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Abstract 

This research paper sets out to explore the methods that are available to assess the quality of agents’ 
shift schedules in call centers. Call centers are best modelled by the time-dependent and non-stationary 
M(t)/M/s(t) queueing model. Unfortunately, exact solutions of this model are only known for a number 
of specific configurations and numerical solutions require high computation times. Because of this, 
methods have been developed that approximate the behaviour of this queue.  

In this paper we provide the theory behind the six approximation methods that are most discussed in 
literature and most used in practice. Among these methods are the Pointwise Stationary Approximation, 
the Stationary Independent Period-by-Period approximation and the Modified Offered Load 
approximation. We created two different scenarios in which we compared the performance of the 
methods using two different ways of scheduling. As a performance measure we used the service level, 
which is the widely used measure for call centers. By using the numerical solution of the M(t)/M/s(t) 
queue as a benchmark, we were able to compare the approximations.  
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1. Introduction 

Call centers are used by many businesses as the central point for their customer service and 
communications. Because of the large number of operational call centers today, there is a great interest 
in optimizing their functioning. Improving the scheduling of the employees, referred to as agents in the 
call center environment, can help significantly in reducing the workforce costs. From a customer point 
of view, optimal scheduling should also help ensure that there is enough staff available to limit the 
waiting time before service to a certain level. 
 
The optimization of employee scheduling is typically divided into four components: (1) forecasting the 
demand; (2) translating this demand into staffing requirements; (3) shift scheduling; and (4) rostering 
(Buffa et al., 1976). Ingolfsson et al. (2010) argue that these components should all be taken into 
account at once to optimally schedule agents. However, most other researchers have separated them; 
using approaches that are focused on either determining the staffing requirements or solving the actual 
scheduling problem. This paper will focus on the methods available to calculate the quality of any given 
shift schedule. The actual shift scheduling, consisting of searching for feasible schedules based on the 
required capacity derived from the previous steps and complex constraints, is outside of the scope of 
this paper. 
 
The demand in a call center, the number of incoming calls, is dynamic in nature. As a consequence, the 
number of agents required also varies throughout the day. To forecast the demand and the 
accompanying staffing requirements in a call center, queueing models are used. Unfortunately, because 
classical queueing models focus on the long-run behaviour of queueing systems with stationary arrival 
rates and server amounts, they cannot be directly applied to model this problem.  
 
Therefore, researchers have looked into developing adjusted schemes to model non-stationary queueing 
systems. Closed-form solutions have only been found for very particular cases and the computation of 
these solutions can be numerically challenging and requires high computation times, as demonstrated by 
Ingolfsson et al (2007). Consequently, various approximation methods have been developed and are 
being used in practice.  
 
Research indicates that these approximation methods vary widely in applicability, speed and accuracy. 
Also, some of the assumptions made in these models might not be justified. This research paper will set 
out to review the most applied approximation methods through an extensive literature study and 
comparative (numerical) experiments in certain scenarios. By doing this, the research question that we 
aim to answer is:  
 
“What are the strengths and limitations of currently used methods for determining the quality of staffing 
schedules in time-dependent and non-stationary queueing systems, such as call centers?” 
 
This paper starts by a definition of the queueing model that is best fit to model a call center in Chapter 2. 
In Chapter 3 the theory behind approximation methods of this model is discussed. Chapter 4 provides 
the result of an implementation of the discussed models, after which the discussion follows in Chapter 5.   
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2. M(t)/M/s(t) queue 

The queueing model that might seem fitting to model a call center is the M/M/s queue. This model, 
better known as the Erlang C model, can be used to describe queueing systems with multiple servers in 
which the arrivals can be described by a Poisson process and the service time is distributed 
exponentially. Because of the simplicity of applying the Erlang C model, it is widely used. 
 
However, the Erlang C model assumes all three of its parameters to be time-independent and remain 
constant. In a call center, we know that the demand fluctuates in a certain pattern throughout the day and 
we want to be able to vary the staffing level based on these fluctuations. Therefore, the non-stationary 
M(t)/M/s(t) queue is better fit to model the dynamic conditions of a call center. The paragraphs in this 
section each discuss a certain aspect of this queueing model. 
 
