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Preface

This paper has been written as part of the course Business Mathematics and
Informatics (BMI). The BMI-paper is one of the final subjects. The scope of
this work is to investigate the available literature in reference to a topic related
to at least two out of the three fields integrated in the BMI course. Specifically,
this paper deals with the use of network flow techniques to solve Job
Management problems.

This BMI paper first starts with an overview of some networks flow problems.
Then several applications are presented that illustrate the practical
importance of these models in the Project Management.

| would like to thank Dr. Evert Wattel for supervising this research and giving
me this interesting idea for investigating this subject and for the available time,
advice and his always enthusiastic feedback!

Francesca Armandillo
Amsterdam, September 2006
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1 Introduction

The scheduling of large projects is an important class of network problems.
This application context was among the earliest successes of network
optimization, and the network flow models of project management continue to
be an important management tool used in numerous industries every day.
This paper shows that network flow techniques and project management are
closely related and how these techniques are used to solve some recent
project management problems.

This paper is constructed as follows, first some network flow problems are
discussed who will be used later on to solve three project management
problems. The three project management problems are:

e How to schedule jobs on uniform parallel machines,

e How to determine the minimum project duration when there are
precedence relations between the jobs,

e Just-in Time (JIT) scheduling. This former is an extension to the problem
on how to determine the minimum project duration with some extra
constraints added. In this problem, the minimum project duration is
determined subject to both the precedence constraints and some
additional “just-in-time constraints”.

The paper is divided in 4 Chapters. After the introduction, Chapter 2 and 3
illustrate the topics of: Network flow problems and Project Management. In
Chapter 2 several network flow problems are discussed like the Minimum
Cost Flow problem, Shortest Path problem, and Maximum Flow problem.
These techniques will be needed to solve project management problems in
Chapter 3 where typical Project Management problems are presented and
discussed. Finally, Chapter 4 provides the summary and conclusion.

In this paper it is assumed there that the reader has basic knowledge
concerning graph theory. The basis concepts from the graph theory will be
used in this paper thus mostly without further introduction. For more
background information concerning graph theory the reader is referred to
standard graph books in this area. The second part of the dictations written by
the Open University and used at the course Discrete Mathematics at the Vrije
Universiteit gives a good introduction in the graph theory.

In this paper no management summary has been incorporated, for this it is
referred to the abstract and conclusion in Chapter 4.






2 Network Flow Problems

In this section some network flow models are discussed. These models will be
used to solve several applications in Project Management that illustrate the
practical importance of these models.

2.1 System of difference constraints

The importance of this paragraph is that many network flow problems can be
transformed into a minimum cost flow problem. The minimum cost flow model
is an optimization model that can be written as a mathematical programming
formulation. Due to the frequently described mathematical programming
formulation and its relation to its associated graph in this paper, a short
theoretical text is here introduced to explain how a system of difference
constraints is related to its associated constraint graph.

Suppose a linear system has the following set of m difference constraints in
the n variables x=(x(1),x(2),...,x(n)):

X(J,)—x(1,) <b(k) for each k=1...m

Each system of difference constraints has an associated graph G, the
constraint graph. This graph is used to determine if a system of difference
constraints has a feasible solution. The constraint graph has n nodes
corresponding to the n variables and m arcs corresponding to the m
difference constraints. An arc (ix,jx) of length b(k) in G is associated with the
constraint x(j,)—x(i,) < b(k) .

As an example consider the following system of constraints whose associated
graph is shown in Figure 2.1.

X(3)—x(4) <5
x(4)-x(1) <-10
X(1) —x(3) <8
X(2)-—x@) <-11
X(3)—-x(2) <2
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Figure 2.1 Graph corresponding to a system of difference constraints

Later on in this paper, it will be shown that the constraints are identical with
the optimality conditions for the shortest path problem. These conditions can
only be satisfied if the network contains no negative cycle. A negative cycle is
a directed cycle whose total weight is negative.

The network shown in Figure 2.1 contains a negative cycle 1-2-3 of length -7,
and the corresponding constraints [ X(1) — X(3) <8, x(2) - x(1) < -11,

X(3) — x(2) < 2] are inconsistent because summing these constraints yields the

invalid inequality 0<-1. So there is no feasible solution of this system of
constraints.

2.2  Minimum Cost Flow Problem

The minimum cost flow model is the most fundamental of all network flow
problems. It is possible to transform many network flow problems into a
minimum cost flow problem. This is shown in the Minimum cost problem
formulation paragraph under each different network flow problem.

The minimum cost flow problem is used to solve the Just-in-Time scheduling
application discussed later on in this paper (Chapter 3.1.3).

2.2.1 Definition

Let G=(N,A) be a directed network defined by a set N of nodes and a set A of
directed arcs. Each arch (i,j) € A has an associated cost c; that denotes the
cost per unit flow on that arc.

Each arc (i,j) €A also has an associated capacity u;that denotes the
maximum amount of flow on the arc and a lower bound /; that denotes the
minimum amount that must flow on the arc.



Each node i € N has an associated integer number b(i) representing its
supply/demand.

e If b(i)>0, node i is a supply node;

e if b(i)<0, node i is a demand node with demand of -b(i);

e if b(i)=0, node i is a transhipment node.
In most applications, like the ones that are discussed in this paper, the lower
bounds on arc flows are assumed to have value zero. An example of a
network with supply and demands nodes is shown in Figure 2.2.1.

Network G:
Supply Demand
nodes nodes
b(1)>0 b(8)<0
b(2)>0
b(8)>0 b(6)<0

Figure 2.2.1 Network with demands/supply nodes

2.2.2 Mathematical programming formulation

In paragraph 2.2.2.1, the standard Primal and Dual form is explained and
paragraph 2.2.2.2 discusses the primal and dual form of the Minimum Cost
flow problem.

2.2.2.1 Standard Primal-Dual form

Linear programming problems are optimization problems (or mathematical
programming problems) in which the objective function and the constraints
are all linear. Every linear programming problem, referred to as a primal
problem, can be converted into a dual problem, which provides an upper
bound to the optimal value of the primal problem.

