 
detection. Data is regarded as imbalanced when the number of instances of a 
certain class is significantly smaller than those of other classes. This is usually 
caused by rare events/abnormal conditions or by limitations in data collection. 
It is difficult to learn from imbalanced data is difficult since most machine 
learning methods require balanced data, to predict the minority class properly. 
Without balanced data, the machine learning algorithms are biased towards the 
majority class as they try to optimize the overall accuracy [3]. The class 
imbalance problem depends on multiple factors: the degree of class imbalance, 
the complexity of the concept represented by the data, and the overall size of the 
training set. Using sampling methods such as re-sampling, over-sampling and 
under-sampling could make the classifier less sensitive to class imbalances [4].  
 
The purpose of this paper is to discuss and evaluate more advanced methods for 
addressing the problem of imbalanced data in machine learning applications for 
fraud detection. In the next chapter, the paper concentrates on explaining the 
problem with class imbalance in machine learning applications. In Chapter 3, 
the data which was gathered for this research is explored and prepared for 
analysis. In Chapter 4, several methods to balance imbalanced data are 
discussed. After these methods are reviewed, they are implemented and then 
evaluated in Chapter 5. And finally, in Chapter 6 concluding remarks are made. 
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2. Literature Study 

Classification with imbalanced data can be a most difficult task. Solutions to the 
imbalance problem can be classified into three groups: sampling techniques, 
cost-sensitive techniques and one-class learning [5]. Sampling can be used to 
create a balanced set by under-sampling, over-sampling, or a combination of 
both. More advanced techniques describe methods for generate new data for the 
minority classes from existing data. Cost-sensitive learning (CSL) does not use 
any sampling technique to optimize the data. When CSL misclassifies an 
instance of the minority class, it gives a higher penalty than when an instance of 
the majority class is misclassified. From this point of view, it is more important 
for the machine learning algorithm to classify the minority class correctly. One-
class learning attempts to determine whether an instance belongs to a particular 
class or not. During training, only data from a single class is available. In the next 
subsection, several methods are reviewed from the relevant literature. 
 
Most machine learning algorithms try to minimize the overall error rate, but as 
fraud data is extremely skewed, this focus on reducing accuracy/error rate is not 
the optimal measure. In cases where 99% of the instances belong to one class, 
an error rate of 1% is still not reliable since all the instances from the minority 
class can be predicted incorrectly. In Section 2.2: Performance Metrics are several 
measures discussed that tries to give a more useful value to evaluate the model. 
 
 

2.1. Sampling Methods/Other Techniques 
There are several possible techniques for handling imbalanced data. Changing 
class distribution is a common technique that is performed at the data level. This 
technique tries to balance the imbalanced data by under- sampling the majority 
class, over-sampling the minority class, applying a combination of both 
methods, or employing selective sampling. The simplest sampling methods are 
random over-sampling and random under-sampling. Random over-sampling 
(ROS) duplicates minority class instances until a balanced distribution exists. 
The main disadvantage of this is the possibility of overfitting the classifier. The 
classifier works well on training data, but does not perform adequately on new 
data. The random under-sampling (RUS) technique also has a major drawback. 
When under-sampling is carried out, a substantial amount of information from 
the majority class can potentially be discarded when sampling occurs randomly. 
This can result in a loss of classification performance since the decision boundary 
between the classes becomes unclear. More appropriate methods use selective 
sampling, hybrid techniques (where under- and over-sampling is combined), 
ensemble methods, or skew-insensitive classifiers.  
 

Over-Sampling Methods 
To overcome the problem of overfitting, a new oversampling technique called 
“Synthetic Minority Over-sampling Technique” (SMOTE) was introduced by 
Chawla [6]. This sample method generates artificial minority class instances 
from existing ones, instead of duplicating existing instances from the data. 
Synthetic Minority Over-sampling Technique works in the feature space rather 
than the data space. The new instances are created by combining features of the 
target instance and its nearest neighbors. To create the new artificial minority 
class instance, SMOTE randomly selects one existing minority class sample 𝑚. 
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Next, the algorithm should find its 𝑘-nearest neighbors and should select at 
random one of the 𝑘 samples, called 𝑛. Subsequently, it is necessary to calculate 
the difference between samples 𝑚 and 𝑛 and then multiply this with a random 
number between 0 and 1. After the resulting value is added to the feature vector 
of 𝑚, 𝑚 and 𝑛 form a line segment in the feature space [7]. Several methods have 
been developed to improve the original SMOTE algorithm. SMOTE-NC is a 
generalization of SMOTE designed for handling mixed data with continuous and 
nominal features. Two alternative methods based on SMOTE are borderline-
SMOTE, proposed by Han [8],  and safe-level SMOTE. With borderline and safe-
level SMOTE, only the minority samples near the borderline and safe area, 
respectively, are over-sampled. Borderline instances are located where minority 
and majority class instances overlap; safe-level instances are located in 
homogeneous areas with minority class instances. 
 
Motivated by the success of synthetic approaches to deal with the class 
imbalance problem, Haibo He [9] has proposed a new algorithm, ADASYN. This 
algorithm uses a weighted distribution for the minority class instances and 
assigns the respective weight based on the difficulty in learning that particular 
instance. Minority instances that are harder to learn requires more generated 
synthetic data. The ADASYN algorithm starts by calculating the number of 
artificial data instances that should be generated for the minority class: 𝐺 =
𝛽(𝑚𝑙 − 𝑚𝑠) where 𝑚𝑠 and 𝑚𝑙 correspond, respectively, to the number of 
minority and majority class samples. Therefore, 𝑚𝑠 ≤ 𝑚𝑙 and 𝑚𝑠 + 𝑚𝑙 = 𝑚. The 
parameter 𝛽 ∈ [0,1] defines the desired balance level after the data generation 
process. For each instance of 𝒙𝑖 ∈ minorityclass, find the 𝑘-nearest neighbors 
based on the Euclidean distance, and calculate ratio 𝑟𝑖, which is defined as 𝑟𝑖 =
Δ𝑖

𝑘
 for 𝑖 = 1,2, … , 𝑚𝑠. In this formula, Δ𝑖 represents the number of instances in the 

𝑘-nearest neighbors of 𝒙𝑖 that belongs to the majority class. Then normalize 𝑟𝑖 
with Equation (1).  
 

 𝑟𝑖̂ =
𝑟𝑖

∑ 𝑟𝑖
𝑚𝑠
𝑖=1

 where 𝑟𝑖 is a density distribution ∑ 𝑟𝑖̂

𝑚𝑠

𝑖=1

= 1 

 

(1) 

 
After the ratios are normalized, the number of artificial instances that need to 
be generated should be calculated for each minority instance 𝒙𝑖 by the formula 
𝑔𝑖 =  𝑟𝑖̂ ∙  𝐺. In order to generate 𝑔𝑖 artificial instances for each minority instance 
𝒙𝑖, the algorithm should randomly choose one minority instance 𝒙𝑧𝑖 from the 𝑘-
nearest neighbors for instance 𝒙𝑖. Subsequently, the artificial data can be 
generated by Equation (2), where 𝜆 is a random number between 0 and 1 [9]. 
 
 𝒔𝑖 = 𝒙𝒊 + 𝜆 ∙ (𝒙𝑧𝑖 − 𝒙𝑖) (2) 

 
Although artificial data generation is a successful approach to the imbalanced 
data problem, Barua [10] has shown that many existing over-sampling methods 
generate, in some cases, the wrong artificial minority samples. Wrong minority  
instances make it more difficult for the classifier to learn properly. In the same 
paper, another method has been proposed by Barua, namely the “majority 
weighted minority oversampling technique” (MWMOTE). The majority 
weighted minority oversampling technique tries to improve the selection of 
important instances and the quality of the artificial instances. This method  
identifies the hard-to-learn minority class instances first and assigns a weight 
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based on the Euclidean distance from the nearest majority class instance. 
Subsequently, new artificial instances are generated using a clustering approach, 
based on the weighted minority class.  
 

Under-Sampling Methods 
Since random under-sampling can have some disadvantages, several other 
techniques could prove to be more useful. Tomek links (T-links) remove 
unwanted majority class instances that are close to the minority class region 
until all minimally distanced, nearest neighbor pairs are from the same class. 
When two instances are a T-link, then one of them is a noisy instance or both 
instances are on the class boundaries. After those T-links are removed, the 
resulting dataset has a better separation between the minority and majority 
class. A T-link is defined as follows: let 𝑥 and 𝑦 be an instance from, respectively, 
the majority and minority class, and let 𝑑(𝑥, 𝑦) be their distance. The pair (𝑥, 𝑦) 
is a T-link if there does not exist an instance such that 𝑑(𝑥, 𝑧) < 𝑑(𝑥, 𝑦) or that 
𝑑(𝑦, 𝑧) < 𝑑(𝑥, 𝑦). An addition to T-links can be “condensed nearest neighbors” 
(CNN). A combination of both methods can be useful since T-links remove 
border line and noisy examples, while CNN removes redundant instances. In 
short, CNN tries to create a subset that is consistent with the original data, which 
means that the subset classifies the original dataset correctly. The idea behind 
CNN is to eliminate instances from the majority class that are distant from the 
borderline since those instances are easier to learn and less important for 
training the classifier. Harder-to-learn instances, the borderline samples, and 
the noisy samples are added to the CNN set as it is more likely to misclassify 
them. The drawback here is the sensitivity to noise. 
 
A further two distance-based, under-sampling methods are “edited nearest 
neighbor” (ENN) and “neighborhood cleaning rule” (NCL). Moreover, Wilson [11] 
has proposed an edited k-NN rule to improve the 1-NN rule. The first algorithm 
(ENN) removes at least two of the closest instances from the other class. Only 
instances that are misclassified by their three-nearest neighbors are removed so 
as to overcome the problem of losing relevant information from the minority 
class. The second algorithm (NCL) uses the ENN algorithm to compute the three 
nearest neighbors for a certain instance. If a instance is from the majority class 
and is misclassified by its closest three neighbors, then that particular majority 
class instance is removed. When the instance is from the minority class and is 
misclassified by its three closest neighbors, the majority class instances around 
the minority class instance are removed. 
 
 

Hybrid Methods 
As an extension to the over- and under-sampling methods, hybrid sampling uses 
a combination of both sampling techniques to balance an imbalanced dataset. 
The major drawback of under-sampling is the information loss that occurs when 
instances are removed. When the data is highly imbalanced, the possible 
information loss is enormous. Unfortunately, over-sampling is not perfect since 
over-sampling with artificial or re-sampled instances can result in overfitting the 
classifier. To overcome the disadvantages and combine the best of both worlds, 
the hybrid approach makes it possible to over-sample the minority class without 
overfitting the data but also to under-sample the majority class without 
removing too many instances from the data. Common hybrid sampling methods 
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are SMOTE+Tomek and SMOTE+ENN [7], but other hybrid strategies can also 
be applied by combining different techniques. 
 
 

Ensemble Methods 
Ensemble methods combine multiple-base learners to improve the classification 
performance over single classifier algorithms. Three ensemble methods are 
frequently discussed in literature on imbalanced data. These three methods are 
SMOTEBoost, EasyEnsemble and BalanceCascade; the last two ensembles were 
developed by Liu [12] in 2009. SMOTEBoost combines SMOTE with the 
AdaBoost M.2 algorithm. The main goal in this method is to sample the data 
before each round of boosting. The base learners focus more on difficult-to-
classify instances, and the weights for the minority class increase during every 
round. Instead of oversampling the minority class with SMOTE, EasyEnsemble 
uses an under-sampling technique. EasyEnsemble randomly generates 𝑇 
multiple subsamples from the majority class 𝑁. The size of each subsample is 
equal to the size of the minority class 𝑃. The union of samples 𝑁𝑖 and 𝑃 is then 
used to train an AdaBoost ensemble. This final ensemble is a bagged ensemble 
that combines all the base learners from the boosted AdaBoost ensembles [13]. 
BalanceCascade uses another approach. It tries to delete well-considered (rather 
than random) majority class instances. Instead of operating in a parallel fashion 
like EasyEnsemble, BalanceCascade works sequentially in 𝑇 rounds. In each 
round, 𝑖 (𝑖 = 1, … , 𝑇) is a subsample 𝑁𝑖 created from the majority class, and it is 
equal to the size of the minority class sample 𝑃. Subsequently, an ensemble 𝐻𝑖 is 
trained from the union of 𝑁𝑖 and 𝑃. Correct classified instances in 𝑁𝑖 are removed 
from majority class set 𝑁. After 𝑇 rounds, the final ensemble is formed by 
combining all base learners in all AdaBoost ensembles. 
 
 

 

Figure 1: (left) BalanceCascade, a supervised method that keeps removing majority class examples 
until none are misclassified; (right) EasyEnsemble works parallel in a unsupervised manner [14]. 

 

2.2. Performance Metrics 
To evaluate the performance of a classifier, evaluation criteria are necessary. 
Typically, a classifier is evaluated by a confusion matrix (see Table 1), which 
shows the results of correctly and incorrectly recognized examples of each class. 
From this point, predictive accuracy can be defined as all correctly classified 
observations divided by all (correctly and incorrectly) classified observations. 
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However, accuracy is not an appropriate measure when data is imbalanced 
and/or the costs of different errors vary markedly [15]. 
 

  Predicted Class 

  Positive Negative 

Actual  
Class 

Positive 
True 
Positive  
(TP) 

False 
Negative  
(FN) 

Negative 
False 
Positive  
(FP) 

True 
Negative  
(TN) 

Table 1: Confusion matrix for a two-class problem 

In the imbalanced domain, is it more useful to measure the classification 
performance of the positive and negative classes independently. This can be 
achieved by the following metrics: 
 

o TP rate: percentage of positive instances correctly classified.  𝑇𝑃𝑟𝑎𝑡𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

o FP rate: percentage of negative instances misclassified.  𝐹𝑃𝑟𝑎𝑡𝑒 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

o TN rate: percentage of negative instances correctly classified. 𝑇𝑁𝑟𝑎𝑡𝑒 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 

o FN rate: percentage of positive instances misclassified.  𝐹𝑁𝑟𝑎𝑡𝑒 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 

 
“Receiver operating characteristics” (ROC) curves are useful for visualizing the 
performance of a classifier. The ROC curve is created by plotting the sensitivity 
(= 𝑇𝑃𝑟𝑎𝑡𝑒) against the 𝐹𝑃𝑟𝑎𝑡𝑒 (= 1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) at different threshold settings. 
This plotting visualizes the trade-off between benefits and costs. The “area under 
the curve” (AUC, or, more correctly, AUROC), corresponds to the probability 
that a classifier will give a higher rank to a randomly chosen positive example, 
rather than a randomly chosen negative example. Models become optimal when 
they reach a score of 1.0. Models with higher AUC values are preferred over those 
with lower AUC values. As the ROC values have not been perfected as proposed 
by Kaymak [16], there are also other measures. The most used measures are 
precision-recall and its derived versions: F-measure and G-measure. 
 

Precision-Recall 
When the confusion matrix is analyzed, there are two more measures that can 
be derived. The first measure is called “precision”; it measures the fraction of all 
positive predictions that are correct. To calculate this, the number of correctly 
predicted positive values is divided by all positive predictions. The second 
measure is “recall”; this is the same as the true positive rate. Recall is a measure 
of the proportion of all real positive observations that are correct. 
 

 Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

correct positive predicted instances

all positive predicted instances
 (3) 

   
 Recall = 𝑇𝑃𝑟𝑎𝑡𝑒 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

correct positive predicted instances

all actual positive instances
 (4) 
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The precision measurements indicate how precise or useful the algorithm is. 
Recall is concerned with the completeness of an algorithm. Thus, it follows that 
precision and recall have no linear relationship between one another. If a given 
machine learning algorithm performs well at recall, it is not self-evident that the 
same will apply to the performance of precision. To overcome this problem, 
another measure can be ascertained by means of recall and precision, namely 
the F-measure (or the F1-score). This can be found in Equation (5). The general 
equation is represented by the Fβ-measure (see Equation (6)), where 𝛽 
represents the relative importance of precision and recall. 
 

 F-measure = 2 ∙
precision ∙ recall

precision + recall
 (5) 

   
 Fβ-measure = (1 + 𝛽2) ∙

precision ∙ recall

(𝛽2 ∙ precision) + recall
  (6) 

 
The F-measure is the harmonic mean of precision and recall. This measure can 
indicate how precise and how robust (in terms of recall) a certain model is. It is 
necessary to have a trade-off between precision and robustness. When precision 
and recall are equal to each other, the F-measure is maximal. The harmonic 
mean decreases quickly when only one of the metrics is optimized. Since the F-
measure is available per class - say for example, fraud and non-fraud class - the 
F-score for the fraud class would be more important than the non-fraud class. 
This is because it is more important to classify the fraud cases correctly than the 
non-fraudulent ones. The geometric mean of precision and recall (known as 
Fowlkes–Mallows index) determines the similarity between two clustering’s. A 
higher value indicates a greater similarity. 
 