2.1 Arrival process 

The arrivals in the M(t)/M/s(t) queue are assumed to happen according to an inhomogeneous Poisson 
process. To account for the inhomogeneity, the constant arrival rate λ in an M/M/s queue is replaced by 
a time-dependent function λ(t). This function can be modelled in many different ways to replicate the 
arrival behaviour in a call center. For example, Feldman et al. (2008), Green et al. (1991, 2001) and 
Ingolfsson et al. (2010) use a sinusoid to reflect the behaviour of the demand throughout the day. 
Jongbloed and Koole (2001) use Poisson mixtures to model the uncertainty in the demand. For practical 
purposes, the arrival rate is often specified to be piecewise constant. This means that the arrival rate 
does not vary over time continuously when modelling, but remains constant over a fixed (short) period. 
Figure 2.1 illustrates the daily pattern of incoming calls to a call center as shown in Green et al. (2007). 

 
Figure 2.1: Arrivals per hour to a medium-sized financial-services call center  

(from Green et al., 2007, p. 14) 
 
2.2 Service times 

As can be seen from the notation of the M(t)/M/s(t) queue, the service times of the queue are assumed to 
be exponentially distributed with the same average length over time. One could argue that the average 
call durations in a call center might also be subjected to time-dependency. However, in modelling call 
centers it is reasonable to model the average call handling times as constant throughout the day, because 
of the fact that the service rate changes far slower than the arrival rate (Ingolfsson et al., 2007). 
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2.3 Number of servers 

The number of servers is allowed to change over time in the M(t)/M/s(t) queue. As with the arrival rates, 
it is not practical to allow the number of servers to change in a continuous manner. For example in a call 
center, it is not desirable that the start or end of an agent’s shift is scheduled at 14:08:56. Instead, the 
number of shifts should be allowed to only change in fixed and practical time steps, such as 15 or 30 
minutes. 
 
2.4 Queueing discipline 

We assume that customers are served in a call center on a First-Come-First-Served basis. Another 
important aspect in the application of the queueing model is what happens when an agent is scheduled 
to leave at the end of a planning period. The structure in which a leaving agent finishes the current 
service before stopping is known as the exhaustive discipline. The alternative, where the customer is 
sent back to the queue and the agent immediately stops when his shift is over, is called the pre-emptive 
discipline. As Ingolfsson (2005) states, when the customers are humans, the pre-emptive discipline is 
often unrealistic and from a service point of view undesirable. This is of course also the case for a call 
center.  
 
2.5 Abandonment 

This queueing model does not take abandonments into account. This means that customers are assumed 
to have infinite patience and do not leave the queue before they have received service. In a call center 
setting this is highly unlikely. It is possible to extend the model into the M(t)/M/s(t) + M or M(t)/M/s(t) 
+ G model, depending on the distribution of the abandonments, but this extension is outside the scope of 
this research paper. 
 
2.6 Exact solutions 

The exact behaviour of the M(t)/M/s(t) queueing model can be described by the following set of forward 
differential equations, as specified in Gross and Harris (1974): 
 

dp0(t)

dt
=  −λ(t)p0(t) +  µp1(t) 

 
dpn(t)

dt
=  −(λ(t) + nµ)pn(t) + λ(t)pn−1(t) + (n + 1)µpn+1(t)         for 0 < n < s(t) 

 
dpn(t)

dt
=  −(λ(t) + s(t)µ)pn(t) + λ(t)pn−1(t) + s(t)µpn+1(t)         for n ≥ s(t) 

 
 
In these equations λ(t) stands for the arrival rate at time t, µ stands for the service rate, s(t) for the 
number of servers at time t, and pn(t)represents the time-dependent probability of n customers being in 
the system at time t. 
 
