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Preface 
 

This paper is part of the ‘Business Mathematics & Informatics’ (BMI) Master Programme at the 
VU University in Amsterdam. The purpose of the paper is to let the student apply the knowledge 

gained and techniques mastered over the past few years.  The paper has to describe a business 
problem and should be handled using mathematics and/or computer science. The supervisor of 
this thesis was dr. René Bekker. I would like to thank him for his support and his significant 
contribution to this thesis. 

 

 

Abstract 
 

Outdating is a significant problem especially in the food industry. This thesis considers 
replenishment strategies for systems with perishable goods. After posing a model and reviewing 
literature, the paper tries to give insight on possibly beneficial parameters of order strategies. A 
special interest lies in finding a practical order strategy. Unfortunately analytical analysis is 
intractable due to a lack of scalability, therefore simulation is used to optimize various policy 
parameters. Finally, data obtained from a local supermarket was used to compare the best 
policy to a real-life situation. The best result was obtained with a strategy with time-dependent 
safety stock levels and further decreased orders if sales have been low for a specific period.  

 

Keywords: periodic review model, order policies, perishable goods, simulation 
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Summary 

Goal of this thesis 

Inventory modeling is a very important subject in logistics. Reducing costs while maintaining a 
certain level of customer satisfaction is the core subject in every retail company.  The goal of this 
thesis is to find a decent order strategy with practical value for a system containing perishable 

goods. Furthermore, this paper analyzes the parameters that might influence the order 
strategies of perishable products. The optimal strategy has as a result both little outdating and 
little lost sales.  

 

Assumptions 

Customer arrivals are supposed to be a stuttered Poisson process. The interpretation is that at 

Poisson moments, a customer buys n items (n≥1), where n is a geometric random variable with 
a given parameter q. Since many customers compare expiry dates before purchasing fresh food, 

we assume 40% of the customers to purchase FIFO, whereas the other 60% purchases the 
youngest items, which are usually at the back of the shelves. Furthermore, we assume a 24 hour 

lead time for delivery, and our shop is opened seven days a week.   

Simulation results 

Finding the right order policy has everything to do with managing the safety stock. Having too 
little safety stock might lead to lost sales, whereas having too much safety stock leads to 
outdating. All of the chosen policies are based on a linear safety stock model, meaning that the 
safety stock is a certain percentage of the expected sales. The optimal order quantity Q 
obviously depends on the current amount of stock S. DL is the expected demand during the lead 
time. α accounts for the amount of safety-stock ordered. More safety-stock means less lost 
sales but increases the chance of outdating. This leads to policy (1). In policy (2) weights are 
added to the current stock build-up for every age groups. If products last m days, then there are 
m different age groups and each group gets its own weight   . In the optimal scenario, fresher 

items are valued more heavily than older items. In policy (3), a different α is used for every day 
of the week. Note that outdating and lost sales are considered to be equally “wrong” and 

therefore the “result” is the sum of the percentage of lost sales and the percentage of outdated 
items. 

Policy number Order policy formula Optimal result: 

(1) Q =        α * DL   - S     5.35% 

(2) Q =        α * DL    -      
 
     5.06% 

 (3) Q =       αj * DL    -       
 
     4.89% 

 



Inventory modeling of perishable goods – Jan-Willem Arentshorst 
 

~ IV ~ 
 

In policy (4), we stop using weights for the different stock groups since in many cases it is not 
realistic to assume the age build-up of the stock to be known. Instead, a new variable β is 
added, which is less than one in certain cases where the probability of outdating is imminent 
and is exactly one otherwise. The optimal parameters of β are determined by extensive 
simulation. 

β=                                                         
                                                                                      

 

This policy is the most practically oriented one, since it only uses information which is usually 
known; expected sales, total amount of stock and the realized sales of the past couple of days. 
In the final policy (5), the weights for different age groups of stock is added back.  