 G-mean = FMI =  √precision ∙  recall =
𝑇𝑃

√(𝑇𝑃 + 𝐹𝑃) ∙ (𝑇𝑃 + 𝐹𝑁)
 (7) 

 

 

Figure 2: An ideal classifier shows a perfect precision recall curve and is a combination of two 
straight lines. From the top left corner to the top right corner, and from the top right corner to 

the end point in (1,
𝑃

𝑃+𝑁
) where P and N are respectively the number of positive and negative 

samples. [18]  

A visual representation of precision and recall is possible through a precision-
recall plot (like the previous ROC plot). In contrast to the ROC curve, the 
“precision-recall curve” (PRC) does not use the number of true-negatives, in the 
same way in which the ROC does. Both the PRC plot and ROC plot are model-
wide evaluations. The PRC plot shows precision values (on the y-axis) against 
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sensitivity/recall values (on the x-axis) for a certain threshold. The baseline of 
the curve is determined by the ratio of positive and negative values, in the form 

𝑦 =
𝑃

𝑃+𝑁
. When the data is balanced, the baseline is at 0.5, but this changes as 

the data becomes imbalanced. This mean that the value of AUC-PRC also 
changes when the positive/negative instance ratio changes. This is explained in 
Figure 2. Takaya Saito has concluded that the PRC is more informative than the 
ROC when working with imbalanced data [19].  
 

H-Measure 
The evaluation of how a classifier performs, is mostly achieved in terms of 
misclassification costs. In the majority of occasions, this results in a weighted 
combination of both types of misclassification (false positives and false 
negatives). In the case of fraud, a false positive means that a case is unjustly 
classified as fraudulent; a false negative means that a fraud case has been missed 
by the classifier. Thus, in all likelihood, the cost of missing a fraud case can be 
higher than that of a falsely classified case of fraud. Accordingly, it is essential to 
decide which classification error is weighted more. The H-measure is an 
alternative to the AUC and was proposed by D.J. Hand [20]. It overcomes several 
critiques of the AUC – especially in those cases where AUC treats false positives 
as equally important as false negatives. The H-measure is designed to control the 
misclassification costs by a prior. This ensures that the end user does not need 
to set any weights for the costs, and captures the end user’s uncertainty about 
the exact values. [21] 
 

 H-measure = 1 −
∫ 𝑄(𝑇(𝑐); 𝑏, 𝑐)𝑢(𝑐)𝑑𝑐

 𝜋0 ∫ 𝑐𝑢(𝑐)𝑑𝑐 + 𝜋1 ∫ (1 − 𝑐)𝑢(𝑐)𝑑𝑐
1

𝜋1

𝜋1

0

 (8) 

 
In this equation, 𝑐0 and 𝑐1 are the misclassification costs of, respectively, a 
positive and negative instance. The prior probabilities are 𝜋0 and 𝜋1, 
corresponding to the positive and negative instances. From this point, 𝑐 is 

defined as 𝑐 =
𝑐0

𝑐0+𝑐1
 [22]. 

 

 𝑇(𝑐) =  argmin
𝑡

{𝑐𝜋0(1 − 𝑇𝑃𝑅(𝑡)) + (1 − 𝑐)𝜋1𝐹𝑃𝑅(𝑡)} (9) 

   
 𝑄(𝑡, 𝑐) =  {𝑐𝜋0(1 − 𝑇𝑃𝑅(𝑡)) + (1 − 𝑐)𝜋1𝐹𝑃𝑅(𝑡)}(𝑐0 + 𝑐1) (10) 
   

 𝑢(𝑐) =
𝑐(1 − 𝑐)

∫ 𝑐(1 − 𝑐)𝑑𝑐
1

0

 (11) 

 
The H-measure is an improvement upon the AUC since it takes the priors into 
account. These priors are important when working with imbalanced datasets, 
such as fraud data. Some critiques of the H-measure have been based on the 
assumptions that are made by this means of measurement. To clarify, some 
assumptions regarding the loss functions may not be valid for all application 
domains. When these assumptions are replaced, the measure will lose its 
objectivity – different assumptions by different researchers will lead to different 
H-measure values – which is required from all performance measures [16]. To 
overcome this problem, Hand [23] has proposed a universal standard 
distribution for the H-measure: the 𝐵𝑒𝑡𝑎(1 + 𝜋1, 1 + 𝜋0). In this case, 𝜋𝑖 is the 
proportion of instances from class 𝑖 (𝑖 = 0, 1). 
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Cohen’s Kappa 
Kappa is a measure of the agreement in scores of two nominal variables. The 
kappa statistic is frequently used to test inter-rater reliability [24]. Inter-rater 
reliability is the measurement of the extent to which raters assign the same score 
to the same variable. It was proposed by Jacob Cohen in 1960 as an alternative to 
the percentage agreement because the percentage agreement does not take 
change into account. Accordingly, kappa compares the observed accuracy with 
an expected accuracy (the random chance). Because it takes random chance into 
account, this method is more robust than using accuracy as a metric. Kappa can 
be defined as follows: 
 

 Kappa =
observed accuracy − expected accuracy

1 − expected accuracy
 (12) 

 
The “observed accuracy” is the number of instances that were classified correctly, 
throughout all instances. The “expected accuracy” is defined as the accuracy that 
a random classifier would expect to achieve, based on the confusion matrix. 
 

 Observed accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (13) 

   
 Exp. accuracy =

Actual False ∙ Pred. False + Actual True ∙ Pred. True

(total number of instances)2
 (14) 

   
 Exp. accuracy =

(𝑇𝑁 + 𝐹𝑃) ∙ (𝑇𝑁 + 𝐹𝑁) + (𝐹𝑁 + 𝑇𝑃) ∙ (𝐹𝑃 + 𝑇𝑃)

(𝑇𝑃 + 𝑇𝐹 + 𝐹𝑃 + 𝐹𝑁)2
 (15) 

 
Kappa is a normalized statistic, and it can be used even as the number of 
observations grows. Its value never exceeds 1. There is no fixed interpretation for 
the kappa value, but Cohen [24] has suggested the kappa results should be 
interpreted as follows: 
 

Kappa Level of Agreement Percentage of  
Data Reliable 

0 - 0.20 None 0 – 4% 
0.21 – 0.39 Minimal 4-15% 
0.40 – 0.59 Weak 15-35% 
0.60 – 0.79 Moderate 35-63% 
0.80 – 0.90 Strong 64-81% 
> 0.90 Almost perfect 82-100% 

Table 2: One possible interpretation of kappa. 

An extension to the Kappa measure and an alternative to the AUC value, is the 
“area under kappa” (AUK). This measure has been proposed by Kaymak [16]. 
Similar to the H-measure but dissimilar to the AUC, the AUK depends on the 
priors. It does not, however, assume any knowledge about the underlying 
distribution as the H-measure does. This renders the kappa curve and AUK value 
more intuitive. 
 

 𝐴𝑈𝐾 =  ∫ 𝑘(𝑓) 𝑑𝑓
1

0

 (16) 
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 𝑘 =
2𝑝(2 − 𝑝)(𝑇𝑃𝑅 − 𝐹𝑃𝑅)

𝑝 + 𝐹𝑃𝑅(1 − 2𝑝) + 𝑝(1 − 2𝑝)(𝑇𝑃𝑅 − 𝐹𝑃𝑅)
 (17) 

 
The AUK is a performance metric that can be used in the same way as AUC. The 
AUK measures the area under the kappa curve. The kappa curve consists of 
kappa values plotted against the false positive rates; similar to the ROC plot, 
where the true positive rates are plotted against the false positive rates. One 
advantage of AUK over AUC is the accountability of class imbalance. Kaymak 
[16] has proposed that the kappa method prefers to classify the minority class 
correctly rather than the majority class. This makes the AUK a more preferable 
measure when one works with imbalanced data. The kappa curve function is 
defined in Equation (17), where 𝑝 = 𝑇𝑃 + 𝐹𝑁 and 𝑛 = 𝐹𝑃 + 𝑇𝑁. As the curve has 
often a unique maximum, it is a useful tool for selecting a suitable threshold for 
a model. The threshold that maximizes kappa is typically unique [16].  
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3. Data Description and Exploration 

Traditional fraud detection was performed manually by human analysts or by 
means of information systems that were based on predefined rules. The main 
drawback with those information systems is that rules have to be defined in 
advance, before the fraud is committed. Since all rules have to be defined 
manually, the system is unable to recognize other fraudulent patterns, which 
ensures that criminals can find ways to avoid detection. As I stated earlier in this 
paper, the lack of publicly available fraud datasets makes it challenging to 
undertake research on fraud detection techniques so as to improve the 
recognition of fraudulent patterns. Lopez-Rojas, Elmir and Axelsson [2] have 
overcome the problem of not having suitable financial data by creating a 
financial transaction simulator. This simulator, called PaySim, generates 
synthetic data that is most similar to real transaction data. Based on real data 
(provided by Ericsson) did Lopez-Rojas prove that the simulated data is similar. 
 
The data used in this paper is from the Synthetic Financial Datasets for Fraud 
Detection, a dataset which is openly distributed by Kaggle [25], and which 
consists of data generated through the PaySim simulator. There are 6,362,620 
transactions simulated in a period of 30 days. Modern techniques such as 
machine learning, can classify the fraudulent transactions and can predict fraud 
in the future. As we have ascertained from the literature review, machine 
learning algorithms are sensitive to imbalances between classes in data. The 
PaySim data consists of 8213 fraudulent transactions out of 6,362,620 in total; 
this  makes the data highly imbalanced. Only 0.0013% of the instances are from 
the minority class; this, therefore, makes the dataset suitable for testing different 
types of balancing methods.  
 
The data covers five types of transactions: cash-in, cash-out, debit, payment and 
transfer. Customers can cash-in and cash-out money from a given account 
through a local agent who serves as an ATM. The balance of the account 
increases when paying the agent (cash-in) and decreases when the customer 
withdraws cash from the agent (cash-out). Debit is the process wherein the 
money is transferred from the mobile money service to a bank account; this 
decreases the account balance. A payment transaction is the process of paying 
for goods or services to an agent; this decreases the balance of the account and 
increases the balance of the receiver. Transfer is similar to a payment transaction 
but is the process of sending money to another user of the mobile money service 
[26]. In Table 3, the number of times a transaction occurs is shown. 
 

Transaction type Fraudulent  Frequency 

Cash-in No 1399284 
Cash-out  No 2233384 
 Yes 4116 
Debit No 41432 
Payment No 2151495 
Transfer No 528812 
 Yes 4097 

Table 3: The number of times each transaction type occurs in the synthetic dataset, divided into 
fraud and non-fraud cases. 
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From Table 3, it follows that fraud only arises from two types of transactions: 
cash-out and transfer. When the other types are ignored, a fraudulent 
transaction occurs in approximately 1 out of 336 transactions, which means that 
approximately 0,3% of transactions are fraudulent. 
 

 

Figure 3: (left) The number of transactions for each type of transaction. (right) The number of 
times each transaction type occurs in the synthetic dataset, divided into fraud and non-fraud cases. 

These are the visualized results from Table 3.  

Column name Description of column data 

Step This is the time interval in which the transaction occurs. The time 
interval maps with a unit of real-world time, where 1 step is equal to 
1 hour. There are a total of 744 steps which maps to 30 days in real 
time. 

Type This is the type of the transaction. There are five types of 
transactions: CASH_IN, CASH_OUT, DEBIT, PAYMENT or 
TRANSFER. 

Amount This is the transaction amount in local currency. 
nameOrig This is the account name of the person who started the transaction. 
oldBalanceOrig This is the initial balance before the transaction starts. 
newBalanceOrig This is the new account balance after the transaction is completed. 
nameDest This is the account name of the receiver of the transaction. 
oldBalanceDest This is the initial balance of the receiver before the transaction 

starts. 
newBalanceDest This is the new account balance of the receiver after the transaction 

is finished. 
isFraud The instance is marked as fraudulent or not. Fraudulent = 1, non-

fraudulent = 0. 
isFlaggedFraud Huge transactions are flagged as fraud when the amount of money 

that is transferred between mobile money accounts is larger than 
200.000. 

Table 4: Data description of the 11 columns of data from the “Synthetic Financial Datasets for 
Fraud Detection” dataset, which is publicly available from Kaggle.com.  

The dataset contains 11 columns of data, which are described in Table 4. Not all 
the information in this dataset seems relevant. After data analysis was 
performed, it appeared that “isFlaggedFraud” only occurs in 16 instances, while 
there are over 400.000 instances from the “TRANSFER” type where the amount 
of money transferred is higher than 200.000. Therefore, the isFlaggedFraud 
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variable does not seem useful since it does not flag the data as the description 
declares. Also there do not appear to be any relations when one tries to find a 
correlation between isFlaggedFraud and the other variables. Thus, it is unclear 
why the simulator flagged 16 instances as fraudulent. Accordingly, the feature is 
not used in ensuing models. 
 

 

Figure 4: Correlation heatmap 

The correlation heatmap in Figure 4 shows no correlation between features. 
There is a slight correlation between “amount” and “oldBalanceDest”, but with a 
value of 0.29, this is not significant. Further investigation into the time data, 
which is expressed as time steps provides more information. Since every time 
step is equal to one hour of real time, the time information can be used to analyze 
transactions based on the day of the month, the day of the week, and  the hour 
of the day. There are a total of 744 time steps, which corresponds to 1 month of 
31 days. In Figure 5, one can observe the transaction distribution, which is split 
by the hour of the day. The distribution follows an expected pattern, where most 
transactions occur during daytime. Since, the number of fraud transactions is 
the same during the day as the night; this results in an increase in the fraud/non-
fraud ratio during the night. 
 

 

Figure 5: (left) The average number of transactions per hour. (middle) The average number of 
fraudulent transactions. (right) The ratio between fraudulent and non-fraudulent transactions. 
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An analysis of the transactions by day of the month reveals that there are far 
more transactions during the 1st, 2nd, and between the 6th and 17th day of the 
month than on other days. Nevertheless, the number of fraudulent transactions 
is still constant over all days, as one can observe in Figure 6.  
  
 

 

Figure 6: (left) The total amount of transactions. (middle) The total number of fraudulent 
transactions. (right) The ratio between fraudulent and non-fraudulent transactions. 

An even more useful feature is the fraud transaction by day of the week. In Figure 
7, it can be observed that the number of transactions varies by day. Most 
transactions occur during the first two days of the week. The transactions 
decrease significantly until the fifth day and are more or less stable over the last 
two days of the week. The number of fraudulent transactions is higher on the 
first three days than on the last four days of the week. 

 

Figure 7: (left) The total amount of transactions. (middle) The total amount of fraudulent 
transactions. (right) The ratio between fraudulent and non-fraudulent transactions. 

Based on the previous analysis, the number of transactions per hour and the 
number of transactions by day of the week could be an interesting feature to 
include for the machine learning and/or sampling algorithms. An analysis of the 
number of transactions uncovers certain differences between non-fraud and 
fraud cases.  
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Figure 8: The distribution plot of transaction amount split by fraud and non-fraud cases. 

 

Figure 9: The boxplot of amount split on fraud and non-fraud cases. There are three boxplots, for 
amounts smaller than 100.000 (left), smaller than 1.000.000 (middle) and for unrestricted amounts, 

which is in practice smaller than 100.000.000 (right). 

As one can observe from Figure 8 and Figure 9, there is a substantial difference 
in the size of transactions. The amount of money that is involved in fraud is 
higher than in legal, non-fraud transactions. Although, the most expensive 
transactions are not flagged as fraud, more than 99,5% of non-fraud transactions 
involve a smaller value of money than the upper 17% of fraud cases.  
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4. Methods 

The research conducted was divided in three parts – namely data reduction, re-
sampling, and classification. The classification part is divided in two different 
approaches. The first approach is based on traditional classifiers such as random 
forest and logistic regression; the second approach uses deep neural networks, 
which are currently the center of many experiments in fraud detection [27]. The 
schematic representation of the research methodology can be observed in Figure 
10.  

 

Figure 10: Research methodology 

Before any research on the dataset was conducted, preprocessing was performed 
so that all models could use the same data source as an input. The transaction 
type was then converted into Boolean (0/1) dummy variables for each type. These 
were: “cash_in”, “cash_out”, “debit”, “payment”, and “transfer”. Afterwards, two 
copies were made from the original dataset with dummy variables. In one of the 
copies, all the values were standardized, by means of Equation (18), and the other 
copy was normalized, by means of Equation (19). After this preprocessing, the 
data was split into a training set and test set. Eighty percent of the data was used 
for training purposes, while the other twenty percent was used to test the 
performance of the trained classifier. 
 

 𝑋standardized =
𝑋 − 𝑋̅

𝑠𝑋
 (18) 

   
 𝑋normalized =

𝑋 − 𝑋min

𝑋max − 𝑋min
 (19) 

 
In all experiments, the following features were used: “isFraud” as target variable 
and “step”, “cash_in”, “cash_out”, “debit”, “payment”, “transfer”, “amount”, 
“oldBalanceOrig”, “newBalanceOrig”, “oldBalanceDest”, and “newBalanceDest” 
were used as features. 
 

4.1. Data Reduction 
Since the majority class has many more instances than the minority class, it 
makes sense to remove noisy data. Only majority class instances should be 
removed so as to overcome the problem of the minority class becoming even 
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smaller. Three methods will be compared as data reduction algorithm: edited 
nearest neighbors, T-links, and condensed nearest neighbors. As I described 
earlier, T-links remove unwanted majority class instances that are close to the 
minority class region until all minimally distanced, nearest-neighbor pairs are 
from the same class. When two instances are a T-link, then one of them is a noisy 
instance or both instances are on the class boundaries. The T-link method 
removes noisy instances and those instances close to the borderline. Another 
approach is CNN; this method tries to remove redundant instances from the 
data. This is achieved by eliminating instances that are distant from the 
borderline. Thus, CNN tries to create a subset which is as close as possible to the 
original data, in terms of data representation. The third method, ENN, is another 
distance-based method. Firstly, a reference set that is equal to the original data 
is created. Subsequently, every instance in the original data is classified by the 
k-NN rule and added to the edited set. All instances that are not correctly 
classified by the k-NN rule are removed from the reference set. This results in 
smoother boundaries since noisy and borderline instances are removed. 
 