Unfortunately, closed form solutions of these equations for pn(t)are only known for a limited number of 
cases, as stated by Stolletz (2008) and others. Numerically, the differential equations can be evaluated 
by limiting the size of the system from infinity to a fixed number K. This entails that the last equation is 
satisfied for K > n ≥ s(t) and the following equation should be added: 
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dpK(t)

dt
=  −s(t)µpK(t) +  λ(t)pK−1(t)             for K > n ≥ s(t) 

 
Despite the seemingly simple structure of these differential equations, it can be numerically challenging 
to solve them. As Ingolfsson et al. (2007) found in their research, the calculation time of solving the 
differential equations increases as the service rate or the system load increases. This is explained by the 
fact that as one of these system properties increases, the system capacity K needs to increase as well to 
sufficiently approximate the infinite M(t)/M/s(t) system. 
 
Because of the required computational effort to solve the M(t)/M/s(t)  system in an exact manner, many 
other methods have been developed and are being used in practice to approximate its behaviour. A 
detailed overview of the most practiced methods is given in section 3. 
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3. Methods 

Because of the simplicity of the M/M/s queueing model, many approximation methods divide the 
working day into planning periods, during which the mentioned variables remain constant, and construct 
an Erlang C model for each of the periods. The sections in this chapter provide an in-depth description 
of these methods as found in literature. 
 
3.1 Pointwise Stationary Approximation 

The pointwise stationary approximation method (PSA) was first proposed by Green and Kolesar in 1991 
as a method to determine the long run performance of queueing systems that fit the M(t)/M/s(t) model. 
As its name partly suggests, the PSA method approximates the non-stationary system by pointwise 
fixing of the arrival rate λ(t) and integrating over time of the stationary Erlang C performance measures. 
Green and Kolesar defined the PSA method as described in section 3.1.1. 
 
3.1.1 Definition 

Green and Kolesar begin defining the PSA method by assuming that the arrival rate λ(t) varies over time 
according to a sinusoidal function with period T (24 hours). Another assumption they make is that the 
average arrival rate λ̅ over T is smaller than the overall service rate: 
 

λ̅ =  
1

T
∫ λ(t) dt

T

0

< s(t)µ 

 
Then, the performance measures Lq, Wq, pd, pb of the M(t)/M/s(t) system are defined as follows: 
 

Lq = daily average queue length =
1

T
∫ ( ∑ (n − s(t))pn(t)

∞

n=s(t)

) dt
T

0

 

 

Wq = daily expected delay =
Lq

λ̅
 

 

pd = daily probability of delay =
1

λ̅T
∫ λ(t) (1 − ∑ pn(t)

s(t)−1

n=0

) dt
T

0

 

 

pb =  daily probability of all servers busy = 
1

T
∫ (1 − ∑ pn(t)

s(t)−1

n=0

) dt
T

0

  

 
Now, the pointwise stationary approximations for each of these performance measures are defined as 
follows: 

Lq
∞ =

1

T
∫ Lq(λ(t))dt

T

0

 

 

Wq
∞ =

1

λ̅T
∫ λ(t)Wq(λ(t))dt

T

0
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pd
∞ =

1

λ̅T
∫ λ(t)pd(λ(t))dt

T

0

 

 

pb
∞ =

1

T
∫ pb(λ(t))dt

T

0

 

 
For each of the measures, when λ(t), µ and s(t) are assumed as given at a certain time t, the formulas for 
a stationary M/M/s queue are used to calculate Lq(λ(t)), Wq(λ(t)), pd(λ(t)) and pb(λ(t)). 
 
Green et al. (1991) found that when the maximum load remains less than one throughout the day, the 
following is true: 

Wq
∞ ≤  Wq 

 
Lq

∞ ≤  Lq 
 
Also, they determined that pd

∞ and pb
∞ give a finite upper bound for pd and pb, even when the 

maximum load exceeded one. 
 
3.1.2 Applicability 

The strength of the PSA approach lies in the fact that it can be easily implemented and in that it requires 
not a lot of computational effort, as noted by Ingolfsson et al. (2007). Because of its use of the M/M/s 
formulas, the PSA values can be calculated directly for any given parameters. It also provides a tight 
upper bound for the expected delay and the expected delay as noted in section 3.1.1. 
 
