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Preface 
 
This paper has been written as part of the course Business Mathematics and 
Informatics (BMI). The BMI-paper is one of the final subjects. The scope of 
this work is to investigate the available literature in reference to a topic related 
to at least two out of the three fields integrated in the BMI course. Specifically, 
this paper deals with the use of network flow techniques to solve Job 
Management problems. 
 
This BMI paper first starts with an overview of some networks flow problems. 
Then several applications are presented that illustrate the practical 
importance of these models in the Project Management.  
 
I would like to thank Dr. Evert Wattel for supervising this research and giving 
me this interesting idea for investigating this subject and for the available time, 
advice and his always enthusiastic feedback! 
 
Francesca Armandillo 
Amsterdam, September 2006 
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1   Introduction 
 
The scheduling of large projects is an important class of network problems. 
This application context was among the earliest successes of network 
optimization, and the network flow models of project management continue to 
be an important management tool used in numerous industries every day. 
This paper shows that network flow techniques and project management are 
closely related and how these techniques are used to solve some recent 
project management problems. 
 
This paper is constructed as follows, first some network flow problems are 
discussed who will be used later on to solve three project management 
problems. The three project management problems are:  
• How to schedule  jobs on uniform parallel machines, 
• How to determine the minimum project duration when there are  

precedence relations between the jobs, 
• Just-in Time (JIT) scheduling. This former is an extension to the problem 

on how to determine the minimum project duration with some extra 
constraints added. In this problem, the minimum project duration is 
determined subject to both the precedence constraints and some 
additional “just-in-time constraints”. 

 
The paper is divided in 4 Chapters. After the introduction, Chapter 2 and 3 
illustrate the topics of: Network flow problems and Project Management. In 
Chapter 2 several network flow problems are discussed like the Minimum 
Cost Flow problem, Shortest Path problem, and Maximum Flow problem. 
These techniques will be needed to solve project management problems in 
Chapter 3 where typical Project Management problems are presented and 
discussed. Finally, Chapter 4 provides the summary and conclusion. 
 
In this paper it is assumed there that the reader has basic knowledge 
concerning graph theory. The basis concepts from the graph theory will be 
used in this paper thus mostly without further introduction. For more 
background information concerning graph theory the reader is referred to 
standard graph books in this area. The second part of the dictations written by 
the Open University and used at the course Discrete Mathematics at the Vrije 
Universiteit gives a good introduction in the graph theory. 
 
In this paper no management summary has been incorporated, for this it is 
referred to the abstract and conclusion in Chapter 4. 
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2 Network Flow Problems 
 
In this section some network flow models are discussed. These models will be 
used to solve several applications in Project Management that illustrate the 
practical importance of these models.  
 

2.1 System of difference constraints 
 
The importance of this paragraph is that many network flow problems can be 
transformed into a minimum cost flow problem.  The minimum cost flow model 
is an optimization model that can be written as a mathematical programming 
formulation. Due to the frequently described mathematical programming 
formulation and its relation to its associated graph in this paper, a short 
theoretical text is here introduced to explain how a system of difference 
constraints is related to its associated constraint graph. 
 
Suppose a linear system has the following set of m difference constraints in 
the n variables x=(x(1),x(2),…,x(n)): 
 

)()()( kbixjx kk ≤−   for each k=1…m 
 
Each system of difference constraints has an associated graph G, the 
constraint graph. This graph is used to determine if a system of difference 
constraints has a feasible solution. The constraint graph has n nodes 
corresponding to the n variables and m arcs corresponding to the m 
difference constraints. An arc (ik,jk) of length b(k) in G is associated with the 
constraint  )()()( kbixjx kk ≤− . 
As an example consider the following system of constraints whose associated 
graph is shown in Figure 2.1. 
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Figure 2.1 Graph corresponding to a system of difference constraints 
 
 
Later on in this paper, it will be shown that the constraints are identical with 
the optimality conditions for the shortest path problem. These conditions can 
only be satisfied if the network contains no negative cycle. A negative cycle is 
a directed cycle whose total weight is negative.   
The network shown in Figure 2.1 contains a negative cycle 1-2-3 of length -1, 
and the corresponding constraints [ 8)3()1( ≤− xx , 1112 −≤− )()( xx , 

] are inconsistent because summing these constraints yields the 
invalid inequality 0

223 ≤− )()( xx
<-1. So there is no feasible solution of this system of 

constraints.  

 

2.2 Minimum Cost Flow Problem 
 
The minimum cost flow model is the most fundamental of all network flow 
problems. It is possible to transform many network flow problems into a 
minimum cost flow problem. This is shown in the Minimum cost problem 
formulation paragraph under each different network flow problem. 
The minimum cost flow problem is used to solve the Just-in-Time scheduling 
application discussed later on in this paper (Chapter 3.1.3). 

2.2.1 Definition 

Let G=(N,A) be a directed network defined by a set N of nodes and a set A of 
directed arcs. Each arch (i,j) ∈A has an associated cost cij that denotes the 
cost per unit flow on that arc.  
Each arc (i,j) ∈A also has an associated  capacity uij that denotes the 
maximum amount of flow on the arc and a lower bound lij that denotes the 
minimum amount that must flow on the arc. 
 
 
 

    
  
  
  
 

  4
  



Each node i ∈ N has an associated integer number b(i) representing its 
supply/demand.  

• If b(i)>0, node i is a supply node;  
• if b(i)<0, node i is a demand node with demand of  -b(i);  
• if b(i)=0, node i is a transhipment node.  

In most applications, like the ones that are discussed in this paper, the lower 
bounds on arc flows are assumed to have value zero. An example of a 
network with supply and demands nodes is shown in Figure 2.2.1. 
 

 
Figure 2.2.1 Network with demands/supply nodes 

 

2.2.2 Mathematical programming formulation  

In paragraph 2.2.2.1, the standard Primal and Dual form is explained and  
paragraph 2.2.2.2 discusses the primal and dual form of the Minimum Cost 
flow problem. 

2.2.2.1 Standard Primal-Dual form 
 
Linear programming problems are optimization problems (or mathematical 
programming problems) in which the objective function and the constraints 
are all linear. Every linear programming problem, referred to as a primal 
problem, can be converted into a dual problem, which provides an upper 
bound to the optimal value of the primal problem.  
 