4.2. Sampling and Classification 
The next step in the process is resampling and, finally, classification. There are 
three sampling approaches used and two combinations of the three approaches. 
In my experiments, the conducted sampling techniques were random over- 
sampling (ROS), random under-sampling (RUS), SMOTE, ROS + RUS, and 
SMOTE + RUS. The last two approaches use a combination of over- and under-
sampling. An explanation for these methods can be found in Chapter 2.1. For 
each method, there are several ratios of under- and/or oversampling used. In 
Chapter 5, more details are supplied concerning these ratios. When the samples 
are generated, the reduced data sets are used as inputs for three different 
classifiers; random forest, gradient boosting and logistic regression. 
 

Random Forest 
“Random forest” is a supervised classification algorithm that works by means of 
an ensemble approach. The preparatory work that led to the random decision 
forests method was undertaken by Tin Kam Ho [28]. In 2001, an extension of the 
algorithm was developed by Breiman [29]; this extension is today known as the 
“random forest”. The basic idea behind the classifier involves the use of several 
weak learners, the small decision trees, that are based on a subset of the feature 
set. Many of these decision trees can be built in parallel and combined into a 
strong learner [30]. 
 
The random forest algorithm works as follows: [31] 

1. Create 𝑁 subsets of the data, at random, by sampling with replacement. 
Each subset should be around 2/3 of the of the total set size. 

2. Learn a tree and do for each node in the tree: 
a. Select at random 𝑚 feature variables, where 𝑚 is much smaller 

than the total number of features available.  
b. Take a (binary) split based on the best feature according to a 

certain objective function.  
c. At the next node, repeat the above with another 𝑚 variables.  
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Gradient Boosting 
Another machine learning algorithm used is the gradient boosting machine 
(GBM). This method belongs to the family of boosting algorithms that use weak 
learners and convert them into strong ones, just as the random forest method 
does. The difference is that random forest is a bagging algorithm (not a boosting 
algorithm) that works in parallel. Boosting algorithms function sequentially and 
try to add new models that perform well for those instances where previous 
models failed [32]. Although this appears to be a more effective option, the 
performance does, in general, depend on the data and the specific case of usage. 
Both bagging and boosting decrease the variance of an estimate since they 
combine estimates from different models. This ensures that a given model 
becomes more stable [33]. In cases where the model easily overfits, bagging 
outperforms boosting methods. Boosting does not help to avoid overfitting and 
can even increase the overfit, while bagging tries to prevent overfitting. 
 

 

Figure 11: Bagging (independent models) and boosting (sequential models).  

In general, GBM is a gradient decent combined with boosting. Gradient boosting 
creates a prediction model from an ensemble of weak learners (typically decision 
trees). These models are sequentially built and introduce at each successive stage 
a weak learner so as compensate for the shortcomings of existing weak learners. 
The gradient decent method is used to minimize a differentiable loss function.  
 

Logistic Regression 
Logistic regression is a regression model where the response variable is binary; 
this means that it can have two states: 0 or 1. Although the response variable is 
binary, the explanatory variables can be either discrete or continuous. Logistic 
regression models the probability distribution 𝑝(𝑦|𝒙), where 𝑦 is the response 
variable and 𝒙 the explanatory vector, containing all the features. For LR, the 
hypothesis is defined in the following form [34]: 
 

 ℎ(𝑥) = {
1 ∶ 
0 ∶ 

 
𝑝(𝑦 = 1|𝒙) > 𝑡

otherwise
} (20) 

 
In this case, 𝑡 represents a certain threshold. Usually, this threshold is chosen as 
0.5. The probability distribution function 𝑝(𝑦|𝒙) is defined as: 
 

 𝑝(𝑦 = 1|𝒙) =
1

1 + 𝑒−𝜷𝑇𝒙
= 𝜎(𝜷𝑇𝒙) (21) 
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In this equation, 𝜷 is a vector containing all the weights, and 𝜎 is the sigmoid 
function, which is defined as: 
 

 𝜎(𝑥) =
1

1 + 𝑒−𝑥
 (22) 

 
Logistic regression uses odds ratios to calculate the probability. This is defined 
as the ratio of the odds of an event happening to its not happening. The odds 
ratio is used rather than directly calculating the probability distribution in order 
to ensure that the probability is always between 0 and 1. The link function that 
is used to do this is called the logit function. If we define 𝜋 = 𝑝(𝑥 = 1|𝒙), then 
the following equation applies: 
 

 
𝜎(𝑥) =

1

1 + 𝑒−𝑥
 𝜋 = 𝛼 + 𝜷𝑇𝒙 

logit(𝜋) = log (
𝜋

1 − 𝜋
) = 𝛼 + 𝜷𝑇𝒙 

(23) 

 
Since the inverse of the logit function is the sigmoid function, we can describe 𝜋 
in the following terms: 
 

 
𝜋 = logit−1(𝛼 + 𝜷𝑇𝒙) 
    = 𝜎(𝛼 +  𝜷𝑇𝒙) 

= 𝜎(𝜷𝑇𝒙) 
(24) 

 

4.3. Deep Neural Net 
An alternative to the sampling strategies discussed in Paragraph 2.1 and the 
preceding algorithms discussed in this chapter, is the use of (deep) neural 
networks. To overcome the problem of over- and/or under-sampling, two 
methods can be discussed; feed-forward networks and autoencoder networks. 
Both networks are built with the deep learning library Tensorflow, with the high-
level neural networks Keras API on top. Tensorflow is an open-source machine 
learning library originally developed by researchers from the Google Brain 
division. Keras works on a higher level and is designed to enable fast 
experimentation. It is user friendly, modular, and easy to extend. It is possible to 
build deep neural nets with only a few lines of code. 
 

 

Figure 12: A simple representation of layers in a feed forward neural network. 
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The first neural network that this project uses is the so-called “feed forward 
neural network”. This network was the first and simplest type of artificial neural 
network to be devised and was, therefore, probably the most commonest type in 
practical applications [35, 36]. The network consists of an input layer, output 
layer, and in-between (multiple) hidden layers. Each layer consists of a number 
of nodes that are connected with adjacent layers, all these connections have 
weights associated with them. A graphical representation can be observed in 
Figure 12. In a feed forward network, the information moves from the input layer 
to the output layer via the hidden layers in the middle, and there are no loops in 
the network. The hidden layers compute a series of transformations that change 
the similarities between cases and ensure that each layer has a non-linear 
relation to adjacent layers. Through the employment of backpropagation, the 
weights in each layer are optimized. 
 

Autoencoder Networks 
An autoencoder is a neural network that is used to learn a representation for a 
set of data. It is an unsupervised machine learning algorithm that takes a sample 
from the fraud dataset as an input and tries to reconstruct it. The goal is to copy 
the input to its output by using a reconstruction process [37]. The autoencoder 
consists of an encoder and decoder part. The encoder is a network of layers that 
takes a sample as an input and produces a much smaller representation 
(encoding). The decoder part tries to reconstruct the input by using only the 
encoding as input. Back-propagation is used to optimize the autoencoder 
network in such a way that the right amount of information is encoded to ensure 
that the decoder network is still able to reproduce the input. In the case of fraud 
data, fraud samples are supposed to have a different distribution from non-fraud 
samples. So, it should be possible to recognize fraud transactions through the 
amount of reconstruction errors. This is expected to function as long as the 
network is trained only on the non-fraud samples. In that case, fraud samples 
(the assumption here is that they have a different distribution) are recognized 
by the reconstruction error. 
 

 

Figure 13: Schematic representation of an autoencoder where a general representation is learned by 
raw input instances. 
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5. Results 

The previous chapter, Methods, outlined the steps this paper takes to test the 
models in combination with the imbalanced data (as described in Chapter 3). 
This chapter describes the results of the conducted research. Each model is 
tested with normalized (NRM) and standardized (STD) data in combination 
with various types of reduction techniques (no reduction, T-Link, ENN, and 
CNN). After the data is resampled, three classifiers are trained with the 
resampled data and evaluated on a test set, which was unseen by the classifier 
previously. There are two test sets: one where the data is normalized, and one 
where the data is standardized. The classifier that is trained with the normalized 
data should be tested with the normalized test set. Besides the rescaling 
technique, no differences exist between the test sets. A baseline has been defined 
based on the classification scores when raw (unprocessed) data is used in order 
to ensure that the results can be compared and placed in perspective. Without 
this baseline, is it difficult to identify whether the models increase the 
classification performance. The baseline values can be found in Table 5. 
Performance is measured in terms of area under the ROC curve (ROC-AUC) and 
normalized F1 scores. The ROC-AUC values give the probability that a fraudulent 
transaction has a higher mean squared error (MSE) than a non-fraud one. 
 

  NRM STD 

  LC RF GB LC RF GB 

No reduction 
ROC-AUC 0,53982 0,89443 0,66839 0,71174 0,89285 0,72072 

F1 0,68485 0,90451 0,75095 0,77623 0,90322 0,77845 

T-Link 
ROC-AUC 0,53919 0,89474 0,84317 0,71047 0,89064 0,66039 

F1 0,68455 0,90477 0,86269 0,77547 0,90142 0,73052 

ENN 
ROC-AUC 0,54172 0,89916 0,65740 0,71205 0,89474 0,81278 

F1 0,68574 0,90840 0,74301 0,77642 0,90476 0,83045 

CNN 
ROC-AUC 0,61651 0,97032 0,95336 0,81513 0,98373 0,98630 

F1 0,72276 0,97112 0,95400 0,84381 0,98394 0,98644 

Table 5: Baseline values 

5.1. Random Oversampling 
First, the evaluation is performed on the random oversampling model. The 
minority (fraud) instances, which comprise 6.631 instances by default, are 
oversampled into 11 steps (0-10), where the number of oversampled instances are, 
respectively, 9.750, 19.500, 39.000, 78.000, 156.250, 312.500, 625.000, 1.250.000, 
2.500.000, 5.000.000, and 5.083.465. The 10th step does not provide an exact 
number of minority instances. This is because the number of majority instances 
differ in the case of normalized and standardized data. The corresponding ratio 
of non-fraud versus fraud transactions varies from 521:1 to 1:1. Table 6 presents the 
results for random oversampling with no reduction. In appendix tables Table 13, 
Table 14 and Table 15, the results are presented for random oversampling with, 
respectively, T-link, ENN and CNN as reduction techniques. 
  



25 

  NRM STD 

  LC RF GB LC RF GB 

0 
(9.750) 

ROC-AUC 0,55373 0,89695 0,74555 0,7291 0,89537 0,6971 

F1 0,69143 0,90658 0,79695 0,78684 0,90528 0,76747 

1 
(19.500) 

ROC-AUC 0,5749 0,90137 0,74585 0,76446 0,89979 0,74679 

F1 0,7017 0,91022 0,79734 0,80934 0,90892 0,79794 

2 
(39.000) 

ROC-AUC 0,58944 0,90863 0,90507 0,7843 0,90548 0,91333 

F1 0,70893 0,91628 0,91328 0,82253 0,91364 0,92023 

3 
(78.000) 

ROC-AUC 0,63776 0,90769 0,9132 0,81696 0,89821 0,92777 

F1 0,73407 0,91548 0,9201 0,84518 0,90761 0,93261 

4 
(156.250) 

ROC-AUC 0,59729 0,90927 0,92279 0,84054 0,90643 0,94116 

F1 0,71288 0,91681 0,92827 0,86229 0,91443 0,94439 

5 
(312,500) 

ROC-AUC 0,65886 0,90643 0,93253 0,85423 0,90453 0,95438 

F1 0,74535 0,91443 0,93671 0,87248 0,91284 0,95631 

6 
(625.000) 

ROC-AUC 0,738 0,90579 0,94364 0,86858 0,90295 0,97043 

F1 0,79156 0,9139 0,94647 0,88334 0,91153 0,9712 

7 
(1.250.000) 

ROC-AUC 0,76506 0,90643 0,95362 0,90497 0,90295 0,98629 

F1 0,80442 0,91443 0,95547 0,91227 0,91153 0,98639 

8 
(2.500.000) 

ROC-AUC 0,84203 0,90232 0,96692 0,93364 0,90674 0,9915 

F1 0,8548 0,91101 0,96767 0,93618 0,91469 0,99148 

9 
(5.000.000) 

ROC-AUC 0,8384 0,90863 0,97124 0,94726 0,90706 0,99045 

F1 0,83328 0,91628 0,97159 0,94741 0,91496 0,99038 

10 
(1:1) 

ROC-AUC 0,85049 0,90295 0,97164 0,94747 0,90453 0,99056 

F1 0,84616 0,91153 0,972 0,94756 0,91285 0,99048 

Table 6: Results for random oversampling with no reduction. By default, there are 5.083.465 legal 
transactions versus 6.631 fraudulent ones. Only fraudulent transactions are oversampled. The number of 

oversampled transactions is provided between brackets. Best results are indicated in bold. 

  NRM STD 

  LC RF GB LC RF GB 

No reduction 

Ratio 1,00 32,53 1,00 1,00 1,02 2,03 

ROC-AUC 0,85049 0,90927 0,97164 0,94747 0,90706 0,99150 

F1 0,84616 0,91681 0,97200 0,94756 0,91496 0,99148 

T-Link 

Ratio 2,03 32,53 1,00 1,00 32,53 1,02 

ROC-AUC 0,87828 0,91148 0,97209 0,95143 0,90864 0,99068 

F1 0,88722 0,91867 0,97242 0,95131 0,91628 0,99060 

ENN 

Ratio 1,00 4,06 1,00 1,02 8,13 2,03 

ROC-AUC 0,87104 0,91306 0,97180 0,95092 0,91021 0,99106 

F1 0,86889 0,92001 0,97214 0,95087 0,91760 0,99104 

CNN 

Ratio 0,84 0,42 1,00 0,42 0,84 1,00 

ROC-AUC 0,84558 0,98188 0,99446 0,95130 0,99146 0,99331 

F1 0,85761 0,98216 0,99446 0,95105 0,99150 0,99328 

Table 7: Best results summarized from tables in Appendix A: Results random oversampling. 
Highest performance for each model is indicated in bold. Sampling ratio (number of non-fraud 

transaction versus one fraudulent transaction) is provided for each model in combination with the 
area under the curve and normalized F1 score. 
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When we look more closely at the results from Table 6, it can be seen that the 
ROC-AUC and F1 score increase when the data becomes more balanced. A 
definitive conclusion cannot be drawn from the four tables with oversampling 
results. However, it seems that the random forest classifier achieves slightly 
better results with normalized data, while the other two classifiers obtain better 
results with standardized data. The best results are combined in Table 7: Best 
results summarized from tables in Appendix A: Results random oversampling. 
Highest performance for each model is indicated in bold. Sampling ratio 
(number of non-fraud transaction versus one fraudulent transaction) is provided 
for each model in combination with the area under the curve and normalized F1 
score.. This table indicates that the best results are achieved with CNN as a 
reduction technique. Looking deeper into the results, it seems that oversampling 
always performs better than the baseline where no sampling technique is 
applied.  
 

5.2. Random Under-sampling 
Another strategy is random under-sampling. This is performed on the majority 
class while the minority instances are frozen. All the experiment results can be 
found in appendix tables Table 16, Table 17 and Table 18. The best results are 
summarized in Table 8. As the CNN reduction technique reduces the majority 
instances to approximately 16.000 samples, random under-sampling is only 
applied to the other models. In practice, it is not useful to reduce the majority 
class further. Evaluating the results seems to reveal that the usage of a reduction 
technique results in lower performance, or just a slight increase. From the ratios 
in Table 8, we can conclude that the classifiers work best when the majority and 
minority classes re-balanced. A ratio between 1 and 1.5 seems to work best in this 
case. The best result is obtained with no data-reduction technique in 
combination with the random forest classifier with normalized data. 
 

  NRM STD 

  LC RF GB LC RF GB 

No reduction 

Ratio 1,47 1,47 1,47 1,00 1,47 1,47 

ROC-AUC 0,83339 0,99385 0,99138 0,92616 0,99369 0,99069 

F1 0,83844 0,99383 0,99133 0,92686 0,99367 0,99064 

T-Link 

Ratio 1,47 1,00 2,94 1,00 1,00 1,47 

ROC-AUC 0,83174 0,99223 0,99047 0,92636 0,99273 0,99089 

F1 0,83698 0,99219 0,99047 0,92698 0,99269 0,99083 

ENN 

Ratio 1,47 1,00 1,47 1,00 1,00 1,47 

ROC-AUC 0,83106 0,99227 0,99026 0,92597 0,99252 0,99144 

F1 0,83590 0,99223 0,99020 0,92675 0,99248 0,99138 

Table 8: Best results summarized from tables in Appendix B: Results Random Under-sampling. 
Highest performance for each model is indicated in bold. Sampling ratio (number of non-fraud 

transaction versus one fraudulent transaction) is provided for each model in combination with the 
area under the curve and normalized F1 score. 

5.3. SMOTE 
Next to random over- and under-sampling, the SMOTE technique is applied to 
the data. In this case, the majority class is frozen and the minority class is 
oversampled by generating artificial fraud transactions. All the experiment 
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results can be found in appendix tables Table 19, Table 20, Table 21, and Table 
22. The best results are summarized in Table 9. After evaluating these results, 
there seems to be a similar result as in the case of random oversampling. CNN 
performs the best in almost every case, except for the gradient boosting 
algorithm in combination with normalized data, where ENN outperforms the 
others. Also, in this case, the performance of the classifiers is increased when the 
data becomes more balanced. 
 