In optimization theory, the duality principle states that optimization problems
may be viewed from either of two perspectives, the primal problem or the dual
problem. The duality theorem states that in the linear case there is a direct
computational equivalence between the solution to the primal problem and the
solution to the dual problem: the maximum objective function values of the
dual equals the minimum objective function of the primal.

There is a dual for any maximization problem which is a minimization
problem. If the primal problem is a maximizing problem, then the dual problem
is @ minimizing problem (and reversed).



The standard primal form of a linear programming can be expressed as
follows:

n
Maximize Z:CJ-Xj
j=1

n

subject to Zaijxj {<,or=or>} D fori=1,...m
-1

and szo for j=1,..n

The standard primal form is a maximizing problem with <,>or = constraints
and the objective function is a linear combination of n variables and m
constraints. The goal is to maximize the value of the objective function subject
to the constraints. A solution is a vector (a list) of n values that achieves the
maximum value for the objective function.

In the dual problem, the objective function is a linear combination of the m
values that are the limits in the m constraints from the primary problem. There
are n dual constraints, each of which places a lower bound on a linear
combination of m dual variables.

The dual problem of the primal problem stated above, can be formulated as:
Minimize ibiyi

i=1
subject to iaijyi >, for j=1,...n (with a,b&c being the same as in the
i=1
primal problem)
and
e yi<0ifthei™ primal constraint is a “>" constraint
e ;>0 if thei™ primal constraint is a “<” constraint
yi can be as well negative as positive (unrestricted) if the i primal
constraint is a “=" constraint

As already mentioned, the dual form has m decision variables and n
constraints. A new variable y; is associated with each constraint / in the primal
problem.

So summarized, from a standard maximum problem, the dual problem is
found as follows:

1. A variable is associated to every constraint in the primal.

2. The coefficients on the right side of the main constraints of the primal
become the coefficients of the objective function of the dual.

3. The coefficients of the variable x; in the primal become the coefficients of
the first constraint of the dual (etc).

4. The inequalities are reversed.



Here below an example is given to illustrate how the dual problem is worked
out.

Maximize 7x, +5x, +4x,

subject to 2%, +3X, +5X, =8
X, + X, +X; =2

and X4,X2,X3 >0
Then the dual is:

Minimize 8y, +2y,

2y, +Yy,>7
3y,+Y, 25
S +Yy, >4

subject to

and y4< 0 and y, unrestricted

Another example is given that illustrates the dual problem.

Maximize ¢ x+c,y

subject to AX<b
By =d
and x>0

A variable is associated to each constraint in the primal, obtaining two
variables u and v. Then the maximum problem above is turned into a dual
problem:

Minimize ub+vd

subjectto JUAZC
VB =c,

and u> 0 ,v unrestricted

The book Modelbouw in de Operations Research (Tijms 1994) can give more
insight about this subject.



2.2.2.2 Primal-Dual form of Minimum Cost Flow problem

The decisions variables in the minimum cost flow problem are arc flows and
the flow on an arc (i,j) €A is represented by x;. The minimum cost flow
problem is the problem to find a flow from s to t with minimum cost.

This flow problem is an optimization model formulated as follows:

Minimize PERC s (2.2.2a)
(4714

subjectto % x;— ¥ x; = bfi) forallieN (55 p)
G:(i) A} G =A)

0 < x; < u; for every arc (i, j) e A (2.2.2.¢)

where ZN:b(i) =0

i=1

Constraint (2.2.2 b) is referred as the mass balance constraints.

It just states that the outflow minus inflow must equal supply/demand of the
node. If the node is a demand node, its inflow exceeds its outflow; and if the
node is a supply node, its outflow exceeds its inflow. If b(i)=0, the inflow
equals its outflow.

Constraint (2.2.2 ¢) is referred as the flow bound constraints, which states that

a flow must also satisfy the lower bound and the capacity constraints.

In this paper it is assumed that the networks only have transhipment nodes, in
this way b(i) always equals zero. This type of linear problem can be referred
as a primal problem. The dual problem can be found as illustrated in

paragraph 2.2.2.1; for the minimum cost flow problem, the variable (i) can be
associated with the mass balance constraint of node /, and the variable a; with

the capacity constraint of arc (i,j). In terms of these variables, the dual
minimum cost flow problem can be stated as follows according to Orlin
(1993):

Maximize > b(i)z(i)- D u;a;

ieN (i,])eA
subjectto z(i)—7z(])—a; <c;  forall (i,j) €A

a; 20 for all (i,j) €A
and 7z(]) unrestricted for all j € N



2.2.3 Successive Shortest Path Algorithm

Many algorithms for solving the minimum cost flow problems combine
ingredients of both shortest path and maximum flow algorithms. Here only
one, the successive shortest path algorithm, is discussed. This algorithm is
one of the most fundamental algorithms for solving the minimum cost flow
problem. This algorithm incrementally loads flow on the network from some
source to some sink node, each time selecting an appropriately defined
shortest path.

It selects at each step a node s with excess supply (i.e. supply not yet sent to
some demand node) and a node t with unfilled demand and sends flow from s
to f along a shortest path in the residual network. With residual network the
“remaining flow network “is meant.

The algorithm terminates when the current solution satisfies all the mass
balance constraints.

Definition

A residual network denoted G(x) corresponding to a flow x is defined as
follows. Replace each arc (i,j) €A by two arcs (i,j) and (J,i). The arc (i,j) has
cost ¢; and residual capacity rj=u;-x;, and the arc (j,i) has cost ¢;=-c; and
residual capacity r;=x;. The residual network consists only of arcs with positive
residual capacity.

Figure 2.2.3 gives an example of a residual network.

¢ uy)

O—®

source sink

(b)
Figure 2.2.3 lllustrating a residual network: (a) original network G with flow x; (b) residual network G(x)

First some concepts are introduced before the algorithm is described.
In the discussion about the Shortest Path Problem in Chapter 2.3.1, the
shortest path optimality conditions are defined.