In optimization theory, the duality principle states that optimization problems 
may be viewed from either of two perspectives, the primal problem or the dual 
problem. The duality theorem states that in the linear case there is a direct 
computational equivalence between the solution to the primal problem and the 
solution to the dual problem: the maximum objective function values of the 
dual equals the minimum objective function of the primal. 
 
There is a dual for any maximization problem which is a minimization 
problem. If the primal problem is a maximizing problem, then the dual problem 
is a minimizing problem (and reversed). 
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 The standard primal form of a linear programming can be expressed as 
follows: 
 

Maximize  ∑
=

n

j
jj xc

1

subject to ∑  { 
=

n

j
jij xa

1
< , or = or >} ib   for i=1,…m 

and jx > 0  for j=1,..n 

 
The standard primal form is a maximizing problem with <,>or = constraints 
and the objective function is a linear combination of n variables and m 
constraints. The goal is to maximize the value of the objective function subject 
to the constraints. A solution is a vector (a list) of n values that achieves the 
maximum value for the objective function. 

In the dual problem, the objective function is a linear combination of the m 
values that are the limits in the m constraints from the primary problem. There 
are n dual constraints, each of which places a lower bound on a linear 
combination of m dual variables. 

The dual problem of the primal problem stated above, can be formulated as: 
Minimize   ∑

=

m

i
ii yb

1

subject to ∑   for j=1,…n  (with a,b&c being the same as in the 

primal problem) 
=

≥
m

i
jiij cya

1

and 
• yi < 0 if the ith primal constraint is a “>” constraint  
• yi > 0  if the ith primal constraint is a “<” constraint  
• yi can be as well negative as positive (unrestricted) if the ith primal 

constraint is a “=” constraint  
 

As already mentioned, the dual form has m decision variables and n 
constraints. A new variable yi is associated with each constraint i in the primal 
problem. 
 
So summarized, from a standard maximum problem, the dual problem is 
found as follows: 
1. A variable is associated to every constraint in the primal. 
2. The coefficients on the right side of the main constraints of the primal 
become the coefficients of the objective function of the dual. 
3. The coefficients of the variable x1 in the primal become the coefficients of 
the first constraint of the dual (etc). 
4. The inequalities are reversed. 
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Here below an example is given to illustrate how the dual problem is worked 
out. 
 
Maximize  321 457 xxx ++
 
subject to      

⎩
⎨
⎧

=++
≥++

2
8532

321

321

xxx
xxx

and x1,x2,x3 > 0 
 
Then the dual is: 
 
Minimize  21 28 yy +
 

subject to  
⎪⎩

⎪
⎨

⎧

≥+
≥+
≥+

45
53
72

21

21

21

yy
yy
yy

 

 
and y1< 0 and y2 unrestricted 
 
Another example is given that illustrates the dual problem. 
 
Maximize  ycxc 21 +
 
subject to      

⎩
⎨
⎧

=
≤

dBy
bAx

and x> 0 
 
A variable is associated to each constraint in the primal, obtaining two 
variables u and v. Then the maximum problem above is turned into a dual 
problem: 
 
Minimize  vdub +
 
subject to      

⎩
⎨
⎧

=
≥

2

1

cvB
cuA

and u> 0 ,v unrestricted 
 
The book Modelbouw in de Operations Research (Tijms 1994) can give more 
insight about this subject. 
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2.2.2.2 Primal-Dual form of Minimum Cost Flow problem 
 
The decisions variables in the minimum cost flow problem are arc flows and 
the flow on an arc (i,j) ∈A is represented by xij. The minimum cost flow 
problem is the problem to find a flow from s to t with minimum cost. 
This flow problem is an optimization model formulated as follows:  

 
 (2.2.2 a) 
 
 
 
(2.2.2 b) 
 
 
(2.2.2. c) 
 
 

where ∑     
=

=
N

i
ib

1
0)(

 
Constraint (2.2.2 b) is referred as the mass balance constraints. 
It just states that the outflow minus inflow must equal supply/demand of the 
node. If the node is a demand node, its inflow exceeds its outflow; and if the 
node is a supply node, its outflow exceeds its inflow. If b(i)=0, the inflow 
equals  its outflow. 
Constraint (2.2.2 c) is referred as the flow bound constraints, which states that 
a flow must also satisfy the lower bound and the capacity constraints.  
 
In this paper it is assumed that the networks only have transhipment nodes, in 
this way b(i) always equals zero. This type of linear problem can be referred 
as a primal problem. The dual problem can be found as illustrated in 
paragraph 2.2.2.1; for the minimum cost flow problem, the variable π(i) can be 
associated with the mass balance constraint of node i, and the variable αij with 
the capacity constraint of arc (i,j). In terms of these variables, the dual 
minimum cost flow problem can be stated as follows according to Orlin 
(1993): 
 
Maximize  ∑∑

∈∈

−
Aji

ijij
Ni

uiib
),(

)()( απ

 
subject to  ijij cji ≤−− αππ )()(  for all (i,j)  ∈A 
 
  0≥ijα   for all (i,j)  ∈A 
and    )( jπ     unrestricted for all j ∈  N 
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2.2.3 Successive Shortest Path Algorithm 

Many algorithms for solving the minimum cost flow problems combine 
ingredients of both shortest path and maximum flow algorithms. Here only 
one, the successive shortest path algorithm, is discussed. This algorithm is 
one of the most fundamental algorithms for solving the minimum cost flow 
problem. This algorithm incrementally loads flow on the network from some 
source to some sink node, each time selecting an appropriately defined 
shortest path. 
It selects at each step a node s with excess supply (i.e. supply not yet sent to 
some demand node) and a node t with unfilled demand and sends flow from s 
to t along a shortest path in the residual network. With residual network the 
“remaining flow network “is meant. 
The algorithm terminates when the current solution satisfies all the mass 
balance constraints. 
 
Definition  
A residual network denoted G(x) corresponding to a flow x is defined as 
follows. Replace each arc (i,j) ∈A by two arcs (i,j) and (j,i). The arc (i,j) has 
cost cij and residual capacity rij=uij-xij, and the arc (j,i) has cost cji=-cij and 
residual capacity rji=xij. The residual network consists only of arcs with positive 
residual capacity. 
 
Figure 2.2.3 gives an example of a residual network.