  NRM STD 

  LC RF GB LC RF GB 

No reduction 

Ratio 2,03 2,03 2,03 1,02 2,03 1,02 

ROC-AUC 0,98470 0,94646 0,87245 0,99005 0,98858 0,94717 

F1 0,98492 0,94889 0,88331 0,99014 0,98860 0,94768 

T-Link 

Ratio 8,13 2,03 1,00 4,07 2,03 1,02 

ROC-AUC 0,98293 0,94703 0,90274 0,99012 0,98826 0,9484 

F1 0,98320 0,94941 0,90572 0,99021 0,98828 0,94883 

ENN 

Ratio 2,03 2,03 1,00 1,02 2,03 1,00 

ROC-AUC 0,98722 0,94744 0,94060 0,99160 0,98858 0,94749 

F1 0,98737 0,94979 0,90673 0,99166 0,98859 0,94795 

CNN 

Ratio 0,42 0,84 0,84 0,48 1,00 0,48 

ROC-AUC 0,99307 0,99354 0,85015 0,99452 0,99247 0,94976 

F1 0,99308 0,99355 0,86304 0,99451 0,99245 0,94974 

Table 9: Best results summarized from tables in Appendix C: Results SMOTE. Highest performance 
for each model is indicated in bold. Sampling ratio (number of non-fraud transaction versus one 
fraudulent transaction) is provided for each model in combination with the area under the curve 

and normalized F1 score. 

5.4. SMOTE + RUS 
Instead of using only oversampling or under-sampling, these are now combined. 
The SMOTE + RUS model combines oversampling of the minority class with 
random under-sampling of the majority class. First, the minority instances are 
oversampled into five steps of 9.750, 19.500, 39.000, 78.000, and 156.250 
transactions, respectively. Then, the majority class is under-sampled into six 
steps. The number of transactions in each step is, respectively, 5.000.000, 
2.500.000, 1.250.000, 625.000, 312.500, and 156.250. This strategy results in a 
completely balanced system in the latest step, where the minority and majority 
classes possess an equal number of instances. All the experiment results can be 
found in Appendix D: Results SMOTE + RUS. The best results are summarized 
in Table 10. In line with the results from previous experiments, the addition of a 
reduction technique does not add significant value. Only in the case of the 
random forest classifier does it perform slightly better. Although, SMOTE+RUS 
for RF+ENN with standardized data performs best out of all experiments, with a 
ROC-AUC value of 0,99627. Further observation of the ratios reveals that best 
results are always obtained with a ratio between one and two. 
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  NRM STD 

  LC RF GB LC RF GB 

No reduction 

Ratio 2,00 1,00 2,00 1,00 1,00 2,00 

ROC-AUC 0,86493 0,99259 0,98825 0,94639 0,99345 0,98915 

F1 0,87571 0,99262 0,98828 0,9469 0,99347 0,98917 

T-Link 

Ratio 1,00 2,00 1,00 1,00 1,00 2,00 

ROC-AUC 0,85493 0,99427 0,98744 0,94586 0,99388 0,98867 

F1 0,85198 0,99429 0,98741 0,94638 0,99389 0,98868 

ENN 

Ratio 1,00 1,00 2,00 1,00 1,00 2,00 

ROC-AUC 0,85372 0,99368 0,98768 0,9457 0,99627 0,9886 

F1 0,85067 0,99369 0,98771 0,94625 0,99627 0,98862 

Table 10: Best results summarized from tables in Appendix D: Results SMOTE + RUS. Highest 
performance for each model is indicated in bold. Sampling ratio (number of non-fraud transaction 
versus one fraudulent transaction) is provided for each model in combination with the area under 

the curve and normalized F1 score. 

 

5.5. ROS + RUS 
The ROS + RUS model combines random oversampling of the minority class 
with random under-sampling of the majority class. The experiment set-up is the 
same as within the case of SMOTE+RUS. First, the minority class is oversampled 
in five steps, and afterwards, the majority class is under-sampled in six steps until 
the dataset is fully balanced. Based on the results in Table 11, it is not possible to 
make any definitive conclusions regarding whether it is better to use 
oversampling, under-sampling, or a combination of both. Something of note is 
that the use of a reduction technique can result in a performance boost (RF-
classifier) or in a performance decrease (LC-classifier) 
 

  NRM STD 

  LC RF GB LC RF GB 

No reduction 

Ratio 8,01 1,00 2,00 1,00 1,00 2,00 

ROC-AUC 0,97714 0,84620 0,99139 0,97338 0,94187 0,99114 

F1 0,97762 0,84187 0,99138 0,97404 0,94223 0,99113 

T-Link 

Ratio 1,00 2,00 2,00 1,00 1,00 1,00 

ROC-AUC 0,84700 0,97899 0,99188 0,94733 0,97779 0,99093 

F1 0,85183 0,97939 0,99185 0,94742 0,97825 0,99091 

ENN 

Ratio 2,00 1,00 2,00 1,00 2,00 2,00 

ROC-AUC 0,83932 0,97644 0,99222 0,93993 0,97711 0,99161 

F1 0,85220 0,97694 0,99220 0,94038 0,97759 0,99160 

Table 11: Best results summarized from tables in Appendix E: Results ROS + RUS. Highest 
performance for each model is indicated in bold. Sampling ratio (number of non-fraud transaction 
versus one fraudulent transaction) is provided for each model in combination with the area under 

the curve and normalized F1 score. 

5.6. Deep Learning 
As an alternative to the use of preprocessing techniques in combination with a 
classifier, two types of neural networks are applied. The first method is a 
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traditional feed-forward network, while the second approach is the autoencoder 
network.  
 

Feed-forward Network 
The first deep learning network is a feed-forward network with two hidden layers 
containing, respectively, 64 and 32 units. In Network 1, the implemented 
network is summarized. After each dense layer, a dropout layer is implemented 
to prevent overfitting of the model. The first and second dropout layers possess 
respectively, dropout values of 0.2 and 0.1. After tuning the number of hidden 
layers, layer size, dropout values, and batch size, this model performed best with 
an ROC-AUC score of 0.54551. This is far below the results where sampling 
techniques are used, and sometimes even lower than the sampling baseline. 
 

_________________________________________________________________ 
Layer (type)                 Output Shape              Param #    
================================================================= 
input_4 (InputLayer)         (None, 11)                0          
_________________________________________________________________ 
dense_10 (Dense)             (None, 64)                768        
_________________________________________________________________ 
dropout_7 (Dropout)          (None, 64)                0          
_________________________________________________________________ 
dense_11 (Dense)             (None, 32)                2080       
_________________________________________________________________ 
dropout_8 (Dropout)          (None, 32)                0          
_________________________________________________________________ 
dense_12 (Dense)             (None, 1)                 33         
================================================================= 
Total params: 2,881 
Trainable params: 2,881 
Non-trainable params: 0 

Network 1: Summary of implemented feed-forward network. 

Autoencoder Network 
The second network is the autoencoder network. In Network 2, the implemented 
autoencoder network is summarized. To optimize the parameters in the 
autoencoder network, a small grid search is implemented to find the best 
parameters for the model. Due to the enormous computation time required by 
the deep learning models, only a small set of parameters is tested. In this case, 
the batch size and learning rate are optimized via the grid search. For the batch 
size, the following values are tested: 32, 64, 128, 256, 512, and 1024. For the 
learning rates, the tested parameters are as follows: 0.0005, 0.001, 0.005, 0.01, 
0.02, and 0.05. The best ROC-AUC scores on the test set are achieved with a 
batch size of 32 and a learning rate equal to 0.005. The achieved ROC-AUC score 
is 0.71982. Although this is still lower than the results from the sampling models, 
it already performs better than the feed-forward network. 
 

_________________________________________________________________ 
Layer (type)                 Output Shape              Param #    
================================================================= 
input_2 (InputLayer)         (None, 11)                0          
_________________________________________________________________ 
dense_4 (Dense)              (None, 8)                 96         
_________________________________________________________________ 
dense_5 (Dense)              (None, 4)                 36         
_________________________________________________________________ 
dense_6 (Dense)              (None, 8)                 40         
_________________________________________________________________ 
dense_7 (Dense)              (None, 11)                99         
================================================================= 
Total params: 271 
Trainable params: 271 
Non-trainable params: 0 

Network 2: Summary of autoencoder network. 

Although both deep learning models are outperformed by the sampling models, 
a number of possibilities remain for them to perform better. Implementing 
dropout layers and some sort of regularizers could prevent the model from 
overfitting. In addition, several parameters can be tuned further. Many 
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companies have also based their fraud detection algorithms on autoencoder or 
deep learning models. So, there should be a great deal potential, although this 
cannot be demonstrated by this results. 
 

 

Figure 14: Reconstruction error (mean squared error) for each data point in the test set. Blue points 
are legal transactions, while orange points are fraud ones. 

Diving deeper into the autoencoder results reveals an interesting detail. In 
Figure 14, the reconstruction error of the autoencoder model is illustrated for 
each data point in the test set. As the model is trained on the legal transactions, 
the assumption is that the error would be low for the legal transactions and 
higher for the fraud transactions. As visible in the figure, however, this is not the 
case. Although a part of the fraud transactions do indeed possess a higher error 
than the threshold value, most of them are below the threshold line. Lowering 
the threshold value makes no sense, as the legal transactions are then classified 
as fraud.  
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6. Discussion and Conclusion 

During this research, the primary goal was to review various methods that could 
improve the classification performance in the case of imbalanced data. Now, we 
can conclude that methods exist that can improve the classification 
performance, but also that neither of the discussed methods work under all 
conditions. The first conclusion that could be made following the experiments 
is that resampling always improves the classification performance. Although this 
sounds promising, it is not clear that a particular method works under all 
conditions. Instead, it depends on the imbalance of the data, scaling and 
reduction method, and the used classifier. So, a clear decision cannot be made 
regarding which methods should be used. In practice, several methods should 
be evaluated to achieve the best performance. After evaluating three distance-
based reduction techniques — T-Link, ENN, and CNN — it seems that only CNN 
adds significant value in performance by itself. The results achieved without 
reduction technique are almost always close to or better than the results 
obtained with some reduction. Although CNN adds some value by itself, when 
combined with an oversampling method, it does not perform better in any case. 
Regarding the rescaling method, standardizing performs better in 74,5% of the 
cases. An interesting observation was that the difference in classification 
performance is lower than 0,01 in all cases where normalization performed 
better. In 57,8% of the cases where standardization works better, the difference 
in performance is greater than 0,01. So, in this case, it can be concluded that 
standardization works better than normalization.  
 
An alternative to the use of preprocessing techniques in combination with a 
classifier is the use of deep learning. Although these techniques are promising, 
it was not possible to achieve better results compared to using the classic 
sampling approach. Unless results were not better than the baseline values 
obtained with the logistic classification, random forest, and gradient boosting 
classifiers, there remains a number of opportunities to achieve competitive 
results. As deep learning requires a great deal of computation power, it was not 
possible to train more complex models. So, when more time and/or more 
computation power is available, it is likely that the models will obtain better 
performance. Furthermore, more advanced strategies like combining multiple 
methods into ensembles and tuning several parameters to achieve better results 
were only performed on a simple level. Although the idea was to make sampling 
methods obsolete with neural networks, it would also be possible to combine 
both techniques. Generating more data with a method like SMOTE (or other 
data-augmentation techniques) could improve the model further. 
 
With all this research conducted, is it possible to determine that strategies exist 
that handle the imbalanced data problem. One works better than the other, but 
at least we can say that sampling is always worthwhile to use. However, although 
sampling works, it is not self-evident which sampling strategy works best. This 
makes it virtually impossible to conclude in advance that one technique will 
always work better than another.   
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Appendix A: Results Random Oversampling 

 
  NRM STD 

  LC RF GB LC RF GB 

0 
(9.750) 

ROC-AUC 0,55373 0,89695 0,74555 0,7291 0,89537 0,6971 

F1 0,69143 0,90658 0,79695 0,78684 0,90528 0,76747 

1 
(19.500) 

ROC-AUC 0,5749 0,90137 0,74585 0,76446 0,89979 0,74679 

F1 0,7017 0,91022 0,79734 0,80934 0,90892 0,79794 

2 
(39.000) 

ROC-AUC 0,58944 0,90863 0,90507 0,7843 0,90548 0,91333 

F1 0,70893 0,91628 0,91328 0,82253 0,91364 0,92023 

3 
(78.000) 

ROC-AUC 0,63776 0,90769 0,9132 0,81696 0,89821 0,92777 

F1 0,73407 0,91548 0,9201 0,84518 0,90761 0,93261 

4 
(156.250) 

ROC-AUC 0,59729 0,90927 0,92279 0,84054 0,90643 0,94116 

F1 0,71288 0,91681 0,92827 0,86229 0,91443 0,94439 

5 
(312,500) 

ROC-AUC 0,65886 0,90643 0,93253 0,85423 0,90453 0,95438 

F1 0,74535 0,91443 0,93671 0,87248 0,91284 0,95631 

6 
(625.000) 

ROC-AUC 0,738 0,90579 0,94364 0,86858 0,90295 0,97043 

F1 0,79156 0,9139 0,94647 0,88334 0,91153 0,9712 

7 
(1.250.000) 

ROC-AUC 0,76506 0,90643 0,95362 0,90497 0,90295 0,98629 

F1 0,80442 0,91443 0,95547 0,91227 0,91153 0,98639 

8 
(2.500.000) 

ROC-AUC 0,84203 0,90232 0,96692 0,93364 0,90674 0,9915 

F1 0,8548 0,91101 0,96767 0,93618 0,91469 0,99148 

9 
(5.000.000) 

ROC-AUC 0,8384 0,90863 0,97124 0,94726 0,90706 0,99045 

F1 0,83328 0,91628 0,97159 0,94741 0,91496 0,99038 

10 
(1:1) 

ROC-AUC 0,85049 0,90295 0,97164 0,94747 0,90453 0,99056 

F1 0,84616 0,91153 0,972 0,94756 0,91285 0,99048 

Table 12: Experiment results for random oversampling with no reduction. By default, there are 
5.083.465 legal transactions versus 6.631 fraudulent ones. Only fraudulent transactions are 

oversampled. The number of oversampled transactions is provided between brackets. Best results 
are indicated in bold.  
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  NRM STD 

  LC RF GB LC RF GB 

0 
(9.750) 

ROC-AUC 0,70408 0,97088 0,97895 0,84427 0,9819 0,9932 

F1 0,77129 0,97165 0,97934 0,86491 0,98215 0,99321 

1 
(19.500) 

ROC-AUC 0,84558 0,97459 0,9936 0,90574 0,99146 0,9929 

F1 0,85761 0,97516 0,99359 0,91274 0,9915 0,99288 

2 
(39.000) 

ROC-AUC 0,78304 0,98188 0,99111 0,9513 0,98635 0,99132 

F1 0,72292 0,98216 0,99106 0,95105 0,98647 0,99126 

10 
(1:1) 

ROC-AUC 0,81873 0,97754 0,99446 0,90082 0,98886 0,99331 

F1 0,84149 0,97798 0,99446 0,90873 0,98893 0,99328 

Table 13: Experiment results for random oversampling with CNN as a reduction technique. By 
default, there are 16.475 and 18.958 legal transactions (for the normalized and standardized data, 

respectively) versus 6.631 fraudulent ones. Only fraudulent transactions are oversampled. The 
number of oversampled transactions is provided between brackets. The best results are indicated in 

bold. 
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  NRM STD 

  LC RF GB LC RF GB 

0 
(9.750) 

ROC-AUC 0,55278 0,90422 0,74829 0,73226 0,90074 0,65835 

F1 0,69098 0,91259 0,79886 0,78879 0,9097 0,74366 

1 
(19.500) 

ROC-AUC 0,57237 0,90516 0,74868 0,75972 0,90516 0,74741 

F1 0,70046 0,91337 0,79914 0,80625 0,91337 0,79833 

2 
(39.000) 

ROC-AUC 0,59385 0,90706 0,90601 0,78618 0,90674 0,91363 

F1 0,71116 0,91496 0,91406 0,82379 0,91469 0,92049 

3 
(78.000) 

ROC-AUC 0,59985 0,91148 0,91605 0,79556 0,90705 0,92761 

F1 0,7142 0,91867 0,92252 0,83019 0,91495 0,93245 

4 
(156.250) 

ROC-AUC 0,59602 0,91085 0,92436 0,83275 0,90516 0,94116 

F1 0,71224 0,91814 0,92963 0,85655 0,91337 0,94439 

5 
(312,500) 

ROC-AUC 0,6968 0,90989 0,93509 0,8566 0,90547 0,95808 

F1 0,76708 0,91734 0,93896 0,87425 0,91363 0,9597 

6 
(625.000) 

ROC-AUC 0,69384 0,908 0,94386 0,88915 0,91021 0,9688 

F1 0,7645 0,91574 0,9467 0,89954 0,9176 0,96966 

7 
(1.250.000) 

ROC-AUC 0,7635 0,91306 0,95486 0,91191 0,9039 0,98753 

F1 0,80328 0,92001 0,9566 0,91796 0,91232 0,98761 

8 
(2.500.000) 

ROC-AUC 0,85573 0,90548 0,96671 0,93229 0,90294 0,99106 

F1 0,86675 0,91364 0,96745 0,93492 0,91153 0,99104 

9 
(5.000.000) 