These optimality conditions can be written in the following way:

ci =¢; +d(i)—d(j)=0 for all arcs (i,j) €A



This expression has the following interpretation: ci‘} is an optimal “reduced

cost” for arc (i,j) in the sense that it measures the cost of this arc relative to
the shortest path distances d(i) and d(j).

Suppose that a real number 7 (i), is associated to each node i e N. This
number 7 (i) is referred as the potential of node j and is the linear
programming dual variable corresponding to the mass balance constraints for
node i (paragraph 2.2.2). For a given set of nodes potentials, de reduced cost
of an arc (i,j) is defined as : ¢ =c; —z(i) + z(]) . This because 7=-d (see

Chapter 2.3.2).
These reduced costs are applicable to the residual network as well as the
original network.

The successive shortest path algorithm maintains “optimality” of the solution
at every step and terminates when the current solution satisfies all the mass
balance constraints. The term optimality is now described with the use of the
next theorem.

Theorem(Reduced Cost optimality Conditions) A feasible solution x*is an
optimal solution of the minimum cost flow problem if and only if some set of
node potentials 7 satisfy the following reduced cost optimality conditions.

c; 20 for every arc (i,j) in G(x*)

To describe the successive shortest path algorithm, the concept of pseudo-
flows is introduced. A pseudo-flow is a "flow" vector x such that 0 < x < u. It
satisfies only the capacity and nonnegativity constraints: it need not satisfy the
mass balance constraints.

For any pseudo-flow x, the imbalance of node i is defined as.

e =b@+ D x;— DX forallie N

{i(ieAr  {3:(1,1)eA}

If e(i)>0 for some node i, e(i) is referred as the excess of node J; if e(i)<0, then
—e(i) is called the node’s deficit. A node i with e(i)=0 is called balanced. The
residual network corresponding to a pseudo-flow is defined in the same way
that the residual network is defined for a flow.

The successive shortest path algorithm is shown in Figure 2.2.3(i) and will be

illustrated with the example shown in Figure 2.2.3 (ii) where the initial residual
network is shown.

10



algorithm successive shortest path;
begin
x:=0 and 7 :=0;
e(i):=b (i) for all i €N
initialize the sets E:={i:e(i1i)>0} and D:={i:e(1)<0};
while (E#g)do
begin
select a node s € E and a node t € D;
determine shortest path distances d(j) from node s to all other
nodes in G(x) with respect to the reduced costs cjj
let P denote a shortest path from node s to node t;
update 7 = 7T -d ;
0:= min[e(s),-e(t),min{r;5: (i,J) € P}];
augment o units of flow along path P;

update x,G(x),E,D, and the reduced costs;
end;

r

end;
Figure 2.2.3 (i) Successive shortest path algorithm

Initially, E={1} and D={4}. Therefore, in the first iteration, s=71 and t=4. The
shortest path distances d (with respect to reduced costs) are d= (0, 2, 2, 3)
and the shortest path from node 7 to node 4 is 7-3-4.

(%Jm

O—0

e(2)=0
x(2)=0

e(1)=4

e o(4)=-4

#(4)=0

e(3)=0
a(3)=0
Figure 2.2.3 (ii) Initial residual network for x=0 and 77 =0

Figure 2.2.3 (iii) (a) shows the updated node potentials and reduced costs,

and Figure 2.2.3 (iii) (b) shows the solution after the flow has been augmented
min{e(1),-e(4),r3,r3a}=min{4,4,2,5}=2 along path 71-3-4.

11



e(2)=0 S
#(2)=-2 ?r((z))= -2

e(1)=4

#(1)=0 e(d)=4 e(1)=2

z(d)= -3 #(1)=0

e(3)=0
7r(3)= -2

(a)
Figure 2.2.3 (iii) (a) Network after updating the potentials 77
(b) Network after augmenting 2 units along path 1-3-4

In the second iteration, s=1,t=4, d=(0,0,1,1) and the shortest path from node 1
to node 4 is 1-2-3-4. Figure 2.2.3 (iv) (a) shows the updated node potentials
and reduced costs and Figure 2.2.3 (iv) (b) shows the solution after the flow
has been augmented min{e(1),-e(4),r12,r23,rs4}=min{2,2,4,2,3}=2 units of flow.
At the end of the iteration all imbalances become zero and the algorithm
terminates and a minimum cost flow from s to t is found.

(2)=0 -
#(2)=-2 ?r((zz))iz

e(1)=2

=(1)=0 e(d4)=-2 e(1)=0

z(4)=-4 #(1)=0 RIS

#(d)=-4

e(3)=0
z(3)=-3

(a)

Figure 2.2.3 (iv) (a) Network after updating the potentials 7T
(b) Network after augmenting 2 units along path 1-2-3-4
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2.3 Shortest path problem

The shortest path problem is used to solve the Minimum Project Duration
application in Chapter 3.1.2 and the JIT problem in Chapter 3.1.3. The
networks used for determining the Minimum Project Duration application
contain no cycles due to the characteristics of these graphs. This will be
discussed in Chapter 3.1.2. Due to this acyclic property of these graphs, the
shortest path problems are very easy to solve with the algorithm described in
paragraph 2.3.3.

The networks used to solve the JIT problem contain positive directed cycles.
This will be discussed in Chapter 3.1.3. For this reason another algorithm has
to be used to handle these types of networks: The generic-labelling algorithm
is discussed in paragraph 2.3.4.

2.3.1 Definition

Consider a directed network G=(N,A) with an arc length (or arc cost) c;
associated with each arc (i,j) € A. The network has a source s and a sink t.
The length of a directed path is defined as the sum of the lengths of arcs in
the path. The shortest path problem is to determine a path of minimum length
(or cost) from a specified source node s to another specified sink node t.
Denote d(i) as the distance from the source node s to node i along the
shortest path. Now the next theorem about the shortest path optimality
conditions is defined.