 
Figure 2.2.3 Illustrating a residual network: (a) original network G with flow x; (b) residual network G(x) 
 
 
First some concepts are introduced before the algorithm is described. 
In the discussion about the Shortest Path Problem in Chapter 2.3.1, the 
shortest path optimality conditions are defined. 
These optimality conditions can be written in the following way: 
 

0≥−+= )()( jdidcc ij
d
ij  for all arcs (i,j) ∈A 

    
  
  
  
 

  9
  



This expression has the following interpretation:  is an optimal “reduced 
cost” for arc (i,j) in the sense that it measures the cost of this arc relative to 
the shortest path distances d(i) and d(j). 

d
ijc

 
Suppose that a real number π (i), is associated to each node i ∈N. This 
number π (i) is referred as the potential of node i and is the linear 
programming dual variable corresponding to the mass balance constraints for 
node i (paragraph 2.2.2). For a given set of nodes potentials, de reduced cost 
of an arc (i,j) is defined as : . This because )()( jicc ijij πππ +−= π =-d (see 
Chapter 2.3.2). 
These reduced costs are applicable to the residual network as well as the 
original network.   
 
The successive shortest path algorithm maintains “optimality” of the solution 
at every step and terminates when the current solution satisfies all the mass 
balance constraints. The term optimality is now described with the use of the 
next theorem. 
 
Theorem(Reduced Cost optimality Conditions) A  feasible solution x* is an 
optimal solution of the minimum cost flow problem if and only if some set of 
node potentials π satisfy the following reduced cost optimality conditions. 

0≥π
ijc   for every arc (i,j) in G(x*) 

To describe the successive shortest path algorithm, the concept of pseudo-
flows is introduced. A pseudo-flow is a "flow" vector x such that 0 < x < u. It 
satisfies only the capacity and nonnegativity constraints: it need not satisfy the 
mass balance constraints. 
For any pseudo-flow x, the imbalance of node i is defined as.  
 

∑∑
∈∈

−+=
}),(:{}),(:{

)()(
AjiJ

ij
Aijj

ji xxibie  for all i∈  N 

 
If e(i)>0 for some node i , e(i) is referred as the excess of node i; if e(i)<0, then 
–e(i) is called the node’s deficit. A node i with e(i)=0 is called balanced. The 
residual network corresponding to a pseudo-flow is defined in the same way 
that the residual network is defined for a flow. 
 
The successive shortest path algorithm is shown in Figure 2.2.3(i) and will be 
illustrated with the example shown in Figure 2.2.3 (ii) where the initial residual 
network is shown. 
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algorithm successive shortest path; 
begin 
   x:=0 and π :=0; 
   e(i):=b(i) for all i ∈  N 
   initialize the sets E:={i:e(i)>0} and D:={i:e(i)<0}; 
   while (E≠ø)do 

begin 
select a node s ∈ E and a node t ∈ D;  

      determine shortest path distances d(j) from node s to all other  π      nodes in G(x) with respect to the reduced costs cij ;  
      let P denote a shortest path from node s to node t; 

π πupdate  =  -d ; 
∈ P}];  δ:= min[e(s),-e(t),min{r :(i,j) ij

augment δ units of flow along path P; 
update x,G(x),E,D, and the reduced costs; 
end; 

end; 
Figure 2.2.3 (i) Successive shortest path algorithm 
 
Initially, E={1} and D={4}. Therefore, in the first iteration, s=1 and t=4. The 
shortest path distances d (with respect to reduced costs) are d= (0, 2, 2, 3) 
and the shortest path from node 1 to node 4 is 1-3-4. 
 

 
Figure 2.2.3 (ii) Initial residual network for x=0 and π =0 
 
Figure 2.2.3 (iii) (a) shows the updated node potentials and reduced costs, 
and Figure 2.2.3 (iii) (b) shows the solution after the flow has been augmented 
min{e(1),-e(4),r13,r34}=min{4,4,2,5}=2 along path 1-3-4. 
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Figure 2.2.3 (iii) (a) Network after updating the potentials π  
              (b) Network after augmenting 2 units along path 1-3-4 
 
 
In the second iteration, s=1,t=4, d=(0,0,1,1) and the shortest path from node 1 
to node 4 is 1-2-3-4. Figure 2.2.3 (iv) (a) shows the updated node potentials 
and reduced costs and Figure 2.2.3 (iv) (b) shows the solution after the flow 
has been augmented min{e(1),-e(4),r12,r23,r34}=min{2,2,4,2,3}=2 units of flow. 
At the end of the iteration all imbalances become zero and the algorithm 
terminates and a minimum cost flow from s to t is found. 

 
Figure 2.2.3 (iv) (a) Network after updating the potentials π  
              (b) Network after augmenting 2 units along path 1-2-3-4 
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2.3 Shortest path problem 
 
The shortest path problem is used to solve the Minimum Project Duration 
application in Chapter 3.1.2 and the JIT problem in Chapter 3.1.3. The 
networks used for determining the Minimum Project Duration application 
contain no cycles due to the characteristics of these graphs. This will be 
discussed in Chapter 3.1.2.  Due to this acyclic property of these graphs, the 
shortest path problems are very easy to solve with the algorithm described in 
paragraph 2.3.3. 
The networks used to solve the JIT problem contain positive directed cycles. 
This will be discussed in Chapter 3.1.3. For this reason another algorithm has 
to be used to handle these types of networks: The generic-labelling algorithm 
is discussed in paragraph 2.3.4. 

2.3.1 Definition 

Consider a directed network G=(N,A) with an arc length (or arc cost) cij 
associated with each arc (i,j) ∈A. The network has a source s and a sink t. 
The length of a directed path is defined as the sum of the lengths of arcs in 
the path. The shortest path problem is to determine a path of minimum length 
(or cost) from a specified source node s to another specified sink node t.  
Denote d(i) as the distance from the source node s to node i along the 
shortest path. Now the next theorem about the shortest path optimality 
conditions is defined. 
 