ROC-AUC 0,85503 0,91148 0,97161 0,95092 0,90548 0,99052 

F1 0,85153 0,91868 0,97196 0,95087 0,91364 0,99044 

10 
(1:1) 

ROC-AUC 0,87104 0,908 0,9718 0,94708 0,90642 0,98988 

F1 0,86889 0,91575 0,97214 0,94716 0,91442 0,9898 

Table 14: Experiment results for random oversampling with ENN as a reduction technique. By 
default, there are 5.079.703 and 5.079.902 legal transactions (for the normalized and standardized 

data, respectively) versus 6.631 fraudulent ones. Only fraudulent transactions are oversampled. The 
number of oversampled transactions is provided between brackets. The best results are indicated in 

bold. 
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  NRM STD 

  LC RF GB LC RF GB 

0 
(9.750) 

ROC-AUC 0,55436 0,89822 0,74422 0,72784 0,89758 0,6971 

F1 0,69173 0,90762 0,79629 0,78605 0,90709 0,76747 

1 
(19.500) 

ROC-AUC 0,57269 0,90548 0,7449 0,75435 0,90232 0,74615 

F1 0,70062 0,91364 0,79674 0,80277 0,91101 0,79753 

2 
(39.000) 

ROC-AUC 0,55562 0,90421 0,90632 0,78272 0,90611 0,91459 

F1 0,69234 0,91258 0,91433 0,82146 0,91416 0,9213 

3 
(78.000) 

ROC-AUC 0,6447 0,9039 0,91604 0,816 0,90263 0,9265 

F1 0,73782 0,91232 0,92251 0,8445 0,91126 0,93151 

4 
(156.250) 

ROC-AUC 0,59571 0,91148 0,92404 0,84148 0,90864 0,94089 

F1 0,71208 0,91867 0,92935 0,86298 0,91628 0,94416 

5 
(312,500) 

ROC-AUC 0,65886 0,90611 0,93402 0,85537 0,90643 0,95599 

F1 0,74535 0,91416 0,938 0,87333 0,91443 0,95779 

6 
(625.000) 

ROC-AUC 0,74505 0,91085 0,94321 0,88863 0,90326 0,97012 

F1 0,79606 0,91814 0,94611 0,89914 0,91179 0,9709 

7 
(1.250.000) 

ROC-AUC 0,74962 0,90958 0,95452 0,91135 0,90231 0,98588 

F1 0,79315 0,91708 0,95629 0,91749 0,911 0,986 

8 
(2.500.000) 

ROC-AUC 0,87828 0,90263 0,96629 0,93495 0,90516 0,99041 

F1 0,88722 0,91127 0,96705 0,93725 0,91337 0,99039 

9 
(5.000.000) 

ROC-AUC 0,85801 0,90864 0,97089 0,94548 0,90547 0,99068 

F1 0,85473 0,91628 0,97127 0,94567 0,91363 0,9906 

10 
(1:1) 

ROC-AUC 0,83291 0,908 0,97209 0,95143 0,90579 0,99045 

F1 0,82663 0,91575 0,97242 0,95131 0,9139 0,99037 

Table 15: Experiment results for random oversampling with T-Link as a reduction technique. By 
default, there are 5.082.736 and 5.082.814 legal transactions (for the normalized and standardized 

data, respectively) versus 6.631 fraudulent ones. Only fraudulent transactions are oversampled. The 
number of oversampled transactions is provided between brackets. The best results are indicated in 

bold. 
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Appendix B: Results Random Under-sampling 

 
  NRM STD 

  LC RF GB LC RF GB 

0 
(5.000.000) 

ROC-AUC 0,52023 0,896 0,62456 0,71237 0,89411 0,79421 

F1 0,67578 0,9058 0,72681 0,77661 0,90425 0,82932 

1 
(2.500.000) 

ROC-AUC 0,54551 0,90832 0,81907 0,73415 0,90358 0,82538 

F1 0,68753 0,91601 0,84675 0,78997 0,91206 0,8513 

2 
(1.250.000) 

ROC-AUC 0,55594 0,91872 0,88013 0,75434 0,91809 0,88743 

F1 0,69249 0,92482 0,89295 0,80277 0,92428 0,89881 

3 
(625.000) 

ROC-AUC 0,56194 0,92688 0,92371 0,77198 0,93574 0,92276 

F1 0,69538 0,93184 0,92911 0,81427 0,9396 0,92829 

4 
(312.500) 

ROC-AUC 0,57963 0,94666 0,934 0,79553 0,94728 0,93338 

F1 0,70404 0,94934 0,93806 0,83016 0,9499 0,93751 

5 
(156.250) 

ROC-AUC 0,59744 0,9597 0,94952 0,81204 0,95936 0,9485 

F1 0,71277 0,96123 0,9519 0,84164 0,96091 0,95096 

6 
(78.000) 

ROC-AUC 0,64713 0,97467 0,96383 0,84048 0,97174 0,96603 

F1 0,73838 0,97525 0,96502 0,86214 0,97246 0,96708 

7 
(39.000) 

ROC-AUC 0,71241 0,97732 0,98234 0,86714 0,97977 0,98131 

F1 0,77297 0,97774 0,98257 0,88217 0,9801 0,98157 

8 
(19.500) 

ROC-AUC 0,77371 0,99057 0,99088 0,8965 0,98961 0,9897 

F1 0,80416 0,99061 0,99088 0,90498 0,98966 0,98972 

9 
(9.750) 

ROC-AUC 0,83339 0,99385 0,99138 0,91972 0,99369 0,99069 

F1 0,83844 0,99383 0,99133 0,92298 0,99367 0,99064 

10 
(1:1) 

ROC-AUC 0,80312 0,99193 0,9903 0,92616 0,99159 0,99029 

F1 0,7909 0,9919 0,99022 0,92686 0,99156 0,99021 

Table 16: Experiment results for random under-sampling with no reduction. By default, there are 
5.083.465 legal transactions versus 6.631 fraudulent ones. Only non-fraud transactions are under-

sampled. The number of under-sampled transactions is provided between brackets. The best results 
are indicated in bold. 
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  NRM STD 

  LC RF GB LC RF GB 

0 
(5.000.000) 

ROC-AUC 0,53887 0,90233 0,64949 0,71521 0,89569 0,74315 

F1 0,6844 0,91102 0,73863 0,77833 0,90554 0,78185 

1 
(2.500.000) 

ROC-AUC 0,54488 0,90769 0,61091 0,73131 0,90452 0,79791 

F1 0,68723 0,91548 0,71989 0,7882 0,91284 0,83184 

2 
(1.250.000) 

ROC-AUC 0,55436 0,91556 0,90859 0,74771 0,92094 0,88901 

F1 0,69173 0,92212 0,91623 0,79852 0,92672 0,90009 

3 
(625.000) 

ROC-AUC 0,56226 0,93919 0,92117 0,77513 0,9332 0,92212 

F1 0,69553 0,94266 0,92691 0,81636 0,93737 0,92773 

4 
(312.500) 

ROC-AUC 0,57964 0,94948 0,93462 0,79742 0,95141 0,934 

F1 0,70404 0,95188 0,9386 0,83146 0,95364 0,93806 

5 
(156.250) 

ROC-AUC 0,59683 0,9682 0,94828 0,82022 0,96125 0,95265 

F1 0,71246 0,96915 0,95077 0,84746 0,96266 0,95474 

6 
(78.000) 

ROC-AUC 0,63038 0,98006 0,9658 0,84016 0,97602 0,96484 

F1 0,72932 0,98042 0,96687 0,86191 0,97654 0,96597 

7 
(39.000) 

ROC-AUC 0,71327 0,98169 0,97802 0,86553 0,98315 0,98085 

F1 0,77358 0,98195 0,97839 0,88091 0,98338 0,98113 

8 
(19.500) 

ROC-AUC 0,77989 0,98904 0,98933 0,89517 0,98996 0,989 

F1 0,80918 0,9891 0,98935 0,90387 0,99 0,98903 

9 
(9.750) 

ROC-AUC 0,83106 0,98892 0,99026 0,91884 0,99251 0,99144 

F1 0,8359 0,98892 0,9902 0,92221 0,99251 0,99138 

10 
(1:1) 

ROC-AUC 0,80078 0,99227 0,98896 0,92597 0,99252 0,98997 

F1 0,78817 0,99223 0,98886 0,92675 0,99248 0,98988 

Table 17: Experiment results for random under-sampling with ENN as a reduction technique. By 
default, there are 5.079.703 and 5.079.902 legal transactions (for the normalized and standardized 
data, respectively) versus 6.631 fraudulent ones. Only non-fraud transactions are under-sampled. 

The number of under-sampled transactions is provided between brackets. The best results are 
indicated in bold. 
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  NRM STD 

  LC RF GB LC RF GB 

0 
(5.000.000) 

ROC-AUC 0,51928 0,8938 0,65929 0,71047 0,89601 0,63263 

F1 0,67535 0,90399 0,74406 0,77547 0,9058 0,71867 

1 
(2.500.000) 

ROC-AUC 0,54267 0,90484 0,76033 0,71488 0,90137 0,60902 

F1 0,68618 0,91311 0,80663 0,77813 0,91022 0,71891 

2 
(1.250.000) 

ROC-AUC 0,55467 0,92061 0,90544 0,75371 0,91808 0,8909 

F1 0,69188 0,92644 0,9136 0,80236 0,92427 0,90162 

3 
(625.000) 

ROC-AUC 0,55562 0,93255 0,92054 0,77544 0,93162 0,92307 

F1 0,69234 0,9368 0,92637 0,81657 0,93598 0,92855 

4 
(312.500) 

ROC-AUC 0,56098 0,94724 0,93115 0,79615 0,95106 0,93146 

F1 0,69491 0,94986 0,93555 0,83058 0,95332 0,93583 

5 
(156.250) 

ROC-AUC 0,60916 0,96695 0,94887 0,82396 0,96155 0,94885 

F1 0,71878 0,96798 0,95131 0,85015 0,96293 0,95129 

6 
(78.000) 

ROC-AUC 0,64705 0,9748 0,96388 0,84418 0,97275 0,96502 

F1 0,73831 0,97538 0,96507 0,86489 0,97342 0,96612 

7 
(39.000) 

ROC-AUC 0,71327 0,98022 0,98146 0,86826 0,97847 0,9818 

F1 0,77335 0,98054 0,98171 0,88302 0,97886 0,98205 

8 
(19.500) 

ROC-AUC 0,7769 0,99012 0,99047 0,89675 0,99015 0,98824 

F1 0,80671 0,99016 0,99047 0,90518 0,99019 0,98827 

9 
(9.750) 

ROC-AUC 0,83174 0,98904 0,99045 0,9206 0,99236 0,99089 

F1 0,83698 0,98906 0,99039 0,92375 0,99234 0,99083 

10 
(1:1) 

ROC-AUC 0,81103 0,99223 0,98913 0,92636 0,99273 0,98941 

F1 0,80124 0,99219 0,98903 0,92698 0,99269 0,98931 

Table 18: Experiment results for random under-sampling with T-Link as a reduction technique. By 
default, there are 5.082.736 and 5.082.814 legal transactions (for the normalized and standardized 
data, respectively) versus 6.631 fraudulent ones. Only non-fraud transactions are under-sampled. 

The number of under-sampled transactions is provided between brackets. The best results are 
indicated in bold. 
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Appendix C: Results SMOTE 

 
  NRM STD 

  LC RF GB LC RF GB 

0 
(9.750) 

ROC-AUC 0,9039 0,78499 0,54361 0,90453 0,6317 0,73164 

F1 0,91233 0,82301 0,68663 0,91285 0,7308 0,78841 

1 
(19.500) 

ROC-AUC 0,92 0,86329 0,59386 0,91779 0,84593 0,76414 

F1 0,92592 0,8797 0,71116 0,92403 0,86647 0,80913 

2 
(39.000) 

ROC-AUC 0,93514 0,90252 0,61724 0,9364 0,91774 0,77957 

F1 0,93909 0,91116 0,72318 0,9402 0,92398 0,81934 

3 
(78.000) 

ROC-AUC 0,9572 0,91506 0,61092 0,95911 0,92524 0,80253 

F1 0,95895 0,92168 0,71989 0,96071 0,93041 0,83502 

4 
(156.250) 

ROC-AUC 0,96442 0,92185 0,64876 0,96819 0,93862 0,8294 

F1 0,96563 0,92746 0,74002 0,96916 0,94213 0,85412 

5 
(312,500) 

ROC-AUC 0,97573 0,93566 0,70038 0,9776 0,95276 0,86551 

F1 0,97629 0,93943 0,76924 0,97808 0,95483 0,88109 

6 
(625.000) 

ROC-AUC 0,97787 0,93401 0,77324 0,98513 0,97064 0,89624 

F1 0,97833 0,93796 0,81454 0,98533 0,9714 0,90538 

7 
(1.250.000) 

ROC-AUC 0,98226 0,9425 0,79155 0,98886 0,98357 0,91538 

F1 0,98255 0,94534 0,82405 0,98897 0,98375 0,92094 

8 
(2.500.000) 

ROC-AUC 0,9847 0,94646 0,87245 0,9866 0,98858 0,93087 

F1 0,98492 0,94889 0,88331 0,98676 0,9886 0,93382 

9 
(5.000.000) 

ROC-AUC 0,98055 0,94292 0,86898 0,99005 0,98749 0,94717 

F1 0,9809 0,94519 0,8677 0,99014 0,98745 0,94768 

10 
(1:1) 

ROC-AUC 0,98274 0,93971 0,83744 0,98943 0,9868 0,94661 

F1 0,98301 0,94211 0,83211 0,98953 0,98676 0,94717 

Table 19: Experiment results for SMOTE with no reduction. By default, there are 5.083.465 legal 
transactions versus 6.631 fraudulent ones. Only fraudulent transactions are oversampled. The 

number of oversampled transactions is provided between brackets. The best results are indicated in 
bold. 
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  NRM STD 

  LC RF GB LC RF GB 

0 
(9.750) 

ROC-AUC 0,97446 0,97744 0,70335 0,99239 0,99206 0,84583 

F1 0,97504 0,9779 0,7707 0,99241 0,99208 0,86607 

1 
(19.500) 

ROC-AUC 0,99101 0,99354 0,85015 0,99245 0,99224 0,90679 

F1 0,99106 0,99355 0,86304 0,99246 0,99222 0,91369 

2 
(39.000) 

ROC-AUC 0,99307 0,992 0,78309 0,99452 0,99067 0,94976 

F1 0,99308 0,99196 0,72301 0,99451 0,99061 0,94974 

10 
(1:1) 

ROC-AUC 0,98249 0,99345 0,82223 0,99264 0,99247 0,90542 

F1 0,98273 0,99346 0,84494 0,99265 0,99245 0,91257 

Table 20: Experiment results for SMOTE with CNN as a reduction technique. By default, there are 
16.475 and 18.958 legal transactions (for the normalized and standardized data, respectively) versus 
6.631 fraudulent ones. Only fraudulent transactions are oversampled. The number of oversampled 

transactions is provided between brackets. The best results are indicated in bold. 
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  NRM STD 

  LC RF GB LC RF GB 

0 
(9.750) 

ROC-AUC 0,90137 0,78076 0,55531 0,90643 0,69971 0,72626 

F1 0,91022 0,82012 0,69219 0,91443 0,76905 0,78508 

1 
(19.500) 

ROC-AUC 0,92221 0,87791 0,59481 0,92348 0,84151 0,76320 

F1 0,92782 0,89117 0,71164 0,92892 0,86316 0,80851 

2 
(39.000) 

ROC-AUC 0,93514 0,90064 0,61249 0,94209 0,91489 0,79185 

F1 0,93908 0,9096 0,72071 0,94526 0,92155 0,82766 

3 
(78.000) 

ROC-AUC 0,9509 0,91599 0,66491 0,95499 0,92649 0,8003 

F1 0,95318 0,92247 0,74898 0,95692 0,93150 0,83346 

4 
(156.250) 

ROC-AUC 0,96946 0,92184 0,63772 0,97231 0,93792 0,83805 

F1 0,97035 0,92745 0,73403 0,97304 0,94150 0,86044 

5 
(312,500) 

ROC-AUC 0,97256 0,93563 0,70606 0,97538 0,95275 0,86593 

F1 0,97328 0,93939 0,77261 0,97596 0,95481 0,88144 

6 
(625.000) 

ROC-AUC 0,98070 0,93401 0,73644 0,98353 0,97224 0,89527 

F1 0,98106 0,93796 0,79059 0,98379 0,97291 0,90452 

7 
(1.250.000) 

ROC-AUC 0,98600 0,94374 0,80507 0,98191 0,9829 0,91588 

F1 0,98618 0,94645 0,83435 0,98221 0,98309 0,92134 

8 
(2.500.000) 

ROC-AUC 0,98722 0,94744 0,85460 0,99005 0,98858 0,93738 

F1 0,98737 0,94979 0,86649 0,99014 0,98859 0,9396 

9 
(5.000.000) 

ROC-AUC 0,97878 0,94263 0,89995 0,99160 0,98732 0,94709 

F1 0,97921 0,94494 0,90294 0,99166 0,98728 0,94760 

10 
(1:1) 

ROC-AUC 0,98244 0,94268 0,90406 0,99097 0,98795 0,94749 

F1 0,98273 0,94499 0,90673 0,99104 0,98791 0,94795 

Table 21: Experiment results for SMOTE with ENN as a reduction technique. By default, there are 
5.079.703 and 5.079.902 legal transactions (for the normalized and standardized data, respectively) 

versus 6.631 fraudulent ones. Only fraudulent transactions are oversampled. The number of 
oversampled transactions is provided between brackets. The best results are indicated in bold. 
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  NRM STD 