Theorem (Shortest path Optimality conditions)
For every node j € N, let d(j) denote the length of some directed path from
the source node to node j. Then the numbers d(j) represent shortest path
distances if and only if they satisfy the following shortest path optimality
conditions:

d(j)<d(i)+c; forall (i,j) € A

These optimality conditions are useful in several aspects. First, they give a
simple validity check to see whether a given set of distance labels does
indeed define shortest paths. Similarly, the optimality conditions provide a
method for determining whether or not a given set of paths, one from node s
to every other node in the network, constitutes a set of shortest paths from
node s. Simply the lengths of these paths are computed and it is seen of
these distances satisfy the optimality conditions. In both cases, the optimality
conditions provide a “certificate’ of optimality, that is, an assurance that a set
of distance labels or a set of paths is optimal. The optimality conditions are
also valuable for other reasons; they can suggest algorithms for solving a
shortest path problem. For example the generic label algorithm discussed in
paragraph 2.3.4 uses the simple idea of repeatedly replacing d(j) by d(j) +c; if
d(j)>d(i)+cij for some arc (ij).

13



2.3.2 Minimum cost problem formulation

The shortest path problem can also be seen as sending 7 unit of flow as
cheaply as possible (with arc flow costs ¢;) from node s to node tin an
uncapacitated network.
The shortest flow problem can then be formulated as minimum cost problem
in the following way according to Orlin(1993):

o Setb(s)=1, b(t)= -1 and b(i)=0 for all other nodes in the minimum cost

flow problem.

The solution to the problem will send 7 unit of flow from node s to node t along
the shortest path. The shortest path formulation can be written as:

1M H Coc X
Minimize j%ﬂg 5

subject to

1 fori=s,

X;— 3 X3 =1 0 fori=s,t
fi:(ien) g:(=A) 1 fori=t
= - "

X;=> 0 forevery arc (i, j) e A
The shortest path dual problem is a special form of the dual minimum cost
flow problem. The shortest path problem contains no arc capacities, so the ¢;

variables can be eliminated from the dual minimum cost problem defined in
paragraph 2.2.2.

Denote d(i) as the distance from the source node s to node i along the
shortest path.

Let d(i)=-xz(i) and b(s)=1, b(t)=-1 and b(i)=0 for the other nodes, then
according to Orlin (1993) the dual minimum cost flow problem becomes the
shortest path dual problem. This dual can be written as:

Maximize d(t)—d(s)
subjectto d(j)—d(i)<c; forall (i,j) € A

2.3.3 Shortest path problems in acyclic networks

A network is acyclic if it contains no directed cycle. The networks used for the
determination of the minimum project duration (Chapter 3.1.2) only deal with
acyclic networks. This paragraph will show how to solve the shortest path
problem on acyclic network even though the arc length might be negative.

Let us label the nodes of a network G=(N,A) by distinct numbers from 1
through n and represent the labelling by an array order (i.e. order(i) gives the
label of node J). This labelling is a topological ordering of nodes if every arc

14



joins a lower-labelled node to a higher- labelled node. That is, for every arc
(i,j) €A, order(i)<order(j).

For example, for the network shown in Figure 2.2.3(a), the labelling shown in
Figure 2.3.3(b) is not a topological order because (5,4) is an arc and
order(5)>order(4), However, the labelling shown in Figure 2.2.3(c) is a
topological ordering.

order(i) order(j)
1 4
© (5)
(3) (s (3) 5
0 ()
2 3 2 4
(a) (b) (c)

Figure 2.3 3 Topological ordering of nodes

Some networks cannot be topologically ordered. For example, the network
shown in Figure 2.3.3(i) has no such ordering. This network is cyclic because
it contains a directed cycle and for any directed cycle W, the condition
order(i)<order(j) for each (i,j) € W can never be satisfied.

)

Figure 2.3 3 (i) Network without a topological ordering of the nodes

Acyclic networks and topological ordering are closely related. A network that
contains a directed cycle has no topological ordering, and conversely, a
network that possesses a topological order cannot contain a cycle. This
observation shows that a network is acyclic if and only if it posses a
topological ordering of its nodes.

The next algorithm is now used to solve the shortest path problem on acyclic
networks, with d(i), the shortest path distance from the source to node i,(Orlin
1993):

1) Set d(s)=0 and the remaining distance labels to a very large number.

2) Examine the nodes in a topological order and for each node i being
examined, the set of arcs emanating from node i are scanned.

3) If for any arc (ij)e A, there is found that d(j)>d(i) + c;, then set d(j)=d(i)+c;.

15



When the algorithm has examined all the nodes once in this order, the
distance labels are optimal. This algorithms works even when the graph has
negative lengths.

2.3.4 Shortest path problems in positive cyclic networks

For the types of problems discussed in this paper. only positive cycled
network are encountered. A positive cycle is a directed cycle whose total
weight is positive.

The algorithm used to solve the shortest path problem for the type of networks
with positive cycles is similar to the one used for the acyclic network. The only
difference is that the acyclic algorithm examines each node and arc exactly
ones in contrast to the algorithm for the positive cyclic network.

The algorithm used for these types of network is called the generic label-
correcting algorithm.

This algorithm maintains a set of distance labels d(.) at every stage. The label
d(j) is either «~ , indicating that a directed path from the source to node j is yet
to be discovered, or it is the length of some directed path from the source to
node j. The algorithm is as follows:

1. Set d(s)=0 and the remaining distance labels to «
2. Ifforany arc (i,j) e A, there is found that d(j)>d(i) + c¢;, then set
d@)=d(i)+c;.

The generic label-correcting algorithm is a general procedure for successively
updating the distance labels until they satisfy the shortest path optimality
conditions of d(j)< d( i) )+c; for all (i,j) €A .

2.4 Longest Path Problem

The longest path and shortest path are closely related. The longest path
problem can be transformed to a shortest path problem by defining arc costs
equal to the negative of the arc length.

To solve the problem, multiply each arc length by -1 and then solve a shortest
path problem. If the network is acyclic the corresponding shortest path
problem is efficiently solved with the algorithm described in paragraph 2.3.3.
If the longest path problem contains any positive length directed cycles, the
resulting shortest path problem contains a negative cycle and it cannot be
solved by any of the techniques discussed in this paper. However, if all
directed cycles in the longest path problem, have nonpositive lengths, then in
the corresponding shortest path problem all directed cycles have nonnegative
lengths and this problem can be efficiently solved with the generic label-
correcting algorithm described in paragraph 2.3.4.