However, one of the consequences of using this model is that when λ(t) ≥ s(t)µ, the formulas for the 
daily probability of delay and the probability of all servers being busy, will provide a value higher than 
one. 
 
Furthermore, since the model uses the formulas of the stationary M/M/s system, the assumption is made 
that stationarity is achieved for each time epoch t. Another problem with the PSA approach is  
that it fails to take into account that the number of servers should be restricted to change in fixed time 
steps, as noted by Green et al. (2007). 
 
Also, for the Erlang C model to be applicable, the following stability condition should hold: 
 

ρ =
λ

sµ
< 1 

 
Since the PSA consists of applying the Erlang C model in each time slot of the day, the stability 
condition  

ρ(t) =
λ(t)

s(t)µ
< 1 

 
should hold for each period t = 1,…,T. This means that it is never allowed to have a higher arrival rate 
than the service rate. 
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Hence, because the PSA depends on the use of stationary models in each of interval, overloaded 
situations cannot occur. In a call center, an overloaded system might however be temporarily desirable, 
because it means that there are no agents idle at that moment and the capacity is being well used.  
 
3.2 Stationary Independent Period-by-Period 

3.2.1 Definition 

The stationary independent period-by-period (SIPP) method is widely used for determining staffing 
requirements in service environments. This approach encompasses the division of a workday into 
staffing periods, e.g. 30 minute intervals, and the construction of a series of M/M/s models, one for each 
staffing period, as described in Green et al. (2001). Each of the M/M/s models is then independently 
solved for the minimum number of servers needed in the period to meet a specified service level. 
 
The SIPP method averages the arrival rate over a staffing period, instead of using a pointwise arrival 
rate. Another difference between the SIPP method and the PSA approach as described in the previous 
section is that the staffing at fixed lengths of intervals can now be taken into account, while maintaining 
the low computation times.  
 
Green et al. (2001) were able to show that using the SIPP method often leads to unreliability and 
understaffing. Therefore, they investigated an improvement to this method and came up with two 
alternatives. These alternatives were found based on their belief that a lot of the unreliability was due to 
the fact that SIPP uses an average arrival rate over the entire planning period. Green et al. empirically 
proved that these alternatives provide more accurate results when used for staffing service systems that 
have cyclic demands. The performance measure that they aimed to approximate in their paper was the 
probability of delay. 
 
One of the alternatives they proposed was the Lagged Avg SIPP. This approach involves backwards 
shifting of the planning period by one average service time and taking the average of the arrival rate 
during the resulting interval. The other alternative was the Lagged Max SIPP approach. This approach 
encompasses the modification of the use of the average arrival rate into the maximum arrival rate of the 
previous service period instead. 
 
The formulas for approximating the arrival rate of each period i = 1,…,T are the following: 
 

Regular SIPP:             λi =
1

ti − ti−1
∫ λ(u)du

ti

ti−1

  

 

Lagged Avg SIPP:              λi
lagavg

=
1

ti − ti−1
∫ λ(u)du

ti−µ−1

ti−1−µ−1
 

 
Lagged Max SIPP:             λi

lagmax
= max  {λ(u)| ti−1 − µ−1 ≤ u ≤  ti −µ−1} 

 
Green et al. recommend that the best results are found when using the following guidelines: 

 The Lagged Avg SIPP method should be used when the planning periods are short and the 
maximum arrival rate is relatively not much higher than the average arrival rate. 

 The Lagged Max SIPP method should be used in all other cases. 
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3.2.2 Applicability 

Because the SIPP approach determines stationary performance measures for each period separately, it 
faces the same problems as the pointwise stationary approximation method. Because of its use of the 
stationary M/M/s measures, (temporarily) overloading is again prohibited. And the inaccurate 
assumption is made that stationarity is realized during each of the planning periods, independent of their 
lengths. 
 