  LC RF GB LC RF GB 

0 
(9.750) 

ROC-AUC 0,90390 0,78626 0,55499 0,90233 0,63076 0,73195 

F1 0,91233 0,82387 0,69204 0,91101 0,73029 0,78860 

1 
(19.500) 

ROC-AUC 0,91873 0,85818 0,57237 0,91842 0,84594 0,76509 

F1 0,92484 0,87574 0,70046 0,92457 0,86647 0,80975 

2 
(39.000) 

ROC-AUC 0,93577 0,90128 0,62577 0,94241 0,91552 0,79628 

F1 0,93964 0,91013 0,72767 0,94554 0,92209 0,83071 

3 
(78.000) 

ROC-AUC 0,94964 0,91505 0,59259 0,95753 0,92712 0,81475 

F1 0,95205 0,92167 0,71052 0,95925 0,93205 0,84361 

4 
(156.250) 

ROC-AUC 0,97075 0,92120 0,64214 0,96947 0,93764 0,83027 

F1 0,97157 0,92690 0,73642 0,97036 0,94126 0,85473 

5 
(312,500) 

ROC-AUC 0,97574 0,93535 0,70607 0,97603 0,95215 0,86581 

F1 0,97631 0,93914 0,77262 0,97658 0,95427 0,88132 

6 
(625.000) 

ROC-AUC 0,98293 0,93339 0,77324 0,98451 0,97222 0,89534 

F1 0,98320 0,93741 0,81453 0,98474 0,97289 0,90460 

7 
(1.250.000) 

ROC-AUC 0,98255 0,94348 0,80200 0,99012 0,98191 0,91327 

F1 0,98284 0,94622 0,83211 0,99021 0,98213 0,91919 

8 
(2.500.000) 

ROC-AUC 0,98281 0,94703 0,83649 0,98690 0,98826 0,93651 

F1 0,98309 0,94941 0,85050 0,98706 0,98828 0,93881 

9 
(5.000.000) 

ROC-AUC 0,98276 0,94291 0,87250 0,98941 0,98717 0,94840 

F1 0,98304 0,94519 0,87203 0,98951 0,98712 0,94883 

10 
(1:1) 

ROC-AUC 0,98087 0,94043 0,90274 0,98938 0,98738 0,94799 

F1 0,98121 0,94288 0,90572 0,98948 0,98734 0,94840 

Table 22: Experiment results for SMOTE with T-Link as a reduction technique. By default, there are 
5.082.736 and 5.082.814 legal transactions (for the normalized and standardized data, respectively) 

versus 6.631 fraudulent ones. Only fraudulent transactions are oversampled. The number of 
oversampled transactions is provided between brackets. The best results are indicated in bold. 
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Appendix D: Results SMOTE + RUS 

 
  NRM STD 

  LC RF GB LC RF GB 

0 
(5.000.000) 

ROC-AUC 0,90580 0,53413 0,81031 0,90390 0,73289 0,63170 

F1 0,91391 0,68219 0,84054 0,91232 0,78919 0,73080 

1 
(2.500.000) 

ROC-AUC 0,91842 0,55689 0,75312 0,91526 0,75404 0,84842 

F1 0,92457 0,69295 0,80199 0,92187 0,80257 0,86833 

2 
(1.250.000) 

ROC-AUC 0,93101 0,57016 0,91234 0,93133 0,77137 0,91680 

F1 0,93545 0,69938 0,91939 0,93574 0,81387 0,92318 

3 
(625.000) 

ROC-AUC 0,94104 0,56573 0,92930 0,94482 0,79116 0,93028 

F1 0,94430 0,69722 0,93394 0,94769 0,82717 0,93480 

4 
(312.500) 

ROC-AUC 0,96013 0,58560 0,94141 0,95697 0,80741 0,93856 

F1 0,96163 0,70699 0,94461 0,95872 0,83840 0,94206 

4 
(156.250) 

ROC-AUC 0,96616 0,65602 0,95496 0,96935 0,84066 0,95893 

F1 0,96722 0,74377 0,95684 0,97022 0,86232 0,96048 

Table 23: Results for SMOTE + RUS with no reduction. By default, there are 5.083.465 legal 
transactions versus 6.631 fraudulent ones. The fraudulent transactions are oversampled to 9.750 
transactions. Then, non-fraud transactions are under-sampled. The number of under-sampled 

transactions is provided between brackets. The best results are indicated in bold. 

 
  NRM STD 

  LC RF GB LC RF GB 

0 
(5.000.000) 

ROC-AUC 0,92822 0,56668 0,84742 0,92317 0,76541 0,75904 

F1 0,93303 0,69768 0,86757 0,92865 0,80996 0,80579 

1 
(2.500.000) 

ROC-AUC 0,92977 0,59227 0,90570 0,93640 0,78146 0,91568 

F1 0,93437 0,71036 0,91381 0,94020 0,82061 0,92216 

2 
(1.250.000) 

ROC-AUC 0,94328 0,60555 0,92302 0,94770 0,80657 0,92926 

F1 0,94631 0,71712 0,92850 0,95029 0,83783 0,93390 

3 
(625.000) 

ROC-AUC 0,95673 0,58970 0,93950 0,96335 0,82121 0,93956 

F1 0,95850 0,70904 0,94290 0,96462 0,84819 0,94296 

4 
(312.500) 

ROC-AUC 0,96819 0,68104 0,95086 0,97258 0,84186 0,95272 

F1 0,96914 0,75792 0,95309 0,97328 0,86320 0,95478 

4 
(156.250) 

ROC-AUC 0,97851 0,70026 0,96692 0,97723 0,87268 0,97235 

F1 0,97892 0,76832 0,96788 0,97769 0,88656 0,97300 

Table 24: Results for SMOTE + RUS with no reduction. By default, there are 5.083.465 legal 
transactions versus 6.631 fraudulent ones. The fraudulent transactions are oversampled to 19.500 

transactions. Then, non-fraud transactions are under-sampled. The number of under-sampled 
transactions is provided between brackets. The best results are indicated in bold. 
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  NRM STD 

  LC RF GB LC RF GB 

0 
(5.000.000) 

ROC-AUC 0,93766 0,58312 0,89969 0,94335 0,78744 0,91141 

F1 0,94131 0,70577 0,90882 0,94638 0,82465 0,91861 

1 
(2.500.000) 

ROC-AUC 0,95277 0,64376 0,91569 0,95592 0,82045 0,92838 

F1 0,95489 0,73732 0,92221 0,95777 0,84769 0,93314 

2 
(1.250.000) 

ROC-AUC 0,96276 0,64497 0,93451 0,96116 0,83904 0,93672 

F1 0,96408 0,73796 0,93849 0,96259 0,86118 0,94044 

3 
(625.000) 

ROC-AUC 0,97390 0,64675 0,95152 0,97169 0,83754 0,95276 

F1 0,97454 0,73863 0,95369 0,97245 0,86001 0,95482 

4 
(312.500) 

ROC-AUC 0,98028 0,74227 0,96635 0,97898 0,88298 0,97285 

F1 0,98063 0,79431 0,96736 0,97938 0,89469 0,97349 

4 
(156.250) 

ROC-AUC 0,98600 0,76967 0,98260 0,98755 0,89544 0,98583 

F1 0,98616 0,80757 0,98280 0,98767 0,90448 0,98594 

Table 25: Results for SMOTE + RUS with no reduction. By default, there are 5.083.465 legal 
transactions versus 6.631 fraudulent ones. The fraudulent transactions are oversampled to 39.000 

transactions. Then, non-fraud transactions are under-sampled. The number of under-sampled 
transactions is provided between brackets. The best results are indicated in bold. 

  NRM STD 

  LC RF GB LC RF GB 

0 
(5.000.000) 

ROC-AUC 0,95722 0,61218 0,91788 0,96289 0,82009 0,92807 

F1 0,95896 0,72055 0,92408 0,96421 0,84742 0,93287 

1 
(2.500.000) 

ROC-AUC 0,96659 0,64403 0,93032 0,96405 0,82900 0,93957 

F1 0,96766 0,73744 0,93480 0,96528 0,85381 0,94298 

2 
(1.250.000) 

ROC-AUC 0,97677 0,65310 0,94105 0,97841 0,85388 0,95338 

F1 0,97728 0,74213 0,94424 0,97885 0,87220 0,95539 

3 
(625.000) 

ROC-AUC 0,98385 0,70619 0,96273 0,97875 0,88951 0,97217 

F1 0,98409 0,77184 0,96396 0,97917 0,89990 0,97284 

4 
(312.500) 

ROC-AUC 0,99007 0,75182 0,98167 0,98694 0,90758 0,98255 

F1 0,99014 0,79437 0,98190 0,98709 0,91438 0,98275 

4 
(156.250) 

ROC-AUC 0,99169 0,85143 0,98825 0,99157 0,92924 0,98915 

F1 0,99174 0,86351 0,98828 0,99161 0,93240 0,98917 

Table 26: Results for SMOTE + RUS with no reduction. By default, there are 5.083.465 legal 
transactions versus 6.631 fraudulent ones. The fraudulent transactions are oversampled to 78.000 

transactions. Then, non-fraud transactions are under-sampled. The number of under-sampled 
transactions is provided between brackets. The best results are indicated in bold. 
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  NRM STD 

  LC RF GB LC RF GB 

0 
(5.000.000) 

ROC-AUC 0,96725 0,64308 0,92246 0,96913 0,83688 0,93861 

F1 0,96828 0,73693 0,92798 0,97005 0,85959 0,94211 

1 
(2.500.000) 

ROC-AUC 0,97311 0,70255 0,93556 0,97407 0,86762 0,95243 

F1 0,97380 0,77051 0,93936 0,97471 0,88271 0,95453 

2 
(1.250.000) 

ROC-AUC 0,98399 0,70657 0,95430 0,98366 0,89147 0,97096 

F1 0,98423 0,77209 0,95617 0,98390 0,90146 0,97170 

3 
(625.000) 

ROC-AUC 0,99092 0,77097 0,97349 0,98932 0,91107 0,98244 

F1 0,99099 0,80856 0,97403 0,98941 0,91730 0,98264 

4 
(312.500) 

ROC-AUC 0,99258 0,86493 0,98612 0,99221 0,93162 0,98882 

F1 0,99262 0,87571 0,98618 0,99225 0,93447 0,98883 

4 
(156.250) 

ROC-AUC 0,99259 0,83423 0,98694 0,99345 0,94639 0,98803 

F1 0,99262 0,82879 0,98692 0,99347 0,94690 0,98798 

Table 27: Results for SMOTE + RUS with no reduction. By default, there are 5.083.465 legal 
transactions versus 6.631 fraudulent ones. The fraudulent transactions are oversampled to 156.250 

transactions. Then, non-fraud transactions are under-sampled. The number of under-sampled 
transactions is provided between brackets. The best results are indicated in bold. 
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  NRM STD 

  LC RF GB LC RF GB 

0 
(5.000.000) 

ROC-AUC 0,90643 0,54614 0,76752 0,90137 0,72816 0,63139 

F1 0,91443 0,68782 0,81132 0,91023 0,78625 0,73063 

1 
(2.500.000) 

ROC-AUC 0,91810 0,55689 0,75471 0,91368 0,75372 0,84810 

F1 0,92430 0,69295 0,80301 0,92053 0,80237 0,86809 

2 
(1.250.000) 

ROC-AUC 0,93260 0,56984 0,91675 0,93324 0,77167 0,91584 

F1 0,93684 0,69922 0,92313 0,93740 0,81407 0,92236 

3 
(625.000) 

ROC-AUC 0,94230 0,58533 0,92835 0,94010 0,78895 0,92901 

F1 0,94543 0,70687 0,93312 0,94347 0,82566 0,93369 

4 
(312.500) 

ROC-AUC 0,96676 0,59160 0,94174 0,95635 0,82028 0,94177 

F1 0,96780 0,71000 0,94491 0,95815 0,84753 0,94493 

4 
(156.250) 

ROC-AUC 0,97217 0,65637 0,95933 0,96994 0,83783 0,95717 

F1 0,97289 0,74398 0,96086 0,97078 0,86023 0,95886 

Table 28: Results for SMOTE + RUS with ENN as a reduction technique. By default, there are 
5.079.703 and 5.079.902 legal transactions (for the normalized and standardized data respectively) 
versus 6.631 fraudulent ones. The fraudulent transactions are oversampled to 9.750 transactions. 
Then, non-fraud transactions are under-sampled. The number of under-sampled transactions is 

provided between brackets. The best results are indicated in bold. 

  NRM STD 

  LC RF GB LC RF GB 

0 
(5.000.000) 

ROC-AUC 0,92537 0,59418 0,88773 0,92095 0,76572 0,69905 

F1 0,93055 0,71132 0,89905 0,92673 0,81017 0,76864 

1 
(2.500.000) 

ROC-AUC 0,93483 0,55847 0,90633 0,93830 0,77357 0,91519 

F1 0,93881 0,69371 0,91433 0,94187 0,81534 0,92180 

2 
(1.250.000) 

ROC-AUC 0,94707 0,60048 0,92363 0,94834 0,80782 0,92678 

F1 0,94972 0,71452 0,92902 0,95086 0,83871 0,93175 

3 
(625.000) 

ROC-AUC 0,95832 0,60647 0,94174 0,96020 0,83154 0,93635 

F1 0,95996 0,71759 0,94491 0,96170 0,85567 0,94010 

4 
(312.500) 

ROC-AUC 0,97700 0,68138 0,95057 0,97569 0,84365 0,95341 

F1 0,97749 0,75812 0,95283 0,97623 0,86451 0,95539 

4 
(156.250) 

ROC-AUC 0,98382 0,72673 0,97178 0,98039 0,87609 0,97519 

F1 0,98405 0,78456 0,97247 0,98073 0,88925 0,97571 

Table 29: Results for SMOTE + RUS with ENN as a reduction technique. By default, there are 
5.079.703 and 5.079.902 legal transactions (for the normalized and standardized data respectively) 
versus 6.631 fraudulent ones. The fraudulent transactions are oversampled to 19.500 transactions. 
Then, non-fraud transactions are under-sampled. The number of under-sampled transactions is 

provided between brackets. The best results are indicated in bold. 
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  NRM STD 

  LC RF GB LC RF GB 

0 
(5.000.000) 

ROC-AUC 0,94019 0,60713 0,90189 0,93893 0,79343 0,91551 

F1 0,94355 0,71793 0,91063 0,94244 0,82875 0,92208 

1 
(2.500.000) 

ROC-AUC 0,95435 0,63933 0,91917 0,94992 0,82328 0,92963 

F1 0,95633 0,73491 0,92518 0,95230 0,84973 0,93423 

2 
(1.250.000) 

ROC-AUC 0,96025 0,64371 0,93321 0,96466 0,83808 0,93860 

F1 0,96175 0,73727 0,93734 0,96585 0,86047 0,94211 

3 
(625.000) 

ROC-AUC 0,97329 0,62751 0,94964 0,97707 0,84949 0,95244 

F1 0,97396 0,72816 0,95199 0,97756 0,86887 0,95453 

4 
(312.500) 

ROC-AUC 0,98910 0,74263 0,96814 0,98489 0,88478 0,97471 

F1 0,98920 0,79455 0,96904 0,98509 0,89612 0,97526 

4 
(156.250) 

ROC-AUC 0,99047 0,77039 0,98252 0,98782 0,90138 0,98476 

F1 0,99054 0,80819 0,98272 0,98793 0,90935 0,98491 

Table 30: Results for SMOTE + RUS with ENN as a reduction technique. By default, there are 
5.079.703 and 5.079.902 legal transactions (for the normalized and standardized data respectively) 
versus 6.631 fraudulent ones. The fraudulent transactions are oversampled to 39.000 transactions. 

Then, non-fraud transactions are under-sampled. The number of under-sampled transactions is 
provided between brackets. The best results are indicated in bold. 

 
  NRM STD 

  LC RF GB LC RF GB 

0 
(5.000.000) 

ROC-AUC 0,95090 0,66808 0,91851 0,96037 0,82573 0,92711 

F1 0,95318 0,75077 0,92461 0,96188 0,85148 0,93204 

1 
(2.500.000) 

ROC-AUC 0,96911 0,64119 0,92872 0,96596 0,84029 0,94144 

F1 0,97002 0,73590 0,93340 0,96706 0,86211 0,94464 

2 
(1.250.000) 

ROC-AUC 0,97684 0,67217 0,94388 0,97653 0,85792 0,95241 

F1 0,97734 0,75285 0,94678 0,97705 0,87528 0,95450 

3 
(625.000) 

ROC-AUC 0,98638 0,70589 0,96310 0,98540 0,88821 0,97348 

F1 0,98655 0,77166 0,96431 0,98559 0,89884 0,97409 

4 
(312.500) 

ROC-AUC 0,99099 0,77273 0,98167 0,98841 0,90850 0,98442 

F1 0,99106 0,80991 0,98190 0,98851 0,91516 0,98457 

4 
(156.250) 

ROC-AUC 0,99298 0,84206 0,98768 0,99318 0,92865 0,98850 

F1 0,99300 0,85516 0,98771 0,99320 0,93189 0,98852 

Table 31: Results for SMOTE + RUS with ENN as a reduction technique. By default, there are 
5.079.703 and 5.079.902 legal transactions (for the normalized and standardized data respectively) 
versus 6.631 fraudulent ones. The fraudulent transactions are oversampled to 78.000 transactions. 