16



2.5 Maximum Flow problem
2.5.1 Definition
The maximum flow problem is the problem of determining the maximum

amount of flow v that can be sent in a given directed network G with arc
capacities given by uj's from a source node s to a sink node t.

Figure 2.5.1 Maximum flow problem

The decision variables in the maximum flow problem are flow x;; on arc (i, j),
and the flow v entering the sink node.

The maximum flow problem can be formulated as the following linear
programming problem:

Maximize v
subject to
v fori=s,
X; = Xj = 0 fori#s,t
{i=(i.j)=A} {iz(ii)=A} v fori=t
- %

0<x;<u;foreveryarc(i,j)ec A

2.5.2 Minimum cost problem formulation

The maximum flow problem can be formulated as minimum cost problem in
the following way according to Orlin(1993):

Set b(i)=0for all i €N, c;=0 for all (ij) € A in the minimum cost flow problem
and introduce an additional arc (t,s) with cost c¢is=-7 and flow bound uss=.
See Figure 2.5.2 as illustration.
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Then the linear programming problem is written as:

Minimize “Xie

subject to Z X — iji =0
{i=(i.j)=A} HEINERY

k; < x; < u; for every arc (i, j) € A

Now the minimum cost flow solution maximizes the flow on arc (t,s). But
because any flow on arc (t,s) must travel from node s to node t through the
arcs in A (because b(i)=0) , the solution to the minimum cost flow problem will
maximize the flow from node s to node t in the original network.

20

15 Cost = -1,
Capacity =

4
Figure 2.5.2 Maximum flow as minimum cost problem

2.5.3 Augmenting path algorithm

There exist several algorithms for finding a maximum flow in a network.

For example: the labelling algorithm, Ford and Fulkerson algorithm and
augmenting path algorithm. Only one, the augmenting path algorithm, will
here be discussed. For more information about these algorithms, Even (1979)
and Orlin (1993) provide more insight.

With the augmenting path algorithm, which is one of the simplest algorithms to
solve the maximum flow problem, a maximum flow is found. This algorithm
searches for an augmenting path in the residual network. An augmenting path
is a path from s to t in the residual network along which more flow can be
pushed in the flow network.

The augmenting path algorithm is described in Figure 2.5.3 (i) and the
maximum flow problem given in Figure 2.5.3 (ii) is used to illustrate the
algorithm. This algorithm proceeds by identifying augmenting paths and
augmenting flows on these paths until the network contains no such path.

18



algorithm augmenting path;
begin
x:=0;
while G contains directed path from node s to node t do
begin
identify an augmenting path P from node s to node t
O:= min{r;5:(i,3) € P};
augment o units of flow along P and update G(x)
end;
end;

Figure 2.5.3 (i) Augmenting path algorithm

source

Figure 2.5.3 (ii) (a) Residual network for the zero flow

Suppose that the algorithms select the path 7-3-4 for augmentation. The
residual capacity of this path is & =min {ry3,r3s=min{4,5}=4. This augmentation
reduces the residual capacity of arc (1,3) to 0 (thus it is deleted from the
residual network) and increases the residual capacity of arc (3,7) to 4 (so this
arc is added to the residual network). The augmentation also decreases the
residual capacity of arc (3,4) from 5 to 1 and increases the residual capacity
of arc (4,3) from 0 to 4. Figure 2.5.3 (ii) (b) shows the residual network at this
stage.

(b)
Figure 2.5.3 (ii) (b) Network after augmenting 4 units along path 1-3-4
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In the second iteration, suppose that the algorithm selects the path 7-2-3-4.
The residual capacity of this path is &=min{2,3, 7}=1. Augmenting 7 unit of flow
along this path yields the residual network shown in Figure 2.5.3 (ii) (c).

Figure 2.5.3 (ii) (c) Network after augmenting 1 unit along path 1-2-3-4

In the third iteration, the algorithm augments 7 unit of flow along the path 7-2-
4. Figure 2.5.3 (ii) (d) shows the corresponding residual network. Now the
residual network contains no augmenting path, so the algorithm terminates.

(d)
Figure 2.5.3 (ii) (d) Network after augmenting 1 unit along path 1-2-3-4

With the use of the next theorem, it is shown that the flow resulted from the
augmenting path algorithm is a maximum flow.

Theorem (Augmenting Path Theorem)
A flow x* is a maximum flow if and only if the residual network G(x*) contains
no augmenting path.

Proof: If the residual network G(x*) contains an augmenting path, clearly the
flow x* is not a maximum flow. Conversely, if the residual network G(x*)
contains no augmenting path, then the cut (B,P)’s capacity equals the
maximum flow, thereby implying that the flow must be a maximum (Ford &
Fulkerson). The set of nodes in B contains all the nodes that can be reached
from the source s through an unsaturated path, and the set of nodes in P
contains the nodes that cannot be reached from the source s through an
unsaturated path.
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2.6 Feasible Flow Problem

The feasible flow problem is formulated as follows:

Does there exist a flow in G that satisfies the capacity constraints?

The feasible flow problem requires the identification of a flow x in a network
G= (N, A) with nodes N, edges A, capacity u; on edges (i,j),source s and a
sink t that satisfies the following constraints:

e fFlow conservation:

X;— 2.X; = b(i) forallieN

{i:(ij)=A} {i:(.i)=A}

As before it is assumed that > b(i) =0

i=1
e Capacity constraint:
0 <x; <uy forevery arc (i, j) € A

This feasible flow problem can be solved by solving a maximum flow problem
on a network as follows according to Orlin (1993).

¢ Introduce two nodes, a source node s and a sink node t.
For each node i with b(i)>0, add an arc (s,i) with capacity b(i) and for
each node j with b(i)<0, add an arc (i,t) with capacity —b(i). This new
network is called the fransformed network. See Figure 2.6 as example.

e Solve a maximum flow problem from node s to node t in the
transformed network.