Furthermore, the planning periods, even those that are consecutive, are assumed by the SIPP method to 
be statistically independent from each other. This means that queues that might have been built up in 
previous periods are ignored and it further clarifies the understaffing issue of this model. 
 
3.3 Stationary Backlog-Carryover 

One of the approximation methods for the M(t)/M/s(t) system that does take dependence of periods into 
account is the stationary backlog-carryover approach (SBC), as proposed by Stolletz (2008). 
 
The SBC approximation starts by the division of the day into staffing periods, just like the SIPP method. 
The difference between these two methods lies in the measuring of a certain backlog bi in each period i 
and carrying it over into future periods j > i. The benefit of this approach is that it allows for queues to 
build up in busy periods and the transfer of waiting customers into the following periods. 
 
For the approximation of the arrival rate in a period, the same approach is used as for the regular SIPP 
method, being the average arrival rate λi. However, instead of determining the performance in each 
period by applying the M/M/s model, the Erlang B system M/M/s/s is used instead. This model is 
designed to describe systems in which there are no queues; if a customer arrives when all servers are 
busy, he is blocked from entry. The probability of customers being blocked in each period i is given by 
Pi(B) and calculated from the Erlang B blocking formula. 
 
The arrival rate that is used for this system is λ̃i = λi + bi−1, which consists of the average arrival rate 
in the current period and the backlog rate of the previous period. Assuming a service rate of µi and si 
available servers in period i, the backlog rate is calculated as follows 
 

λ̃1 = λ1       b0 = 0  
 

Pi(B) = λ̃i

(λ̃i µ⁄ )
ci

ci! ∑
(λ̃i µ⁄ )

k

k!
si
k=0

 

 
 

bi = λ̃iPi(B) 
 
Another added advantage of the SBC method, according to Stolletz, is that it works more accurately 
than the SIPP method in not just underloaded situations, but also when approximating systems that are 
temporarily overloaded.  
 
Because the Erlang B model does not allow for queues to build up, it cannot be applied directly to 
approximate measures such as the expected waiting time in queues or the number of customers waiting. 
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Therefore, Stolletz defined a modified arrival rate (MAR) for each period i as λi
MAR. For this rate, the 

expected utilization of the loss model is calculated first, as follows: 
 

E[Ui] =
λ̃i(1 − Pi(B))

siµ
=

λi + bi−1 − bi

siµ
 

 
In this equation, the portion of incoming and backlogged calls that is not rejected in period i, is 
represented by λ̃i(1 − Pi(B)). Then, the MAR is defined as λi

MAR =  E[Ui]siµ =  λi + bi−1 − bi. This 
definition allows for the stationary delay model, the M/M/s model to be applied with MAR as its arrival 
rate. This follows from the fact that if the assumption is made that E[Ui] is the steady-state utilization of 
an M/M/s model, this measure can be calculated by dividing the arrival rate over the number of agents 
times the service rate parameter. 
 
3.4 Modified-Offered-Load Approximation 

The final approximation method that we will discuss is the Modified-Offered-Load approximation 
(MOL), as introduced by Jennings et al. (1996). This method uses the infinite-server model M(t)/G/∞ to 
approximate the behaviour of the non-stationary M(t)/M/s(t)queueing system. Eick et al. (1993) found 
that the M(t)/G/∞ queue is easier to analyse than almost every other queueing models with time-
dependent arrival rates and they were able to come up with a number of formulas to describe its 
behaviour. Initially, the MOL approximation was designed for non-stationary loss systems, such as the 
Erlang Loss Model with a nonhomogeneous Poisson arrival process, as in Davis et al. (1995). However, 
Massey and Whitt (1997) showed that it can also be applied to delay queueing systems such as the 
M(t)/M/s queue. 
 