Theorem (Shortest path Optimality conditions) 
For every node j ∈  N, let d(j) denote the length of some directed path from 
the source node to node j. Then the numbers d(j)  represent shortest path 
distances if and only if they satisfy the following shortest path optimality 
conditions: 

ijcidjd +≤ )()(  for all (i,j) ∈  A 
 
 

These optimality conditions are useful in several aspects. First, they give a 
simple validity check to see whether a given set of distance labels does 
indeed define shortest paths. Similarly, the optimality conditions provide a 
method for determining whether or not a given set of paths, one from node s 
to every other node in the network, constitutes  a set of shortest paths from 
node s. Simply the lengths of these paths are computed and it is seen of  
these distances satisfy the optimality conditions. In both cases, the optimality 
conditions provide a “certificate’ of optimality, that is, an assurance that a set 
of distance labels or a set of paths is optimal. The optimality conditions are 
also valuable for other reasons; they can suggest algorithms for solving a 
shortest path problem. For example the generic label algorithm discussed in 
paragraph 2.3.4 uses the simple idea of repeatedly replacing d(j) by d(j) +cij if 
d(j)>d(i)+cij for some arc (i,j). 
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2.3.2 Minimum cost problem formulation 

The shortest path problem can also be seen as sending 1 unit of flow as 
cheaply as possible (with arc flow costs cij) from node s to node t in an 
uncapacitated network.                              
The shortest flow problem can then be formulated as minimum cost problem 
in the following way according to Orlin(1993): 

• Set b(s)=1, b(t)= -1 and b(i)=0 for all other nodes in the minimum cost 
flow problem. 

The solution to the problem will send 1 unit of flow from node s to node t along 
the shortest path. The shortest path formulation can be written as: 
 

 
The shortest path dual problem is a special form of the dual minimum cost 
flow problem. The shortest path problem contains no arc capacities, so the ijα  
variables can be eliminated from the dual minimum cost problem defined in 
paragraph 2.2.2.  
Denote d(i) as the distance from the source node s to node i along the 
shortest path. 
Let  )()( iid π−=  and b(s)=1, b(t)=-1 and b(i)=0 for the other nodes, then 
according to Orlin (1993) the dual minimum cost flow problem becomes the 
shortest path dual problem. This dual can be written as: 
 
Maximize   )()( sdtd −
subject to   for all (i,j) ijcidjd ≤− )()( ∈  A 
 

2.3.3 Shortest path problems in acyclic networks 

A network is acyclic if it contains no directed cycle. The networks used for the 
determination of the minimum project duration (Chapter 3.1.2) only deal with 
acyclic networks. This paragraph will show how to solve the shortest path 
problem on acyclic network even though the arc length might be negative. 
 
Let us label the nodes of a network G=(N,A) by distinct numbers from 1 
through n and represent the labelling by an array order (i.e. order(i) gives the 
label of node i). This labelling is a topological ordering of nodes if every arc 
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joins a lower-labelled node to a higher- labelled node. That is, for every arc 
(i,j) ∈A, order(i)<order(j). 
For example, for the network shown in Figure 2.2.3(a), the labelling shown in  
Figure 2.3.3(b) is not a topological order because (5,4) is an arc and 
order(5)>order(4), However, the labelling shown in Figure 2.2.3(c)  is a 
topological ordering.  

 
Figure 2.3 3 Topological ordering of nodes 
 
 
Some networks cannot be topologically ordered. For example, the network 
shown in Figure 2.3.3(i) has no such ordering. This network is cyclic because 
it contains a directed cycle and for any directed cycle W, the condition 
order(i)<order(j) for each (i,j) ∈ W can never be satisfied.  

 
Figure 2.3 3 (i) Network without a topological ordering of the nodes 
 
Acyclic networks and topological ordering are closely related. A network that 
contains a directed cycle has no topological ordering, and conversely, a 
network that possesses a topological order cannot contain a cycle. This 
observation shows that a network is acyclic if and only if it posses a 
topological ordering of its nodes. 
 
The next algorithm is now used to solve the shortest path problem on acyclic 
networks, with d(i), the shortest path distance from the source to node i,(Orlin  
1993): 
 
1) Set d(s)=0 and the remaining distance labels to a very large number.  
2) Examine the nodes in a topological order and for each node i being 

examined, the set of arcs emanating from node i are scanned.  
3) If for any arc (i,j)∈ A, there is found that d(j)>d(i) + cij, then set d(j)=d(i)+cij. 
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When the algorithm has examined all the nodes once in this order, the 
distance labels are optimal. This algorithms works even when the graph has 
negative lengths.  
 

2.3.4 Shortest path problems in positive cyclic networks 

For the types of problems discussed in this paper. only positive cycled 
network are encountered. A positive cycle is a directed cycle whose total 
weight is positive.   
The algorithm used to solve the shortest path problem for the type of networks 
with positive cycles is similar to the one used for the acyclic network. The only 
difference is that the acyclic algorithm examines each node and arc exactly 
ones in contrast to the algorithm for the positive cyclic network. 
 
The algorithm used for these types of network is called the generic label-
correcting algorithm.   
This algorithm maintains a set of distance labels d(.) at every stage. The label 
d(j) is either ∞ , indicating that a directed path from the source to node j is yet 
to be discovered, or it is the length of some directed path from  the source to 
node j. The algorithm is as follows: 
 

1. Set d(s)=0 and the remaining distance labels to ∞ 
2. If for any arc (i,j)∈ A, there is found that d(j)>d(i) + cij, then set 

d(j)=d(i)+cij. 
 
The generic label-correcting algorithm is a general procedure for successively 
updating the distance labels until they satisfy the shortest path optimality 
conditions of d(j)< d( i) )+cij  for all (i,j) ∈A . 
 

2.4 Longest Path Problem 
 
The longest path and shortest path are closely related. The longest path 
problem can be transformed to a shortest path problem by defining arc costs 
equal to the negative of the arc length.  
To solve the problem, multiply each arc length by -1 and then solve a shortest 
path problem.  If the network is acyclic the corresponding shortest path 
problem is efficiently solved with the algorithm described in paragraph 2.3.3. 
If the longest path problem contains any positive length directed cycles, the 
resulting shortest path problem contains a negative cycle and it cannot be 
solved by any of the techniques discussed in this paper. However, if all 
directed cycles in the longest path problem, have nonpositive lengths, then in 
the corresponding shortest path problem all directed cycles have nonnegative 
lengths and this problem can be efficiently solved with the generic label-
correcting algorithm described in paragraph 2.3.4.   
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2.5 Maximum Flow problem 

2.5.1 Definition 

The maximum flow problem is the problem of determining the maximum 
amount of flow v that can be sent in a given directed network G with arc 
capacities given by uij’s from a source node s to a sink node t. 
 