.
Supply Demand
Supply Demand nodes pema
nodes nodes

b(1)>0 o'o’.o b(5)<0

b(2>0 (2)

b(8)>0 @)‘ (6) b(6)<0

Figure 2.6 Feasible flow problem as maximum flow formulation

ON®

If the maximum flow saturates all the source and sink arcs then the feasible
problem has a feasible solution, otherwise it is infeasible.
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This conclusion can be made because if x is a flow satisfying the above
constraints, the same flow with xs=b(i) for each source arc (s,i) and x;=-b(i) for
each sink arc (i,t) is a maximum flow in the transformed network (since it
saturates all the source and sink arcs).

Similarly, if x is a maximum flow in the transformed network that saturates all
the source and sink arcs, this flow in the original network satisfies the above
constraints. Therefore the original network contains a feasible flow if and only
if the transformed network contains flow that saturates all the source and sink
arcs. This observation shows how a maximum flow problem arises whenever
a feasible solution in a network is needed to be found.
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3 Project Management

3.1 Applications

The planning and scheduling of large projects is an important class of network
problems, such as constructing a building or a highway, planning and
launching a new product, installing and debugging a computer system, or
developing and implementing a space exploration program. This application
context was among the earliest successes of network optimization, and the
network flow models of project management continue to be an important
management tool used in numerous industries every day.

In this chapter, three basic models of project management are considered:
e Model for scheduling jobs on uniform parallel machines,
e Shortest path technique for scheduling projects to achieve the earliest
possible completion,
e Network flow model for Just-in-Time scheduling of jobs in a project.

3.1.1 Scheduling on Uniform Parallel Machines

In this application the problem of scheduling a set J of jobs on M uniform
parallel machines is considered according to the procedure as described in
Orlin (1993). The scheduling problem is to determine a feasible schedule that
completes all jobs before their due dates or to show that no such schedule
exists.

Each job jeJ has:
e aprocessing requirement p; , denoting the number of machine days
required to complete the job

e Avrelease date r;, representing the beginning of the day when job j
becomes available for processing

e Aduedate d; >r; + p;, representing the beginning of the day by
which the job must be completed

The assumptions are that a machine can work on only one job at a time and
that each job can be represented by at most one machine at a time.
However preemptions are allowed. This means that a job can be interrupted
and processed on different machines on different days.

For some problems a schedule is only feasible if preemptions are allowed.
An example of a schedule that is only feasible when preeemptions are
allowed is illustrated in Figure 3.1.1 (a).
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Job (j) 1 2 3 4
Processing time (p;) | 1.5 |3 45 |5
Release time (r;) 2 0 2 4
Due date (d,;) 5 4 7 9

Figure 3.1.1 (a) Scheduling Problem 1

As you can see from Table 1 no schedule is possible unless preemption is
allowed. In Table 2 a feasible schedule is shown when preemption is allowed.

]

Table 1 No pre-emption & No feasible schedule

L B J,

1
Table 2 Preemption & Feasible Schedule

The feasible scheduling problem, described in paragraph 2.6, is a
fundamental problem in this situation. The feasible scheduling problem will
now be formulated as a maximum flow problem.

The formulation will be illustrated using Scheduling Problem 2 described in
Figure 3.1.1 (b) with M=2 machines.

Job (j) 1 2 3 4
Processing time (p;) |15 |1.25 |21 |36
Release time (r;) 3 1 3

Due date (d;) 5 4 7 9

Figure 3.1.1 (b) Scheduling Problem 2

This scheduling problem is solved as follows according to Orlin (1993):

e Rank all release and due dates, r; and dj forall j ,in ascending
order.
e Determine P <2|J|-1 mutually disjoint intervals of dates between

consecutive milestones. Let T x, denote the interval that starts at the
beginning of date k and ends at the beginning of date /+17.
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For the example of Figure 3.1.1 (b), the order of release and due dates is
1,3,4,57,9.

There are five intervals, represented by T 12 T 33, T44 Ts56 , T 78

Notice that within each interval, the set of available jobs (i.e. those released
but not yet due) does not change: all jobs j with r; <k and d; >1+1 can be

processed in the interval.

The scheduling problem can be formulated as a maximum flow problem on a
bipartite network G as follows according to Orlin (1993):
¢ Introduce a source node s, a sink node t, a node corresponding to each
job j, and a node corresponding to each interval T &, , as shown in

Figure 3.1.1 (c) .

e The source node is connected to every job node j with an arc with
capacity p;, indicating that you need to assign p; days of machine time
tojob j.

e Each interval node T «, is connected to the sink node t by an arc with
capacity (I-k+1)M, representing the total number of machine days
available on the days from k to /.

e Finally connect a job node j to every interval node T, if r; <k and

d; >1+1 by an arc with capacity (I-k+1) which represents the

maximum number of machines day you can assign to job j on the days
from k to I.

capacity
indicates
machine time
available during
interval

node per job node per interval

Figure 3.1.1 (c) Network for scheduling uniform parallel machines

25



Now a maximum flow problem is solved on this network: the scheduling

problem has a feasible schedule if and only if the maximum flow equals

Z p; (alternatively, the flow on every arc (s,j) is p;).

jed

The validity of this formulation is easy to establish by showing a 1-1

correspondence between feasible schedules and flows of value Z p; from
jed

the source to the sink; only if every arc (s,j) is p; (so all the arcs (s,j) are

saturated) a feasible schedule exist. This because if one of these arcs is not

saturated, it means that the job corresponding to that arc cannot be

completed.

Figure 3.1.1 (d) illustrates the formulation of a scheduling problem on uniform
parallel machines. It is obvious that the arc (s, 1) will not be saturated in any
maximum flow (due to mass balance constraint). Hence a feasible schedule
does not exist.

Figure 3.1.1 (d) Network with no feasible schedule

Because these are acyclic networks, the augmenting path algorithm (see
paragraph 2.5.3) is used to find a maximum flow. For the Scheduling Problem
2, the maximum flow of 1.25+2+1.5+2.1+1.6=8.45 is found with the
augmenting path algorithm. See Figure 3.1.1 (e).

Because this maximum flow equalsz p; , there is a feasible schedule.
jed
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Figure 3.1.1 (e) Network with maximum flow

Flow decomposition can now be used to transform flows into schedules.