The MOL approximation uses a different approach from the previously discussed methods for 
calculating the offered load to the system. The time-dependent expected number of busy servers in the 
M(t)/G/∞ queue is given by the following formula, with G being the cumulative service time 
distribution: 

E[B(t)] = ∫ λ(u) (1 − G(t − u))du
t

0

  

 
This formula can then be used to calculate the approximate arrival rate for the M(t)/M/s(t) in each 
period t as follows: 

λt
MOL = µE[B(t)] = ∫ λ(u)µe−µ(t−u)du

t

0

 

Ingolfsson et al. (2007) refer to λt
MOL as being an effective arrival rate that is an “exponentially 

weighted moving average of the arrival rate”. Eick et al. (1993) showed that the use of this approach for 
the offered load can be expected to give a better approximation of non-stationary queues than the 
approach used by the PSA method, because the service time distribution is taken into account beyond its 
mean. The MOL approximation was found by Ingolfsson et al. (2007) to perform significantly better 
than the Lagged SIPP method in most tested cases. The required computation time was however higher 
for all tested cases. 

First,  the time - dependent number of busy servers  of a  related infinite  server  model is  estimated,  
such  as  at  the  infinite  server  approximation .  And  then, the  obtained number of busy servers  is 
used as the  offered  load  in  a  steady  state model at  each  point  in  time .  Since  the  offered  load is 
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defined as the ratio of the arrival  to the service rate,  the approach can  be  regarded  as  a  pointwise  
stationary  approximation  with  a  modified  arrival  rate. A shortcoming that the MOL approximation 
shares with the other approximations, except for the SBC approximation, is that it requires that the 
system is never overloaded. This means that the arrival rate calculated by the MOL approximation 
should never be bigger than the product of the number of agents available and the service rate. 
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4. Results 

4.1 Data 

To test the performance of the methods in a specific setting, we used a simulated data set for a call 
center. For the ease of use, we only considered the actual arrivals to the call center, the average handling 
times of the calls and the number of agents scheduled to work. The data has the following 
characteristics: 

 The call center is assumed to be open during work days only (Monday through Sunday). The 
opening times are 08:30 – 16:30. 

 Data was simulated for one month of 30 days. 
 The calls are aggregated over a period of 10 minutes, resulting in 30 * 49 = 1470 intervals that 

are considered in total. 
 The incoming number of calls throughout the day follows a Poisson inhomogeneous process. 

We averaged the number of arrivals from a month of real data from a call center, and took these 
values as arrival intensities to simulate new data. The average arrival pattern that was used is 
shown in Figure 4.1. The simulation was done to create fluctuation in the data. The arrivals 
were simulated by drawing from a Poisson distribution with a time-dependent parameter value 
at each time interval. Because of the irrelevance to the experiments, no kind of seasonality or 
day-of-week dependence was taken into consideration in the simulation of the arrivals.  

 The average handling time (AHT) of the calls is assumed to be independent of the agent taking 
the call and to have an expected value of 12 minutes. The assumption is made that the AHT is 
also not time-dependent and exponentially distributed. 

 The assumption is made that agent shifts can only start and end at fixed half hour points.  
 

 
Figure 4.1: Average arrival pattern per 10 minutes to a fictive call center 

 
 
4.2 Performance measure 

For the comparison of the methods that we have implemented we need to define an appropriate 
performance measure. The service level is a performance measure (and target) that is widely used in call 
centers. This measure is defined as the fraction or percentage of calls that wait no more than a certain 
time before proceeding into service. 
In the case of stationarity, a constant arrival rate and a constant number of available agents, the service 
level can be calculated using the Erlang C formula, as below: 
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E[SL] = P(WQ ≤ τ) = 1 − C(s, a)e−(sµ−λ)τ  

 

with     C(s, a) =
as

(s − 1)! (s − a)
[∑

aj

j!
+

as

(s − 1)! (s − a)

s−1

j=0

]

−1

 

 
Here, WQ stands for the average waiting time in the queue, τ stands for the target answering time and 
C(s, a) stands for the probability of a caller having to wait before service. The a in this formula stands 
for the load in the system, which is equal to λ/µ. 
 
The approximation methods that we have described in the previous section all determine the service 
level by assuming a stationary situation, after the calculation of their modified arrival rate and therefore, 
their approximation of the service level can be obtained by the formula above. However, because of the 
non-stationarity of the M(t)/M/s(t) queue, the formula above cannot be used to determine the service 
level in an exact manner. 
 