 
Figure 2.5.1 Maximum flow problem 
 
 
The decision variables in the maximum flow problem are flow xij on arc (i, j), 
and the flow v entering the sink node. 
The maximum flow problem can be formulated as the following linear 
programming problem: 
 

 
 

2.5.2 Minimum cost problem formulation 

The maximum flow problem can be formulated as minimum cost problem in 
the following way according to Orlin(1993): 
Set b(i)=0 for all i ∈N, cij=0 for all (i,j) ∈ A  in the minimum cost flow problem 
and introduce an additional arc (t,s) with cost cts=-1 and flow bound uts=∞.  
See Figure 2.5.2 as illustration. 
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Then the linear programming problem is written as: 

 
 
Now the minimum cost flow solution maximizes the flow on arc (t,s). But 
because any flow on arc (t,s) must travel from node s to node t through the 
arcs in A (because b(i)=0) , the solution to the minimum cost flow problem will 
maximize the flow from node s to node t in the original network. 
 
 

 
Figure 2.5.2 Maximum flow as minimum cost problem 
 

2.5.3 Augmenting path algorithm  

There exist several algorithms for finding a maximum flow in a network. 
For example: the labelling algorithm, Ford and Fulkerson algorithm and 
augmenting path algorithm. Only one, the augmenting path algorithm, will 
here be discussed. For more information about these algorithms, Even (1979) 
and Orlin (1993) provide more insight. 
 
With the augmenting path algorithm, which is one of the simplest algorithms to 
solve the maximum flow problem, a maximum flow is found. This algorithm 
searches for an augmenting path in the residual network. An augmenting path 
is a path from s to t in the residual network along which more flow can be 
pushed in the flow network.  
 
The augmenting path algorithm is described in Figure 2.5.3 (i) and the 
maximum flow problem given in Figure 2.5.3 (ii) is used to illustrate the 
algorithm. This algorithm proceeds by identifying augmenting paths and 
augmenting flows on these paths until the network contains no such path. 
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algorithm augmenting path; 
begin  
x:=0; 
while G contains  directed path from node s to node t do 
begin 
 identify an augmenting path P from node s to node t 

 δ:= min{r :(i,j)∈ P}; ij

augment δ units of flow along P and update G(x)  
end; 

end; 
Figure 2.5.3 (i) Augmenting path algorithm 
 

 
Figure 2.5.3 (ii) (a) Residual network for the zero flow 
 
Suppose that the algorithms select the path 1-3-4 for augmentation. The 
residual capacity of this path is δ =min {r13,r34}=min{4,5}=4. This augmentation 
reduces the residual capacity of arc (1,3) to 0 (thus it is deleted from the 
residual network) and increases the residual capacity of arc (3,1) to 4 (so this 
arc is added to the residual network). The augmentation also decreases the 
residual capacity of arc (3,4) from 5 to 1 and increases the residual capacity 
of arc (4,3) from 0 to 4. Figure 2.5.3 (ii) (b) shows the residual network at this 
stage. 
 

 
Figure 2.5.3 (ii) (b) Network after augmenting 4 units along path 1-3-4 
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In the second iteration, suppose that the algorithm selects the path 1-2-3-4. 
The residual capacity of this path is δ=min{2,3,1}=1. Augmenting 1 unit of flow 
along this path yields the residual network shown in Figure 2.5.3 (ii) (c). 

 
Figure 2.5.3 (ii) (c) Network after augmenting 1 unit along path 1-2-3-4 
 
In the third iteration, the algorithm augments 1 unit of flow along the path 1-2-
4. Figure 2.5.3 (ii) (d) shows the corresponding residual network. Now the 
residual network contains no augmenting path, so the algorithm terminates. 

 
 

 
Figure 2.5.3 (ii) (d) Network after augmenting 1 unit along path 1-2-3-4 
 
 
With the use of the next theorem, it is shown that the flow resulted from the 
augmenting path algorithm is a maximum flow. 
 
Theorem (Augmenting Path Theorem) 
A flow x* is a maximum flow if and only if the residual network G(x*) contains 
no augmenting path. 
 
Proof: If the residual network G(x*) contains an augmenting path, clearly the 
flow x* is not a maximum flow. Conversely, if the residual network G(x*) 
contains no augmenting path, then the cut (B,P)’s  capacity  equals the 
maximum flow, thereby implying that the flow must be a maximum (Ford & 
Fulkerson). The set of nodes in B contains all the nodes that can be reached 
from the source s through an unsaturated path, and the set of nodes in P 
contains the nodes that cannot be reached from the source s through an 
unsaturated path. 
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2.6 Feasible Flow Problem 
 
The feasible flow problem is formulated as follows: 
Does there exist a flow in G that satisfies the capacity constraints? 
The feasible flow problem requires the identification of a flow x in a network 
G= (N, A) with nodes N, edges A, capacity uij on edges (i,j),source s and a 
sink t that satisfies the following constraints: 
 

• Flow conservation: 

 
As before it is assumed that  ∑

=

=
n

i
ib

1
0)(

 
• Capacity constraint:  
 

 
 
This feasible flow problem can be solved by solving a maximum flow problem 
on a network as follows according to Orlin (1993). 
 

• Introduce two nodes, a source node s and a sink node t.  
For each node i with b(i)>0, add an arc (s,i) with capacity b(i) and for 
each node i with b(i)<0, add an arc (i,t) with capacity –b(i). This new 
network is called the transformed network. See Figure 2.6 as example. 

 
• Solve a maximum flow problem from node s to node t in the 

transformed network.  
 
 

 
Figure 2.6 Feasible flow problem as maximum flow formulation 
 
If the maximum flow saturates all the source and sink arcs then the feasible 
problem has a feasible solution, otherwise it is infeasible. 
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This conclusion can be made because if x is a flow satisfying the above 
constraints, the same flow with xsi=b(i) for each source arc (s,i) and xit=-b(i) for 
each sink arc (i,t)  is a maximum flow in the transformed network (since it 
saturates all the source and sink arcs). 
Similarly, if x is a maximum flow in the transformed network that saturates all 
the source and sink arcs, this flow in the original network satisfies the above 
constraints. Therefore the original network contains a feasible flow if and only 
if the transformed network contains flow that saturates all the source and sink 
arcs. This observation shows how a maximum flow problem arises whenever 
a feasible solution in a network is needed to be found.  
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3 Project Management  

3.1 Applications 
 
The planning and scheduling of large projects is an important class of network 
problems, such as constructing a building or a highway, planning and 
launching a new product, installing and debugging a computer system, or 
developing and implementing a space exploration program. This application 
context was among the earliest successes of network optimization, and the 
network flow models of project management continue to be an important 
management tool used in numerous industries every day. 
 