Then, non-fraud transactions are under-sampled. The number of under-sampled transactions is 
provided between brackets. The best results are indicated in bold. 
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  NRM STD 

  LC RF GB LC RF GB 

0 
(5.000.000) 

ROC-AUC 0,97357 0,64687 0,92591 0,97230 0,84460 0,93796 

F1 0,97424 0,73899 0,93096 0,97303 0,86531 0,94154 

1 
(2.500.000) 

ROC-AUC 0,97661 0,69717 0,93646 0,98037 0,87054 0,95337 

F1 0,97713 0,76731 0,94015 0,98073 0,88502 0,95538 

2 
(1.250.000) 

ROC-AUC 0,98208 0,70182 0,95394 0,98583 0,87010 0,97160 

F1 0,98237 0,76925 0,95584 0,98602 0,88451 0,97231 

3 
(625.000) 

ROC-AUC 0,98748 0,77300 0,97791 0,98833 0,91188 0,98321 

F1 0,98761 0,81008 0,97827 0,98845 0,91798 0,98339 

4 
(312.500) 

ROC-AUC 0,99296 0,83902 0,98468 0,99103 0,93064 0,98860 

F1 0,99299 0,85257 0,98477 0,99108 0,93359 0,98862 

4 
(156.250) 

ROC-AUC 0,99368 0,85372 0,98668 0,99627 0,94570 0,98768 

F1 0,99369 0,85067 0,98665 0,99627 0,94625 0,98763 

Table 32: Results for SMOTE + RUS with ENN as a reduction technique. By default, there are 
5.079.703 and 5.079.902 legal transactions (for the normalized and standardized data respectively) 
versus 6.631 fraudulent ones. The fraudulent transactions are oversampled to 156.250 transactions. 

Then, non-fraud transactions are under-sampled. The number of under-sampled transactions is 
provided between brackets. The best results are indicated in bold. 
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  NRM STD 

  LC RF GB LC RF GB 

0 
(5.000.000) 

ROC-AUC 0,90801 0,55657 0,71512 0,90106 0,73132 0,62968 

F1 0,91575 0,69279 0,77825 0,90996 0,78821 0,72766 

1 
(2.500.000) 

ROC-AUC 0,91305 0,54772 0,75345 0,91684 0,75340 0,84620 

F1 0,92000 0,68857 0,80220 0,92322 0,80216 0,86666 

2 
(1.250.000) 

ROC-AUC 0,93070 0,56574 0,91171 0,93513 0,77325 0,91616 

F1 0,93518 0,69722 0,91885 0,93907 0,81512 0,92263 

3 
(625.000) 

ROC-AUC 0,94200 0,58564 0,93120 0,94167 0,79461 0,92903 

F1 0,94517 0,70703 0,93560 0,94487 0,82953 0,93372 

4 
(312.500) 

ROC-AUC 0,95698 0,58970 0,94172 0,96299 0,82090 0,94177 

F1 0,95873 0,70904 0,94488 0,96429 0,84797 0,94493 

4 
(156.250) 

ROC-AUC 0,97248 0,65149 0,95650 0,97055 0,82786 0,95590 

F1 0,97318 0,74123 0,95825 0,97136 0,85293 0,95770 

Table 33: Results for SMOTE + RUS with T-Link as a reduction technique. By default, there are 
5.083.465 legal transactions versus 6.631 fraudulent ones. The fraudulent transactions are 

oversampled to 9.750 transactions. Then, non-fraud transactions are under-sampled. The number 
of under-sampled transactions is provided between brackets. The best results are indicated in bold. 

  NRM STD 

  LC RF GB LC RF GB 

0 
(5.000.000) 

ROC-AUC 0,92032 0,54962 0,63996 0,92158 0,76572 0,84593 

F1 0,92620 0,68947 0,73525 0,92728 0,81017 0,86647 

1 
(2.500.000) 

ROC-AUC 0,93607 0,58786 0,90949 0,93293 0,78366 0,91805 

F1 0,93990 0,70814 0,91699 0,93714 0,82209 0,92425 

2 
(1.250.000) 

ROC-AUC 0,95053 0,60269 0,92300 0,94801 0,80848 0,92681 

F1 0,95285 0,71565 0,92848 0,95057 0,83918 0,93178 

3 
(625.000) 

ROC-AUC 0,95833 0,59443 0,94209 0,96462 0,83091 0,93796 

F1 0,95997 0,71142 0,94522 0,96581 0,85521 0,94153 

4 
(312.500) 

ROC-AUC 0,97321 0,68197 0,95122 0,97130 0,83969 0,95278 

F1 0,97388 0,75845 0,95343 0,97207 0,86160 0,95484 

4 
(156.250) 

ROC-AUC 0,98254 0,72432 0,97061 0,98321 0,86895 0,97461 

F1 0,98281 0,78301 0,97136 0,98345 0,88363 0,97516 

Table 34: Results for SMOTE + RUS with T-Link as a reduction technique. By default, there are 
5.082.736 and 5.082.814 legal transactions (for the normalized and standardized data respectively) 
versus 6.631 fraudulent ones. The fraudulent transactions are oversampled to 19.500 transactions. 
Then, non-fraud transactions are under-sampled. The number of under-sampled transactions is 

provided between brackets. The best results are indicated in bold. 
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  NRM STD 

  LC RF GB LC RF GB 

0 
(5.000.000) 

ROC-AUC 0,94114 0,57711 0,90190 0,94241 0,78745 0,91489 

F1 0,94441 0,70279 0,91065 0,94554 0,82466 0,92155 

1 
(2.500.000) 

ROC-AUC 0,95278 0,60806 0,90500 0,95180 0,80972 0,92870 

F1 0,95490 0,71841 0,91321 0,95401 0,84005 0,93342 

2 
(1.250.000) 

ROC-AUC 0,96814 0,64402 0,93259 0,96654 0,82246 0,93894 

F1 0,96911 0,73744 0,93680 0,96760 0,84909 0,94241 

3 
(625.000) 

ROC-AUC 0,97209 0,69756 0,95081 0,97454 0,85943 0,95309 

F1 0,97282 0,76758 0,95305 0,97514 0,87643 0,95513 

4 
(312.500) 

ROC-AUC 0,98185 0,72374 0,96725 0,98496 0,88114 0,97504 

F1 0,98215 0,78256 0,96820 0,98516 0,89322 0,97557 

4 
(156.250) 

ROC-AUC 0,98930 0,76966 0,98255 0,99089 0,90673 0,98434 

F1 0,98939 0,80756 0,98275 0,99094 0,91374 0,98449 

Table 35: Results for SMOTE + RUS with T-Link as a reduction technique. By default, there are 
5.082.736 and 5.082.814 legal transactions (for the normalized and standardized data respectively) 
versus 6.631 fraudulent ones. The fraudulent transactions are oversampled to 39.000 transactions. 

Then, non-fraud transactions are under-sampled. The number of under-sampled transactions is 
provided between brackets. The best results are indicated in bold. 

  NRM STD 

  LC RF GB LC RF GB 

0 
(5.000.000) 

ROC-AUC 0,94301 0,63618 0,91631 0,95468 0,81729 0,92870 

F1 0,94607 0,73322 0,92274 0,95663 0,84542 0,93342 

1 
(2.500.000) 

ROC-AUC 0,96974 0,64812 0,92972 0,96531 0,83958 0,93796 

F1 0,97061 0,73967 0,93428 0,96646 0,86156 0,94154 

2 
(1.250.000) 

ROC-AUC 0,97873 0,66043 0,94458 0,97683 0,84916 0,95239 

F1 0,97915 0,74622 0,94742 0,97733 0,86863 0,95448 

3 
(625.000) 

ROC-AUC 0,98322 0,71655 0,96297 0,98446 0,88883 0,97312 

F1 0,98347 0,77818 0,96418 0,98467 0,89934 0,97374 

4 
(312.500) 

ROC-AUC 0,98909 0,76674 0,98098 0,98841 0,90696 0,98369 

F1 0,98918 0,80547 0,98123 0,98852 0,91387 0,98385 

4 
(156.250) 

ROC-AUC 0,99427 0,85209 0,98710 0,99214 0,92847 0,98867 

F1 0,99429 0,86404 0,98714 0,99217 0,93170 0,98868 

Table 36: Results for SMOTE + RUS with T-Link as a reduction technique. By default, there are 
5.082.736 and 5.082.814 legal transactions (for the normalized and standardized data respectively) 
versus 6.631 fraudulent ones. The fraudulent transactions are oversampled to 78.000 transactions. 

Then, non-fraud transactions are under-sampled. The number of under-sampled transactions is 
provided between brackets. The best results are indicated in bold. 
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  NRM STD 

  LC RF GB LC RF GB 

0 
(5.000.000) 

ROC-AUC 0,96316 0,64592 0,92215 0,97042 0,83779 0,93765 

F1 0,96445 0,73847 0,92772 0,97126 0,86026 0,94127 

1 
(2.500.000) 

ROC-AUC 0,97630 0,70853 0,93687 0,97691 0,86211 0,95338 

F1 0,97683 0,77406 0,94052 0,97742 0,87846 0,95539 

2 
(1.250.000) 

ROC-AUC 0,98145 0,76271 0,94757 0,98333 0,86468 0,97191 

F1 0,98177 0,80755 0,95004 0,98359 0,88033 0,97259 

3 
(625.000) 

ROC-AUC 0,98717 0,80160 0,97799 0,98772 0,90809 0,98350 

F1 0,98732 0,83162 0,97835 0,98785 0,91485 0,98368 

4 
(312.500) 

ROC-AUC 0,99270 0,85237 0,98580 0,99289 0,93062 0,98856 

F1 0,99273 0,86425 0,98586 0,99292 0,93357 0,98857 

4 
(156.250) 

ROC-AUC 0,99325 0,85493 0,98744 0,99388 0,94586 0,98777 

F1 0,99327 0,85198 0,98741 0,99389 0,94638 0,98772 

Table 37: Results for SMOTE + RUS with T-Link as a reduction technique. By default, there are 
5.082.736 and 5.082.814 legal transactions (for the normalized and standardized data respectively) 
versus 6.631 fraudulent ones. The fraudulent transactions are oversampled to 156.250 transactions. 

Then, non-fraud transactions are under-sampled. The number of under-sampled transactions is 
provided between brackets. The best results are indicated in bold. 
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Appendix E: Results ROS + RUS 

  NRM STD 

  LC RF GB LC RF GB 

0 
(5.000.000) 

ROC-AUC 0,89695 0,55468 0,78178 0,89758 0,72753 0,80994 

F1 0,90658 0,69189 0,82083 0,90710 0,78586 0,84026 

1 
(2.500.000) 

ROC-AUC 0,91464 0,55531 0,87448 0,90863 0,74330 0,82318 

F1 0,92135 0,69219 0,88847 0,91628 0,79571 0,84971 

2 
(1.250.000) 

ROC-AUC 0,91870 0,56826 0,91329 0,91776 0,77357 0,91206 

F1 0,92481 0,69845 0,92019 0,92400 0,81533 0,91915 

3 
(625.000) 

ROC-AUC 0,94074 0,54077 0,92679 0,93569 0,79146 0,92683 

F1 0,94404 0,68529 0,93176 0,93956 0,82737 0,93180 

4 
(312.500) 

ROC-AUC 0,95323 0,59381 0,94242 0,94979 0,81338 0,94114 

F1 0,95530 0,71112 0,94551 0,95216 0,84260 0,94437 

4 
(156.250) 

ROC-AUC 0,96466 0,65628 0,95943 0,96876 0,83754 0,95902 

F1 0,96583 0,74390 0,96096 0,96967 0,86002 0,96057 

Table 38: Results for ROS + RUS with no reduction. By default, there are 5.083.465 legal 
transactions versus 6.631 fraudulent ones. The fraudulent transactions are oversampled to 9.750 
transactions. Then, non-fraud transactions are under-sampled. The number of under-sampled 

transactions is provided between brackets. The best results are indicated in bold. 

  NRM STD 

  LC RF GB LC RF GB 

0 
(5.000.000) 

ROC-AUC 0,90516 0,58849 0,74332 0,90106 0,74962 0,74647 

F1 0,91338 0,70846 0,79573 0,90996 0,79973 0,79773 

1 
(2.500.000) 

ROC-AUC 0,91683 0,59354 0,90883 0,91558 0,78082 0,91490 

F1 0,92321 0,71100 0,91643 0,92215 0,82018 0,92156 

2 
(1.250.000) 

ROC-AUC 0,92532 0,60744 0,92238 0,93386 0,80310 0,92778 

F1 0,93050 0,71809 0,92795 0,93795 0,83541 0,93262 

3 
(625.000) 

ROC-AUC 0,94546 0,59349 0,93956 0,94449 0,82621 0,94178 

F1 0,94826 0,71096 0,94297 0,94739 0,85179 0,94495 

4 
(312.500) 

ROC-AUC 0,96456 0,66677 0,95286 0,95540 0,83625 0,95349 

F1 0,96574 0,74978 0,95492 0,95728 0,85906 0,95550 

4 
(156.250) 

ROC-AUC 0,96838 0,69888 0,97290 0,97088 0,87052 0,96938 

F1 0,96931 0,76746 0,97354 0,97167 0,88487 0,97020 

Table 39: Results for ROS + RUS with no reduction. By default, there are 5.083.465 legal 
transactions versus 6.631 fraudulent ones. The fraudulent transactions are oversampled to 19.500 

transactions. Then, non-fraud transactions are under-sampled. The number of under-sampled 
transactions is provided between brackets. The best results are indicated in bold. 
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  NRM STD 

  LC RF GB LC RF GB 

0 
(5.000.000) 

ROC-AUC 0,90453 0,61661 0,90536 0,91116 0,78177 0,91522 

F1 0,91285 0,72286 0,91352 0,91841 0,82081 0,92183 

1 
(2.500.000) 

ROC-AUC 0,92758 0,63555 0,91664 0,92347 0,80655 0,92746 

F1 0,93247 0,73288 0,92302 0,92890 0,83782 0,93234 

2 
(1.250.000) 

ROC-AUC 0,93288 0,59350 0,93671 0,92784 0,82652 0,94429 

F1 0,93709 0,71097 0,94043 0,93268 0,85201 0,94719 

3 
(625.000) 

ROC-AUC 0,95268 0,68646 0,95215 0,94575 0,85330 0,95787 

F1 0,95480 0,76106 0,95427 0,94852 0,87177 0,95951 

4 
(312.500) 

ROC-AUC 0,96325 0,70011 0,97066 0,96484 0,86008 0,97318 

F1 0,96453 0,76818 0,97141 0,96601 0,87679 0,97380 

4 
(156.250) 

ROC-AUC 0,97714 0,77463 0,98727 0,97208 0,90571 0,98803 

F1 0,97762 0,81101 0,98735 0,97280 0,91287 0,98810 

Table 40: Results for ROS + RUS with no reduction. By default, there are 5.083.465 legal 
transactions versus 6.631 fraudulent ones. The fraudulent transactions are oversampled to 39.000 

transactions. Then, non-fraud transactions are under-sampled. The number of under-sampled 
transactions is provided between brackets. The best results are indicated in bold. 