Ingolfsson et al. (2007) and Green and Soares (2007) determined the following expression for the 
calculation of the time-dependent service level of the M(t)/M/s(t) system: 
 

SL(t) = P(WQ(t) ≤ τ) = 1 − ∑ ps(t)+i(t) ∑
(µτs(t))je−(µτs(t))

j!

i

j=0

∞

i=0

 

 
In this equation ps(t)+i(t) stands for the probability of there being s(t) + i calls in the system at time t. 
As a benchmark, to assess the quality of the approximation methods, we calculated the service level for 
each day in our data by numerically solving the system of differential equations from section 2.6, 
obtaining the state probabilities and using those to solve the equation above. 
 
In our experiments we will be assuming that the call center has a service level of 80% of the calls being 
answered within 20 seconds in each staffing period of half an hour. For solving the system of 
differential equations, we used the ode45 solver in Matlab and divided the day in 490 periods. (Because 
we assume a 8 hour working day with 10 minute intervals, there are 490 minutes in one day.) Therefore, 
we have an estimate of the ‘exact’ service level at each minute of the day. 
 
4.3 Approximation results 

We implemented the approximation methods into a spreadsheet in Microsoft Excel. To measure the 
performance of the approximation methods in assessing the quality of shift schedules, we created a 
number of different  schedules.  

4.3.1 Schedule with overloading 

First, we used an Erlang C Excel add in1 to calculate the number of agents needed to achieve the desired 
service level. However, we assumed that the staffing level is only allowed to change at the beginning of 
a staffing period. Because of this, when the number of incoming calls is higher than the first part in the 
second part of the interval, this means that the service level will probably not reach its target in the 
                                                      
1 http://www.gerkoole.com/CCO/downloads/tools.xls 
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staffing period. To illustrate this, Figure 4.2 shows an example of a situation in which this is the case for 
the staffing period between 09:30 and 10:00.  
 
Calculations show that scheduling in this way leads to over- and understaffing and the system being 
overloaded at multiple times during the day. Despite the fact that the approximation methods are known 
to function best when there is no overload, we would still like to find out which methods functions best 
in these situations, because as mentioned in section 3.1.2, (temporarily) overloaded situations are not 
always undesirable in call centers. We used this way of staffing and tried to approximate the service 
level at each 10 minute point for all 30 days in the call center individually.  
 

 

Figure 4.2: Number of incoming calls versus the number of scheduled agents (overloaded case) 

Now, if we calculate the exact service level at each minute by solving the differential equations, we can 
use this as a benchmark for the performance of the approximations. Doing this for the configuration in 
Figure 4.2, we get the service level behaviour as shown in Figure 4.3.  
 

 

Figure 4.3: Exact behaviour of service level for example in Figure 4.2 

From Figure 4.3 it is obvious that the system is overloaded at multiple times during the day, because the 
service level drops to very low peaks. This means that this staffing schedule needs to be adjusted if the 
performance goal is to be met.  
 
Now, when we try to approximate this behaviour of the service by the previously discussed 
approximation methods, we get the figures as shown in the appendix, section 7.1. The results for this 
example clearly indicate that some methods perform better than others. For example, the SIPP Lag Avg 
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and the SBC approximations show a good fit. The PSA and SIPP performance is evidently influenced 
by the periods in which the system is overloaded.  
 
For the MOL method, we see a quite good fit at the end of the day, but a really bad fit in the morning. 
This might be the result of the method needing a certain ‘warm up period’. To assure that the method is 
implemented correctly, we validated it with a situation in which the arrival rate remains constant and 
calculated the resulting integral. 
 