In this chapter, three basic models of project management are considered: 

• Model for scheduling jobs on uniform parallel machines,  
• Shortest path technique for scheduling projects to achieve the earliest 

possible completion, 
• Network flow model for Just-in-Time scheduling of jobs in a project. 

3.1.1 Scheduling on Uniform Parallel Machines 

In this application the problem of scheduling a set  of jobs on M uniform 
parallel machines is considered according to the procedure as described in 
Orlin (1993). The scheduling problem is to determine a feasible schedule that 
completes all jobs before their due dates or to show that no such schedule 
exists. 

J

 
Each job  has: Jj∈

• a processing requirement  , denoting the number of machine days 
required to complete the job 

jp

 
• A release date , representing the beginning of the day when job j 

becomes available for processing 
jr

 
• A due date , representing the beginning of the day by 

which the job must be completed 
jjj prd +≥

 
The assumptions are that a machine can work on only one job at a time and 
that each job can be represented by at most one machine at a time. 
However preemptions are allowed. This means that a job can be interrupted 
and processed on different machines on different days. 
For some problems a schedule is only feasible if preemptions are allowed. 
An example of a schedule that is only feasible when preeemptions are 
allowed is illustrated in Figure 3.1.1 (a). 
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Job ( ) j 1 2 3 4 
Processing time  ( ) jp 1.5 3 4.5 5 
Release time  ( ) jr 2 0 2 4 
Due date   ( ) jd 5 4 7 9 
Figure 3.1.1 (a) Scheduling Problem 1 
 
As you can see from Table 1 no schedule is possible unless preemption is 
allowed. In Table 2 a feasible schedule is shown when preemption is allowed. 
 
 

 
Table 1 No pre-emption & No feasible schedule 
 
 

 
Table 2 Preemption & Feasible Schedule 
 
 
The feasible scheduling problem, described in paragraph 2.6, is a 
fundamental problem in this situation. The feasible scheduling problem will 
now be formulated as a maximum flow problem. 
The formulation will be illustrated using Scheduling Problem 2 described in 
Figure 3.1.1 (b) with M=2 machines. 
 
 
Job ( ) j 1 2 3 4 
Processing time  ( ) jp 1.5 1.25 2.1 3.6 
Release time  ( ) jr 3 1 3 5 
Due date   ( ) jd 5 4 7 9 
Figure 3.1.1 (b) Scheduling Problem 2 
 
 
This scheduling problem is solved as follows according to Orlin (1993): 
 

• Rank all release and due dates,  and  for all   , in ascending 
order. 

jr jd j

• Determine   mutually disjoint intervals of dates between 
consecutive milestones. Let T

1||2 −≤ JP
k,l  denote the interval that starts at the 

beginning of date k and ends at the beginning of date l+1. 
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For the example of Figure 3.1.1 (b), the order of release and due dates is      
1, 3, 4 ,5,7,9. 
There are five intervals, represented by T 1, 2, T 3, 3 , T 4, 4, T 5,6  , T 7,8. 
Notice that within each interval, the set of available jobs (i.e. those released 
but not yet due) does not change: all jobs  with  j krj ≤  and  can be 
processed in the interval. 

1+≥ ld j

 
The scheduling problem can be formulated as a maximum flow problem on a 
bipartite network G as follows according to Orlin (1993): 

• Introduce a source node s, a sink node t, a node corresponding to each 
job , and a node corresponding to each interval j T k,l  , as shown in 
Figure 3.1.1 (c) .  

• The source node is connected to every job node  with an arc with 
capacity , indicating that you need to assign  days of machine time 
to job . 

j

jp jp
j

• Each interval node T k,l  is connected  to the sink node t by an arc with 
capacity (l-k+1)M, representing the total number of machine days 
available on the days from k to l. 

• Finally connect a job node  to every interval node j T k,l  if   and 
 by an arc with capacity (l-k+1) which represents the 

maximum number of machines day you can assign to job  on the days 
from k to l. 

krj ≤

1+≥ ld j

j

 
Figure 3.1.1 (c) Network for scheduling uniform parallel machines 
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Now a maximum flow problem is solved on this network: the scheduling 
problem has a feasible schedule if and only if the maximum flow equals   

(alternatively, the flow on every arc (s,j) is ). ∑
∈Jj

jp jp

The validity of this formulation is easy to establish by showing a 1-1 
correspondence between feasible schedules and flows of value   from 

the source to the sink; only if every arc (s,j) is  (so all the arcs (s,j) are 
saturated) a feasible schedule exist. This because if one of these arcs is not 
saturated, it means that the job corresponding to that arc cannot be 
completed. 

∑
∈Jj

jp

jp

 
Figure 3.1.1 (d) illustrates the formulation of a scheduling problem on uniform 
parallel machines. It is obvious that the arc (s, 1) will not be saturated in any 
maximum flow (due to mass balance constraint). Hence a feasible schedule 
does not exist. 

 
Figure 3.1.1 (d) Network  with no feasible schedule 
 
 
Because these are acyclic networks, the augmenting path algorithm (see 
paragraph 2.5.3) is used to find a maximum flow. For the Scheduling Problem 
2, the maximum flow of 1.25+2+1.5+2.1+1.6=8.45 is found with the 
augmenting path algorithm. See Figure 3.1.1 (e). 
Because this maximum flow equals∑

∈Jj
jp , there is a feasible schedule. 
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Figure 3.1.1 (e) Network with maximum flow  
 
Flow decomposition can now be used to transform flows into schedules.  
The feasible schedule can be interpreted as follows: 
For job 1: assign 1 unit of machine time in period  and 0.5 unit of machine 
time in period . 

3,3T

4,4T
For job 2: assign 1.25 unit of machine time in period . 2,1T
For job 3: assign 1 unit of machine time in period ,  1 unit of machine time 
in period  and 0.1 unit of machine time in period . 

3,3T

4,4T 6,5T
For job 4: assign 2 unit of machine time in period and 1.6 unit of machine 
time in period . 