  NRM STD 

  LC RF GB LC RF GB 

0 
(5.000.000) 

ROC-AUC 0,90390 0,59764 0,91319 0,90706 0,80623 0,92872 

F1 0,91232 0,71308 0,92010 0,91496 0,83759 0,93345 

1 
(2.500.000) 

ROC-AUC 0,92693 0,58685 0,92402 0,92693 0,82715 0,94464 

F1 0,93190 0,70762 0,92933 0,93190 0,85248 0,94751 

2 
(1.250.000) 

ROC-AUC 0,93731 0,64326 0,95216 0,93636 0,85666 0,95284 

F1 0,94100 0,73673 0,95428 0,94016 0,87432 0,95490 

3 
(625.000) 

ROC-AUC 0,95206 0,74007 0,97066 0,94858 0,88427 0,97038 

F1 0,95423 0,79282 0,97141 0,95107 0,89567 0,97115 

4 
(312.500) 

ROC-AUC 0,96037 0,76207 0,98720 0,95945 0,89792 0,98641 

F1 0,96185 0,80206 0,98729 0,96100 0,90646 0,98650 

4 
(156.250) 

ROC-AUC 0,97144 0,83661 0,99091 0,97336 0,93437 0,99058 

F1 0,97220 0,84959 0,99089 0,97401 0,93685 0,99057 

Table 41: Results for ROS + RUS with no reduction. By default, there are 5.083.465 legal 
transactions versus 6.631 fraudulent ones. The fraudulent transactions are oversampled to 78.000 

transactions. Then, non-fraud transactions are under-sampled. The number of under-sampled 
transactions is provided between brackets. The best results are indicated in bold. 
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  NRM STD 

  LC RF GB LC RF GB 

0 
(5.000.000) 

ROC-AUC 0,90453 0,59223 0,92561 0,90674 0,83244 0,94182 

F1 0,91285 0,71032 0,93071 0,91469 0,85632 0,94498 

1 
(2.500.000) 

ROC-AUC 0,92094 0,65874 0,94078 0,92473 0,85507 0,95841 

F1 0,92672 0,74524 0,94401 0,93000 0,87310 0,96001 

2 
(1.250.000) 

ROC-AUC 0,93983 0,73381 0,96408 0,93574 0,88535 0,97131 

F1 0,94323 0,78891 0,96522 0,93961 0,89651 0,97203 

3 
(625.000) 

ROC-AUC 0,94477 0,76320 0,98309 0,94795 0,90898 0,98643 

F1 0,94764 0,80287 0,98327 0,95051 0,91555 0,98653 

4 
(312.500) 

ROC-AUC 0,95786 0,83732 0,99139 0,96165 0,93350 0,99114 

F1 0,95953 0,85026 0,99138 0,96304 0,93608 0,99113 

4 
(156.250) 

ROC-AUC 0,97298 0,84620 0,99065 0,97338 0,94187 0,99011 

F1 0,97365 0,84187 0,99057 0,97404 0,94223 0,99002 

Table 42: Results for ROS + RUS with no reduction. By default, there are 5.083.465 legal 
transactions versus 6.631 fraudulent ones. The fraudulent transactions are oversampled to 156.250 

transactions. Then, non-fraud transactions are under-sampled. The number of under-sampled 
transactions is provided between brackets. The best results are indicated in bold. 
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  NRM STD 

  LC RF GB LC RF GB 

0 
(5.000.000) 

ROC-AUC 0,89632 0,53002 0,74829 0,89695 0,73384 0,80235 

F1 0,90606 0,68028 0,79886 0,90658 0,78978 0,83494 

1 
(2.500.000) 

ROC-AUC 0,91336 0,56289 0,59728 0,92064 0,74803 0,74763 

F1 0,92027 0,69584 0,71287 0,92647 0,79872 0,79844 

2 
(1.250.000) 

ROC-AUC 0,92629 0,56984 0,91550 0,92756 0,77514 0,91425 

F1 0,93134 0,69922 0,92206 0,93244 0,81638 0,92100 

3 
(625.000) 

ROC-AUC 0,93980 0,55119 0,92617 0,94327 0,79367 0,92619 

F1 0,94321 0,69022 0,93122 0,94630 0,82888 0,93124 

4 
(312.500) 

ROC-AUC 0,95765 0,59160 0,94243 0,95577 0,81967 0,94273 

F1 0,95935 0,71001 0,94552 0,95762 0,84709 0,94579 

4 
(156.250) 

ROC-AUC 0,96844 0,65124 0,95658 0,96878 0,83815 0,95563 

F1 0,96937 0,74112 0,95832 0,96969 0,86046 0,95745 

Table 43: Results for ROS + RUS with ENN as a reduction technique. By default, there are 5.079.703 
and 5.079.902 legal transactions (for the normalized and standardized data respectively) versus 
6.631 fraudulent ones. The fraudulent transactions are oversampled to 9.750 transactions. Then, 

non-fraud transactions are under-sampled. The number of under-sampled transactions is provided 
between brackets. The best results are indicated in bold. 

  NRM STD 

  LC RF GB LC RF GB 

0 
(5.000.000) 

ROC-AUC 0,90769 0,54456 0,75123 0,90453 0,75782 0,74836 

F1 0,91549 0,68708 0,80078 0,91285 0,80501 0,79893 

1 
(2.500.000) 

ROC-AUC 0,91746 0,59069 0,90698 0,91525 0,78239 0,91269 

F1 0,92375 0,70956 0,91488 0,92187 0,82124 0,91969 

2 
(1.250.000) 

ROC-AUC 0,93226 0,61028 0,92270 0,92564 0,77447 0,92588 

F1 0,93655 0,71956 0,92822 0,93077 0,81592 0,93097 

3 
(625.000) 

ROC-AUC 0,94515 0,59696 0,94020 0,94388 0,82870 0,93960 

F1 0,94798 0,71271 0,94353 0,94684 0,85360 0,94300 

4 
(312.500) 

ROC-AUC 0,96389 0,64233 0,95661 0,95763 0,84929 0,95441 

F1 0,96512 0,73623 0,95835 0,95932 0,86875 0,95634 

4 
(156.250) 

ROC-AUC 0,97281 0,69965 0,97506 0,97305 0,86595 0,97190 

F1 0,97350 0,76798 0,97559 0,97372 0,88132 0,97259 

Table 44: Results for ROS + RUS with ENN as a reduction technique. By default, there are 5.079.703 
and 5.079.902 legal transactions (for the normalized and standardized data respectively) versus 

6.631 fraudulent ones. The fraudulent transactions are oversampled to 19.500 transactions. Then, 
non-fraud transactions are under-sampled. The number of under-sampled transactions is provided 

between brackets. The best results are indicated in bold. 
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  NRM STD 

  LC RF GB LC RF GB 

0 
(5.000.000) 

ROC-AUC 0,91053 0,62261 0,90568 0,90832 0,78681 0,91333 

F1 0,91787 0,72600 0,91379 0,91602 0,82423 0,92023 

1 
(2.500.000) 

ROC-AUC 0,92473 0,58059 0,91793 0,91778 0,80907 0,92840 

F1 0,92999 0,70451 0,92412 0,92402 0,83958 0,93316 

2 
(1.250.000) 

ROC-AUC 0,93543 0,58781 0,93292 0,93638 0,83587 0,94213 

F1 0,93934 0,70810 0,93709 0,94017 0,85883 0,94526 

3 
(625.000) 

ROC-AUC 0,94923 0,65019 0,95498 0,95080 0,83467 0,95691 

F1 0,95166 0,74050 0,95685 0,95309 0,85789 0,95863 

4 
(312.500) 

ROC-AUC 0,96324 0,73723 0,97255 0,96291 0,88101 0,97034 

F1 0,96451 0,79113 0,97320 0,96420 0,89309 0,97111 

4 
(156.250) 

ROC-AUC 0,97610 0,79362 0,98625 0,97711 0,90435 0,98714 

F1 0,97662 0,82517 0,98634 0,97759 0,91175 0,98722 

Table 45: Results for ROS + RUS with ENN as a reduction technique. By default, there are 5.079.703 
and 5.079.902 legal transactions (for the normalized and standardized data respectively) versus 

6.631 fraudulent ones. The fraudulent transactions are oversampled to 39.000 transactions. Then, 
non-fraud transactions are under-sampled. The number of under-sampled transactions is provided 

between brackets. The best results are indicated in bold. 

  NRM STD 

  LC RF GB LC RF GB 

0 
(5.000.000) 

ROC-AUC 0,90958 0,60902 0,91761 0,90706 0,81539 0,92839 

F1 0,91707 0,71891 0,92385 0,91496 0,84407 0,93316 

1 
(2.500.000) 

ROC-AUC 0,92062 0,59570 0,92534 0,92315 0,83713 0,94305 

F1 0,92645 0,71207 0,93048 0,92863 0,85977 0,94608 

2 
(1.250.000) 

ROC-AUC 0,93857 0,63972 0,94641 0,93605 0,85913 0,95438 

F1 0,94211 0,73479 0,94906 0,93989 0,87620 0,95631 

3 
(625.000) 

ROC-AUC 0,95018 0,74012 0,96786 0,95112 0,88133 0,97321 

F1 0,95252 0,79287 0,96877 0,95338 0,89335 0,97383 

4 
(312.500) 

ROC-AUC 0,96387 0,76563 0,98733 0,96511 0,90836 0,98615 

F1 0,96510 0,80468 0,98741 0,96626 0,91503 0,98625 

4 
(156.250) 

ROC-AUC 0,97106 0,83798 0,99222 0,96893 0,93478 0,99098 

F1 0,97183 0,85087 0,99220 0,96982 0,93724 0,99096 

Table 46: Results for ROS + RUS with ENN as a reduction technique. By default, there are 5.079.703 
and 5.079.902 legal transactions (for the normalized and standardized data respectively) versus 

6.631 fraudulent ones. The fraudulent transactions are oversampled to 78.000 transactions. Then, 
non-fraud transactions are under-sampled. The number of under-sampled transactions is provided 

between brackets. The best results are indicated in bold. 
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  NRM STD 

  LC RF GB LC RF GB 

0 
(5.000.000) 

ROC-AUC 0,90642 0,59538 0,92403 0,90895 0,83678 0,94242 

F1 0,91442 0,71191 0,92934 0,91655 0,85950 0,94551 

1 
(2.500.000) 

ROC-AUC 0,92693 0,64291 0,93906 0,92251 0,86298 0,95651 

F1 0,93190 0,73652 0,94247 0,92808 0,87912 0,95826 

2 
(1.250.000) 

ROC-AUC 0,94047 0,70237 0,96460 0,93826 0,87891 0,97519 

F1 0,94380 0,76955 0,96571 0,94184 0,89143 0,97571 

3 
(625.000) 

ROC-AUC 0,95048 0,79766 0,98454 0,94766 0,91220 0,98546 

F1 0,95280 0,82807 0,98468 0,95024 0,91820 0,98558 

4 
(312.500) 

ROC-AUC 0,95943 0,83932 0,99067 0,96387 0,93332 0,99161 

F1 0,96098 0,85220 0,99065 0,96510 0,93585 0,99160 

4 
(156.250) 

ROC-AUC 0,97644 0,81673 0,99055 0,97525 0,93993 0,99006 

F1 0,97694 0,80724 0,99047 0,97582 0,94038 0,98998 

Table 47: Results for ROS + RUS with ENN as a reduction technique. By default, there are 5.079.703 
and 5.079.902 legal transactions (for the normalized and standardized data respectively) versus 

6.631 fraudulent ones. The fraudulent transactions are oversampled to 156.250 transactions. Then, 
non-fraud transactions are under-sampled. The number of under-sampled transactions is provided 

between brackets. The best results are indicated in bold. 

  



61 

  NRM STD 

  LC RF GB LC RF GB 

0 
(5.000.000) 

ROC-AUC 0,89664 0,54741 0,74829 0,89538 0,73321 0,80075 

F1 0,90632 0,68842 0,79886 0,90528 0,78938 0,83381 

1 
(2.500.000) 

ROC-AUC 0,90484 0,55562 0,75090 0,90894 0,75404 0,77773 

F1 0,91310 0,69234 0,80056 0,91654 0,80257 0,81813 

2 
(1.250.000) 

ROC-AUC 0,92124 0,54330 0,91108 0,92345 0,77419 0,91394 

F1 0,92698 0,68648 0,91833 0,92889 0,81575 0,92075 

3 
(625.000) 

ROC-AUC 0,93886 0,57300 0,92681 0,93602 0,78233 0,92556 

F1 0,94237 0,70077 0,93178 0,93985 0,82118 0,93069 

4 
(312.500) 

ROC-AUC 0,95419 0,59380 0,93958 0,94946 0,81966 0,94089 

F1 0,95617 0,71110 0,94299 0,95186 0,84708 0,94415 

4 
(156.250) 

ROC-AUC 0,97065 0,63035 0,95562 0,97282 0,83904 0,95907 

F1 0,97146 0,72967 0,95744 0,97351 0,86110 0,96062 

Table 48: Results for ROS + RUS with T-Link as a reduction technique. By default, there are 
5.083.465 legal transactions versus 6.631 fraudulent ones. The fraudulent transactions are 

oversampled to 9.750 transactions. Then, non-fraud transactions are under-sampled. The number 
of under-sampled transactions is provided between brackets. The best results are indicated in bold. 

  NRM STD 

  LC RF GB LC RF GB 

0 
(5.000.000) 

ROC-AUC 0,90864 0,57301 0,74869 0,90295 0,75972 0,74615 

F1 0,91629 0,70077 0,79915 0,91153 0,80625 0,79752 

1 
(2.500.000) 

ROC-AUC 0,91873 0,56321 0,90857 0,91936 0,78113 0,91080 

F1 0,92483 0,69599 0,91621 0,92537 0,82039 0,91809 

2 
(1.250.000) 

ROC-AUC 0,92690 0,60743 0,92019 0,92817 0,80308 0,92651 

F1 0,93187 0,71808 0,92606 0,93298 0,83539 0,93152 

3 
(625.000) 

ROC-AUC 0,94292 0,59507 0,93928 0,94356 0,82870 0,93834 

F1 0,94598 0,71175 0,94271 0,94656 0,85359 0,94188 

4 
(312.500) 

ROC-AUC 0,95538 0,65719 0,95498 0,95508 0,85023 0,95661 

F1 0,95726 0,74438 0,95686 0,95698 0,86946 0,95835 

4 
(156.250) 

ROC-AUC 0,97060 0,70751 0,97131 0,96965 0,86852 0,97443 

F1 0,97140 0,77265 0,97202 0,97051 0,88328 0,97500 

Table 49: Results for ROS + RUS with T-Link as a reduction technique. By default, there are 
5.083.465 legal transactions versus 6.631 fraudulent ones. The fraudulent transactions are 

oversampled to 19.500 transactions. Then, non-fraud transactions are under-sampled. The number 
of under-sampled transactions is provided between brackets. The best results are indicated in bold. 
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  NRM STD 

  LC RF GB LC RF GB 

0 
(5.000.000) 

ROC-AUC 0,90642 0,61661 0,90633 0,90484 0,78806 0,91490 

F1 0,91443 0,72286 0,91433 0,91311 0,82507 0,92156 

1 
(2.500.000) 

ROC-AUC 0,92030 0,63239 0,91955 0,91840 0,80217 0,92524 

F1 0,92618 0,73119 0,92551 0,92455 0,83476 0,93042 

2 
(1.250.000) 

ROC-AUC 0,93573 0,59571 0,93450 0,93763 0,82870 0,94119 

F1 0,93960 0,71208 0,93848 0,94128 0,85360 0,94442 

3 
(625.000) 

ROC-AUC 0,95082 0,64199 0,95087 0,94828 0,85632 0,95627 

F1 0,95311 0,73604 0,95310 0,95081 0,87405 0,95805 

4 
(312.500) 

ROC-AUC 0,96420 0,70077 0,97068 0,96420 0,86182 0,97382 

F1 0,96541 0,76858 0,97144 0,96541 0,87811 0,97441 

4 
(156.250) 

ROC-AUC 0,97456 0,76221 0,98886 0,97495 0,90475 0,98670 

F1 0,97515 0,80209 0,98891 0,97552 0,91205 0,98679 

Table 50: Results for ROS + RUS with T-Link as a reduction technique. By default, there are 
5.083.465 legal transactions versus 6.631 fraudulent ones. The fraudulent transactions are 

oversampled to 39.000 transactions. Then, non-fraud transactions are under-sampled. The number 
of under-sampled transactions is provided between brackets. The best results are indicated in bold. 

  NRM STD 

  LC RF GB LC RF GB 

0 
(5.000.000) 

ROC-AUC 0,91148 0,61533 0,91604 0,90927 0,81002 0,92872 

F1 0,91867 0,72218 0,92251 0,91682 0,84025 0,93344 

1 
(2.500.000) 

ROC-AUC 0,92378 0,58209 0,92505 0,91872 0,83685 0,94147 

F1 0,92917 0,70523 0,93023 0,92482 0,85956 0,94467 

2 
(1.250.000) 

ROC-AUC 0,93731 0,70408 0,94963 0,93005 0,84711 0,95620 

F1 0,94099 0,77140 0,95197 0,93461 0,86711 0,95797 

3 
(625.000) 

ROC-AUC 0,94795 0,72967 0,97253 0,94732 0,87984 0,97004 

F1 0,95050 0,78631 0,97318 0,94993 0,89218 0,97083 

4 
(312.500) 

ROC-AUC 0,96136 0,76276 0,98806 0,96233 0,90472 0,98805 

F1 0,96277 0,80254 0,98813 0,96368 0,91202 0,98811 

4 
(156.250) 

ROC-AUC 0,97899 0,83606 0,99188 0,97051 0,93422 0,99093 

F1 0,97939 0,84901 0,99185 0,97132 0,93670 0,99091 

Table 51: Results for ROS + RUS with T-Link as a reduction technique. By default, there are 
5.083.465 legal transactions versus 6.631 fraudulent ones. The fraudulent transactions are 

oversampled to 78.000 transactions. Then, non-fraud transactions are under-sampled. The number 
of under-sampled transactions is provided between brackets. The best results are indicated in bold. 
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  NRM STD 

  LC RF GB LC RF GB 

0 
(5.000.000) 

ROC-AUC 0,90485 0,59634 0,92437 0,90358 0,83526 0,94304 

F1 0,91311 0,71240 0,92963 0,91206 0,85839 0,94607 

1 
(2.500.000) 

ROC-AUC 0,92410 0,65967 0,93849 0,91936 0,86031 0,95757 

F1 0,92945 0,74575 0,94197 0,92537 0,87710 0,95924 

2 
(1.250.000) 

ROC-AUC 0,93479 0,75616 0,96197 0,94016 0,88902 0,97056 

F1 0,93877 0,80321 0,96325 0,94352 0,89947 0,97131 

3 
(625.000) 

ROC-AUC 0,94671 0,76766 0,98502 0,95016 0,91249 0,98702 

F1 0,94938 0,80608 0,98515 0,95251 0,91845 0,98711 

4 
(312.500) 

ROC-AUC 0,96072 0,83906 0,99114 0,96514 0,93565 0,99079 

F1 0,96218 0,85183 0,99113 0,96628 0,93793 0,99078 

4 
(156.250) 

ROC-AUC 0,97686 0,84700 0,99061 0,97779 0,94733 0,99056 

F1 0,97735 0,84272 0,99053 0,97825 0,94742 0,99049 

Table 52: Results for ROS + RUS with T-Link as a reduction technique. By default, there are 
5.083.465 legal transactions versus 6.631 fraudulent ones. The fraudulent transactions are 

oversampled to 156.250 transactions. Then, non-fraud transactions are under-sampled. The number 
of under-sampled transactions is provided between brackets. The best results are indicated in bold. 
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