The feasible schedule can be interpreted as follows:

For job 1: assign 1 unit of machine time in period T,, and 0.5 unit of machine

time in period T, ,.

For job 2: assign 1.25 unit of machine time in period T, , .

For job 3: assign 1 unit of machine time in period T,,, 1 unit of machine time

in period T,, and 0.1 unit of machine time in period T, .

For job 4: assign 2 unit of machine time in period T;and 1.6 unit of machine

time in period T .
A feasible schedule is shown in Table 4.

Table 4 A feasible schedule for Scheduling Problem 2

27



3.1.2 Determining Minimum Project Duration

In this application a shortest path technique for scheduling projects to achieve
the earliest possible completion time will here be discussed according to the
procedure as described in Orlin (1993).

A project is viewed as a collection of jobs and a set A of precedence relations
between the jobs. A job is represented by a node and the precedence
relationship between two activities is represented by a directed arc in which
the direction of the arrow specifies the precedence. A characteristic of this
network graph:

e By construction, the network contains no cycles, since otherwise by
tracing around the cycle it would be concluded, by the transitivity
property of precedence, that a task must precede itself, which is an
impossibility.

If (i,j) € A, job iis to be completed before beginning job j. Each job j has also
a known duration d;. The problem is to determine a project schedule (i.e., the
start time of each job) that will satisfy the precedence relations between the
jobs and complete the project in the least possible amount of time. This gives
the least possible project duration.

Consider, for example, the project planning problem given in Table 3.1.2.
According to Orlin (1993), this project planning problem can be formulated as
a shortest path problem where the jobs are represented by nodes as follows:

e Define a project network by associating a node j with each job j and by
including arc (i,j) whenever job i is an immediate predecessor of job j.

o Set the length ¢; of arc (i,j) equal to dj, the duration of job i.

e Introduce a source node s, the beginning of the project and connect it
to every other node that has no incoming arc (So the jobs without
predecessors) by zero-length arcs.

e Similarly introduce a sink node ¢, the end of the project, and connect
every node j with no outgoing arc to this sink node by an arc (i,f) whose
length equals the duration of job i.

Job Duration Immediate predecessors
a 14 -

b 3 -

C 3 a,b

d 7 a

e 4 d

f 10 c.e

Table 3.1.2 Project planning problem

Figure 3.1.2 (a) gives the network corresponding to the project planning
example shown in Table 3.1.2.
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Figure 3.1.2 (a) Shortest path formulation of the project planning problem

Note that the network corresponding to any project planning model must be
acyclic because a network containing a cycle could never be completed, since
otherwise by tracing around the cycle it would be concluded that a task must
precede itself, which is an impossibility.

Let u(j) denote the earliest possible starting time of job jin a project planning
schedule that satisfies the precedence constraints. Notice that with respect to
quantities u(j), the project duration is u(t)-u(s).

The project planning problem can be stated as the following optimization
model:

Minimize u(t)-u(s)

subjectto wu(j)-u(i) >c;forall (i,j) € A

The constraint models the precedence constraint by stating that if job j is an
immediate predecessor of job j, then job j can start only after ¢;=u; units of
time have elapsed since the start of job i. This optimization model has for the
attentive reader already been mentioned in this paper. It is the dual form of
the shortest path problem.

To bring this problem into a more familiar network flow form, the dual is taken
(so the primal is obtained).
If the variables x; are associated with the constraint, the linear program is:

Maximize 2.ci%
LA}
subject to

1 fori=s,

X;— 9 Xz =1 0 fori=s,t
g:ien) G:fineAy 1 fori=t
e =L

x;2 0 for every arc (i, j) e A
Clearly, this is a longest path problem with c; as the length of arc (i,j): the
29



objective is to send 1 unit of flow from node s to node t along the longest path.
To solve the problem, multiply each arc length by -1 and then solve a shortest
path problem. This is possible because the network is acyclic so no negative
cycles are created.

For the project planning example shown in Table 3.1.2, the network becomes
as shown in Figure 3.1.2(b) and now a shortest path problem is solved with
the algorithm described in Chapter 2.3.3.

Figure 3.1.2 (b) Shortest path formulation of the project planning problem

First the nodes are labelled in a topological ordered. Recall from Chapter
2.3.3 that nodes are in a topological order if i<jfor every (i,j)e A.

An example of a topological order is shown in Figure 3.1.2 (c) where the order
number of each node is shown above the node for the upper part of the
graph, and under the node for the lower part of the graph.

Figure 3.1.2 (c) Project planning problem with nodes labelled in a topological ordered

Now set d(s)=0 and the remaining distance labels to «.

Then nodes are now examined in a topological order and for each node i
being examined, the arcs emanating from node i are scanned.

If for any arc (ij)e A, there is found that d(j)>d(i) + c;, then set d(j)=d(i)+c;
After applying this algorithm to the project planning problem, Figure 3.1.2 (d)
is obtained and the optimal solution is found of 35. So the minimum project
duration is 35.
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d(a)=0 d(d)=-1 47 d(e)=-21

14
(D)

14 -4
- \‘\ X‘\
-3 -3 -10
© (5 (D

d(b)=0 d(c)=-14 d(f)=-25 d(t)=-35

Figure 3.1.2 (d) Project planning problem with shortest path at every node.
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3.1.3 Just in Time Scheduling

The just-in-time scheduling is an extension of the project planning problem
discussed in the former paragraph. In the JIT problem, the minimum project
duration is determined subject to both the precedence constraints and some
additional “just-in-time constraints”.

In this problem a subset Sc A and a number a; for each (i,j) € Sis given.

The just in time constraints state that for each (i,j) € S, job j must start within
a; units of time from the start of job .