6,5T

8,7T
A feasible schedule is shown in Table 4. 
 
 

2 1      4
1 2 3 5 6 7 4 8 9 

3 
1 2 3 5 6 74 8  

Table 4 A feasible schedule for Scheduling Problem 2 
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3.1.2 Determining Minimum Project Duration 

In this application a shortest path technique for scheduling projects to achieve 
the earliest possible completion time will here be discussed according to the 
procedure as described in Orlin (1993).   
 
A project is viewed as a collection of jobs and a set A of precedence relations 
between the jobs. A job is represented by a node and the precedence 
relationship between two activities is represented by a directed arc in which 
the direction of the arrow specifies the precedence. A characteristic of this 
network graph: 

• By construction, the network contains no cycles, since otherwise by 
tracing around the cycle it would be concluded, by the transitivity 
property of precedence, that a task must precede itself, which is an 
impossibility. 

 
If (i,j) ∈ A, job i is to be completed before beginning job j. Each job j has also 
a known duration dj. The problem is to determine a project schedule (i.e., the 
start time of each job) that will satisfy the precedence relations between the 
jobs and complete the project in the least possible amount of time. This gives 
the least possible project duration. 
 
Consider, for example, the project planning problem given in Table 3.1.2. 
According to Orlin (1993), this project planning problem can be formulated as 
a shortest path problem where the jobs are represented by nodes as follows: 
 

• Define a project network by associating a node j with each job j and by 
including arc (i,j) whenever job i is an immediate predecessor of job j. 

• Set the length cij of arc (i,j) equal to di, the duration of job i. 
• Introduce a source node s, the beginning of the project and connect it 

to every other node that has no incoming arc (So the jobs without 
predecessors) by zero-length arcs. 

• Similarly introduce a sink node t, the end of the project, and connect 
every node i with no outgoing arc to this sink node by an arc (i,t) whose 
length equals the duration of job i. 

 
Job Duration Immediate predecessors 
a 14 --- 
b 3 --- 
c 3 a,b 
d 7 a 
e 4 d 
f 10 c,e 
Table 3.1.2 Project planning problem 
 
Figure 3.1.2 (a) gives the network corresponding to the project planning 
example shown in Table 3.1.2. 
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Figure 3.1.2 (a) Shortest path formulation of the project planning problem 
 
Note that the network corresponding to any project planning model must be 
acyclic because a network containing a cycle could never be completed, since 
otherwise by tracing around the cycle it would be concluded that a task must 
precede itself, which is an impossibility. 
 
Let u(j) denote the earliest possible starting time of job j in  a project planning 
schedule that satisfies the precedence constraints. Notice that with respect to 
quantities u(j), the project duration is u(t)-u(s). 
The project planning problem can be stated as the following optimization 
model: 
 

Minimize  u(t)-u(s) 
 

subject to   u(j)-u(i) > cij for all (i,j) ∈  A 
 

The constraint models the precedence constraint by stating that if job i is an 
immediate predecessor of job j, then job j can start only after cij=ui units of 
time have elapsed since the start of job i. This optimization model has for the 
attentive reader already been mentioned in this paper. It is the dual form of 
the shortest path problem. 
 
To bring this problem into a more familiar network flow form, the dual is taken 
(so the primal is obtained). 
If the variables xij are associated with the constraint, the linear program is: 
 

 
Clearly, this is a longest path problem with cij as the length of arc (i,j): the 
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objective is to send 1 unit of flow from node s to node t along the longest path. 
To solve the problem, multiply each arc length by -1 and then solve a shortest 
path problem.  This is possible because the network is acyclic so no negative 
cycles are created.  
For the project planning example shown in Table 3.1.2, the network becomes 
as shown in Figure 3.1.2(b) and now a shortest path problem is solved with 
the algorithm described in Chapter 2.3.3. 

 
Figure 3.1.2 (b) Shortest path formulation of the project planning problem 
 
First the nodes are labelled in a topological ordered. Recall from Chapter 
2.3.3 that nodes are in a topological order if  i<j for every  (i,j)∈ A. 
An example of a topological order is shown in Figure 3.1.2 (c) where the order 
number of each node is shown above the node for the upper part of the 
graph, and under the node for the lower part of the graph. 
 

 
 
Figure 3.1.2 (c) Project planning problem with nodes labelled in a topological ordered 
 
Now set d(s)=0 and the remaining distance labels to ∞. 
Then nodes are now examined in a topological order and for each node i 
being examined, the arcs emanating from node i are scanned.  
If for any arc (i,j)∈ A, there is found that d(j)>d(i) + cij, then set d(j)=d(i)+cij
After applying this algorithm to the project planning problem, Figure 3.1.2 (d) 
is obtained and the optimal solution is found of 35. So the minimum project 
duration is 35. 
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Figure 3.1.2 (d) Project planning problem with shortest path at every node. 
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3.1.3 Just in Time Scheduling 

The just-in-time scheduling is an extension of the project planning problem 
discussed in the former paragraph. In the JIT problem, the minimum project 
duration is determined subject to both the precedence constraints and some 
additional “just-in-time constraints”. 
In this problem a subset S  A and a number α⊆ ij for each (i,j) ∈ S is given.   
The just in time constraints state that for each (i,j) ∈ S , job j must start within 
αij units of time from the start of job i. 
 
Denote with u(i) the earliest start times of job i, then the just-in-time 
constraints require that: 
  ijiuju α+≤ )()(    for all (i,j) ∈  S 

 
or, equivalently, 
 
  ijjuiu α−≥− )()(  for all (i,j) ∈  S 
The start times must also satisfy the usual precedence constraints: 
   
    for all (i,j) ijciuju ≥− )()( ∈  A 
In the just-in-time scheduling problem, the objective is: 
 

 Minimize   u(t)-u(s)  
 
subject to  ijjuiu α−≥− )()(  for all (i,j) ∈  S 

ijciuju ≥− )()(   for all (i,j) ∈  A 
 
Like in the former application problem for determining the minimum project 
duration, this can be solved as a longest path problem , in this case on an 
network G’=(N,A’) whose arc set A’ includes an arc (i,j) of cost cij for each (i,j) 

 A and an arc (j,i) of cost -α∈ ij  for each (i,j) ∈ S according to Orlin (1993). 
 