To compare the results for all 30 days, we calculate their differences with the exact service level by 
using the sum of squared errors (SSE) measure: 

𝑆𝑆𝐸 =  ∑(𝑥𝑖 − 𝑥𝑖)2

𝑁

𝑖=1

 

Table 4.4 shows the error values of each of the methods: 

Method SSE 
PSA 169.38 
SIPP 141.83 
SIPP Lag Avg 151.27 
SIPP Lag Max 351.70 
SBC 83.01 
MOL 225.22 

Table 4.4: SSE results for schedule with overload 

From these results it is obvious that the SBC method is far better in approximating the service level in 
this case where we allow for the system to be overloaded. The SIPP Lag Max is the worst performing 
method. Also, where the computation time of solving the differential equations was equal to 306 
seconds, the computation time of the approximations methods is all negligible.  
 
4.3.2 Schedule without overloading 

To test the methods in the situations in which they are assumed to work best, we created a schedule in 
which the traffic intensity was not allowed to exceed one, and hence overloading was forbidden. We 
created this schedule by increasing the number of agents in the overloaded intervals of the first one. 
Figure 4.5 shows the exact behaviour of the service level for an example arising from this schedule.  

 

Figure 4.5: Exact behaviour of service level for example without overloading 
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The approximations of this behaviour are shown in the appendix, section 7.2. What is noticeable right 
away is that most methods perform far better than they did in the overloaded situation. Except for the 
SIPP Lag Max and the PSA approximations, the methods seem all to give a quite reasonable fit. The 
SBC approximations looks like the most suiting one. To validate these observations we calculated the 
error values of these fits for all 30 days. Table 4.6 shows the SSE measures for all six methods. 

Method SSE  
without overloading 

SSE  
with overloading 

PSA 105.62 169.38 
SIPP 67.08 141.83 
SIPP Lag Avg 118.42 151.27 
SIPP Lag Max 467.62 351.70 
SBC 26.12 83.01 
MOL 71.63 225.22 

Table 4.6: SSE results for schedule without overload 

Except for the SIPP Lag Avg and the SIPP Lag Max, all other methods produce a significantly lower 
error than in the schedules where we allowed for overloading. The SBC approximation again comes out 
on top. Furthermore, we see that the MOL method has an error that is three times smaller than in our 
previous results, which indicates that this method is highly susceptible to overloading. 
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5. Discussion 

The aim of this paper was to explore and evaluate the methods available to assess the quality of agents’ 
shifts schedules in call centers. Based on literature and our own implementation we were able to 
compare the performance of the Pointwise Stationary Approximation, the different variants of the 
Stationary Independent Period-by-Period method, the Stationary Backlog Carryover approximation and 
the Modified Offered Load in approximating the service level. 
 
All approximation methods were found to have a computation time that is negligible compared to the 
calculation of the numerical solutions. Implementing the Pointwise Stationary Approximation and the 
Stationary Independent Period-by-Period methods was quite simple. However, implementation of the 
Stationary Backlog Carryover and the Modified Offered Load approximations took quite some time and 
effort. 
 
The Stationary Backlog Carryover approach was found to give the best fitting approximation in both 
overloaded and regular situations. The extensive comparison of Ingolfsson et al. (2007) was completed 
before the paper on the Stationary Backlog Carryover was published by Stolletz in 2008. This method, 
together with the Modified Offered Load approximation, does not ignore the dependence between 
successive periods. The Modified Offered Load method was found to perform second best to the 
Stationary Backlog Carryover method.  
 
In accordance with previous research we found that most of the methods perform better when the 
schedules were constructed in a way that does not allow for overloading. Because of their use of the 
Erlang C model to calculate the service level in a certain staffing period, all investigated methods have 
the underlying assumption that stationarity is reached within the staffing period. However, when queues 
build up between periods, the transient period might not be small enough for stationarity to be reached 
in each of the periods. Unfortunately, no method was found in which this assumption was totally absent. 
 
Because of the time limitations, the number of tested scenarios was not as extensive as we would have 
liked. Furthermore, not all available methods could have been evaluated. With more time open, fluid 
model approximations could have provided for a fascinating added value to the comparison.  
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7. Appendix 

7.1 Service level approximations for overloaded example 
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6.2 Service level approximations for example without overload 
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