Denote with u(i) the earliest start times of job /, then the just-in-time

constraints require that:
u(j) <u(i) + forall (i,j) € S

or, equivalently,

u(i) —u(j) 2 —«; forall (i,j) € S
The start times must also satisfy the usual precedence constraints:

u(j)—u()=cy forall (i,j)) € A
In the just-in-time scheduling problem, the objective is:

Minimize u(t)-u(s)
subject to u(i) —u(j) = —«; forall (i,j) € S
u(j)—u()=cy for all (i,j) € A

Like in the former application problem for determining the minimum project
duration, this can be solved as a longest path problem , in this case on an
network G’=(N,A’) whose arc set A’ includes an arc (i,j) of cost ¢;; for each (i)
e A and an arc (j,i) of cost -a; for each (i,j) € S according to Orlin (1993).

Job Duration | Immediate predecessors | JIT constraints
a 14
b 3
c 3 a,b —
d 7 a 14
e 4 d 7
f 10 c.e ---
Table 3.1.3 Project planning problem with JIT constraints

To transform this longest path problem into a shortest path problem, multiply
each arc cost by -1.For the project planning example shown in Table 3.1.3,
the network becomes as shown in Figure 3.1.3 (a).
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Figure 3.1.3 (a) Project planning problem

Notice that in this case the augmented network G’ might not be acyclic and
the resulting shortest path problem might contain a negative cycle (so a
positive cycle in the longest path problem). The presence of a negative cycle
in the shortest path problem (or positive cycle in longest path problem)
indicates that the JIT problem has no feasible solution. This is explained as
follows.

The just-in-time constraints require that:

u(i) —u(j) = —«; forall (i,j) € S
u(j)—u()=cy forall (i,j)) € A

This can be seen as that in the longest path problem:
C; —a; <0 forall(i,j)e S

This can be seen in the shortest path problem as:
a; —C; 20 forall (i,j) € S

If there would be a positive cycle in the longest path problem, then ¢; —a; >0

so this would be in contradiction with the just-in-time constraint that
¢; —a; <0 and so there would not be a feasible solution.

If there would be a negative cycle in the shortest path problem, then
a; —¢; <0 so this would be in contradiction with the just-in-time constraint for

the shortest path problem that «; —c; >0 and so there would not be a
feasible solution.

When the resulting shortest path problem has no negative cycle, the negative
of the shortest path distances provide optimal start time for the jobs. For
graph shown in Figure 3.1.3 (a), it is seen that the network contains no
negative cycles. So the generic label-correcting algorithm can be used to
solve this problem. By applying this algorithm the minimum duration of 35 is
obtained. In Figure 3.1.3 (b) the graph is shown with at every node the
shortest path distances.
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d(b)=0 d(c)=-14 d(f)=-25 d(t)=-35

Figure 3.1.3 (b) Project planning problem with shortest path at every node

Suppose now that instead of imposing an upper bound on when job j should
start after the start of job i, the time difference between the completion of job i
and the start of job j is penalized using a penalty factor of dj

The objective is to determine the start times of jobs that will minimize this
penalty and yet satisfy the restriction that the project duration is at most a
specified constant A.

The following linear program models this problem:

Minimize D (u(j)—-u(i)-c;)d;
(i,j)eA
subject to —u(t)+u(s)>-1,
u(j)—u()=cy forall (i,j)) € A
u(j) unrestricted for all j e N

Let D= >d;- >d,
{i:(i.h)eA {j:(i,j)eA

The dual of this model according to Orlin (1993) is:

Maximize D ciXy — AXg
(i)

subject to > Xe— D.Xg+X, =Dy,
(DA (idshea
> X;— D.x; =D foralli # sort

{i:(i.heA (i€, J)eA

Xit_ thj — Xgs =Dt!
{i:(i.eA {J:(t ))eA
X; =20 for all (i,j) € A

This problem is a minimum cost network flow problem with an arc (t,s) from
the end node f to the start node s and can be solved using the Successive
Shortest path algorithm.
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3.2 Relevant literature

There is considerable amount of literature concerning Job Management and
Network flows that can be found in technical libraries or on the Internet.
Among the available literature, the best available resource is without doubt:
Network Flows by Orlin, Ahuja and Magnanti. This book has been the winner
of the 1993 Lanchester Prize for the best English publication in Operations
Research. This book is rich in theory, as well as in algorithms and applications
dealing with all the topics addressed in this paper. Orlin’s book appears as the
most complete and relevant publication, it is also the most referenced book in
the literature. Other publications of interest that can be mentioned for more
additional information are respectively for:

“ Scheduling on Uniform parallel machines”

e Preemptive Scheduling of Uniform Machines by Ordinary Network Flow
Techniques by Groenevelt.H, Federgruen A. Management Science
(1986)

“ Determining minimum project duration”

e Activity Networks:Project Planning and Control by Network Models by
Elmaghraby S. (1977)

“Just In Time Scheduling”

e Activity Networks:Project Planning and Control by Network Models by
Elmaghraby S. (1977)

e A network flow algorithm for Just-In-Time scheduling by Levner E.V.,
Nemirovsky, A.S
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4 Abstract

This paper provides a basis for solving project management problems by
means of network flow techniques. At first, some network flow problems are
discussed which will be used later to solve three project management
problems.

The three project management problems that are here discussed are:

1. How to schedule jobs on uniform parallel machine such that there is
a feasible schedule (all the jobs finish on time).

2. How to determine the minimum project duration when there are
precedence relations between the jobs.

3. Just-in-Time scheduling problem. This is an extension to the
problem of how to determine the minimum project duration with
some extra constraints added

The first project management problem will be solved using a network flow
technique called the maximum flow problem. Before being able to do this, the
feasible scheduling problem will have to be formulated as a maximum flow
problem. Thereafter a maximum flow problem is solved on the network. It will
show that the scheduling problem has a feasible schedule if and only if the
maximum flow equals the sum of the flows on every arc emanating from the
source.

The second project management problem will be solved using a technique
called, the shortest path problem. First the project planning problem is
formulated as a shortest path problem and hereafter it is solved using this
technique.

The third project management problem will be also solved using the shortest
path problem. In this problem, the minimum project duration is determined
subject to both the precedence constraints and some additional “just-in-time
constraints”. An extended version of this problem is also considered. This
version also includes a penalty for the time difference between the completion
of a job and the start of another job. This problem is solved according to the
minimum cost flow technique.
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