Job Duration Immediate predecessors JIT constraints 
a 14 --- --- 
b 3 --- --- 
c 3 a,b ---- 
d 7 a 14 
e 4 d 7 
f 10 c,e --- 
Table 3.1.3 Project planning problem with JIT constraints 
 
 
To transform this longest path problem into a shortest path problem, multiply 
each arc cost by -1.For the project planning example shown in Table 3.1.3, 
the network becomes as shown in Figure 3.1.3 (a).  
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Figure 3.1.3 (a) Project planning problem 
 
Notice that in this case the augmented network G’ might not be acyclic and 
the resulting shortest path problem might contain a negative cycle (so a 
positive cycle in the longest path problem). The presence of a negative cycle 
in the shortest path problem (or positive cycle in longest path problem) 
indicates that the JIT problem has no feasible solution. This is explained as 
follows. 
The just-in-time constraints require that: 
 

ijjuiu α−≥− )()(  for all (i,j) ∈  S 

ijciuju ≥− )()(   for all (i,j) ∈  A 
 
This can be seen as that in the longest path problem: 
   0≤− ijijc α  for all (i,j) ∈  S 
This can be seen in the shortest path problem as: 
   0≥− ijij cα  for all (i,j) ∈  S 
 
If there would be a positive cycle in the longest path problem, then 0≥− ijijc α  
so this would be in contradiction with the just-in-time constraint that  

0≤− ijijc α  and so there would not be a feasible solution. 
 
If there would be a negative cycle in the shortest path problem, then 

0≤− ijij cα  so this would be in contradiction with the just-in-time constraint for 
the shortest path problem that  0≥− ijij cα  and so there would not be a 
feasible solution. 
 

  33
  

When the resulting shortest path problem has no negative cycle, the negative 
of the shortest path distances provide optimal start time for the jobs. For 
graph shown in Figure 3.1.3 (a), it is seen that the network contains no 
negative cycles. So the generic label-correcting algorithm can be used to 
solve this problem. By applying this algorithm the minimum duration of 35 is 
obtained. In Figure 3.1.3 (b) the graph is shown with at every node the 
shortest path distances. 

    
  
  
  
 



 
Figure 3.1.3 (b) Project planning problem with shortest path at every node 
 
Suppose now that instead of imposing an upper bound on when job j should 
start after the start of job i, the time difference between the completion of job i 
and the start of job j is penalized using a penalty factor of dij. 
The objective is to determine the start times of jobs that will minimize this 
penalty and yet satisfy the restriction that the project duration is at most a 
specified constant λ. 
The following linear program models this problem: 
 

Minimize   ∑
∈

−−
Aji

ijij dciuju
),(

))()((

 
subject to  λ−≥+− )()( sutu ,  

     for all (i,j) ijciuju ≥− )()( ∈  A 
)( ju     unrestricted for all j ∈  N 

  
Let     ∑∑

∈∈

−=
Ajij
ij

Aijj
jii ddD

),(:{),(:{

The dual of this model according to Orlin (1993) is: 
 
     Maximize ts

Ajij
ijij xxc λ−∑

∈ }),(:{
  

 
subject to       ∑ ∑

∈ ∈

=+−
Asjj Ajsj

stssjjs Dxxx
),(:{ ),(:{

, 

   for all i ∑ ∑
∈ ∈

=−
Aijj Ajij

iijji Dxx
),(:{ ),(:{

≠   s or t 

 
∑ ∑

∈ ∈

=−−
Atjj Ajtj

ttstjjt Dxxx
),(:{ ),(:{

, 

 
   for all (i,j) 0≥ijx ∈  A 

This problem is a minimum cost network flow problem with an arc (t,s) from 
the end node t to the start node s and can be solved using the Successive 
Shortest path algorithm. 
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3.2 Relevant literature  
 
There is considerable amount of literature concerning Job Management and 
Network flows that can be found in technical libraries or on the Internet.  
Among the available literature, the best available resource is without doubt: 
Network Flows by Orlin, Ahuja and Magnanti. This book has been the winner 
of the 1993 Lanchester Prize for the best English publication in Operations 
Research. This book is rich in theory, as well as in algorithms and applications 
dealing with all the topics addressed in this paper. Orlin’s book appears as the 
most complete and relevant publication, it is also the most referenced book in 
the literature. Other publications of interest that can be mentioned for more 
additional information are respectively for: 
 
“ Scheduling on Uniform parallel machines”  

• Preemptive Scheduling of Uniform Machines by Ordinary Network Flow 
Techniques by Groenevelt.H, Federgruen A. Management Science 
(1986) 

 
“ Determining minimum project duration”  

• Activity Networks:Project Planning and Control by Network Models by 
Elmaghraby S. (1977) 

 
“ Just In Time Scheduling”  

• Activity Networks:Project Planning and Control by Network Models by 
Elmaghraby S. (1977) 

• A network flow algorithm for Just-In-Time scheduling by Levner E.V., 
Nemirovsky, A.S 
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4 Abstract 
 
This paper provides a basis for solving project management problems by 
means of network flow techniques. At first, some network flow problems are 
discussed which will be used later to solve three project management 
problems. 
 
The three project management problems that are here discussed are: 
 

1. How to schedule jobs on uniform parallel machine such that there is 
a feasible schedule (all the jobs finish on time). 

2. How to determine the minimum project duration when there are 
precedence relations between the jobs.  

3. Just-in-Time scheduling problem. This is an extension to the 
problem of how to determine the minimum project duration with 
some extra constraints added 

 
The first project management problem will be solved using a network flow 
technique called the maximum flow problem. Before being able to do this, the 
feasible scheduling problem will have to be formulated as a maximum flow 
problem. Thereafter a maximum flow problem is solved on the network. It will 
show that the scheduling problem has a feasible schedule if and only if the 
maximum flow equals the sum of the flows on every arc emanating from the 
source. 
 
The second project management problem will be solved using a technique 
called, the shortest path problem. First the project planning problem is 
formulated as a shortest path problem and hereafter it is solved using this 
technique. 
 
The third project management problem will be also solved using the shortest 
path problem. In this problem, the minimum project duration is determined 
subject to both the precedence constraints and some additional “just-in-time 
constraints”. An extended version of this problem is also considered. This 
version also includes a penalty for the time difference between the completion 
of a job and the start of another job. This problem is solved according to the 
minimum cost flow technique.
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