Policy number Order policy formula Optimal result: 

(4) Q = β * αj * DL    - S   4.83% 

(5) Q = β * αj * DL    -       
 
     4.75% 

 
Main findings: 

 Systems with higher alphas have much more safety stock and a higher average stock age. 
Therefore a low alpha leads to less outdating and more lost sales, while a high alpha 
leads to more outdating and less lost sales. 

 Higher expected sales (λ) need less safety stock percentage-wise.  

 If sales are spread over more customers (q increases), sales fluctuate less and therefore 
the system performs better.  

 Higher FIFO-probabilities (p) increases performance and have a higher optimal alpha. 

 Longer lifetime (d) increases performance and has a higher optimal alpha.  

 Systems with higher alphas have larger average orders placed on peak days, and smaller 
average orders placed after peak days. 

 Most outdating happens on d days after peak days, which leads to higher lost sales on 

days d+1 after the peak days. 
 Greatly minimizing lost sales leads to greatly more outdating, and vice-versa. 
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Comparison to a real life situation:  

To compare the practical use of the strategies, information from a local s upermarket was used 
to evaluate the order strategy. For a period of six weeks, stock levels, outdating, sales and 

deliveries for twelve different products were registered and afterwards inserted into the 
computer program to compute how the order strategy would have scored in practice.   The data 

was obtained from June 4th until July 15th 2011.  

 
1 Broccoli 7 Shii take mushrooms  

2 Diner Caesar Salad 8 Mushrooms 
3 Spinach Stew 9 Sliced Leek 

4 Soup vegetables 10 Italian Salad 

5 Raw beet salad 11 Wok vegetables with mushrooms 

6 Parisian Carrots 12 Biological onion flakes 

 
 8 out of 12 products had less lost sales using our best practical strategy than the 

supermarket. 
 7 out of 12 products had less outdating using our best practical strategy than the 

supermarket. 
 

Where our policy had better results they were significantly better. Where our policy performed 
worse it did so only slightly. But our assumption of only forty percent FIFO sales might not be 
accurate. Especially the broccoli performed particularly well in real life, which might be caused 
by the fact that there is a discount on products  with only one day until expiry. 
 
Finding the right order strategy can make a lot of difference but is more complicated than it 
seems. Generally speaking, the more information known about the system, the better the 
results can become. Unfortunately, some information is unavailable or might take a pricy 

investment to gather. Still, the simulation showed that the order strategy  of the super market 
performed worse than our strategy in certain cases, while our best practical policy only used 

information which is easily obtainable for large corporations. Changing to our best practical 
order policy could not only increase revenues and customer satisfaction but might decrease 

outdating as well, which saves money  and leads to a cleaner environment as well. Still, one 
should note that conclusions on comparisons of a real life situation with a simulation afterwards 
should be taken with a pinch of salt. More research should be done on order strategies for 
perishables since there is still room for improvement and lots of money can be saved. 
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1. Introduction 
 
Inventory modeling is one of the most important concepts in logistics. Having a solid inventory 

strategy could not only save a company lots of money, but might be the difference between not 
being able to compete against the competition and having a prominent position in the market 

segment.  
 

One of the most important aspects of inventory modeling is the prediction of demand for a 
certain good. If it would be known beforehand at which moment a certain good will be sold, 
inventory management would be much simpler. However, planning becomes much more 
complicated when demand behaves stochastically. Stochasticity causes severe fluctuations in 
demand with which companies need to deal with. Firms tend to keep their stock high enough to 
minimize the amount of lost sales, but storage of redundant goods costs both time and money. 
Since having an adequate balance between these two aspects is essential, it is vital to find the 

optimal strategy of how much to replenish and at which moment. The optimal strategy depends 
on the interests of the management team; what level of lost sales is acceptable and how much 

money are the storage cost allowed to accumulate to?  
 
Since supply chains are important for nearly every type of industry, the demand for this type of 
research has increased over the past decades. However, relatively little attention has been 
devoted to the inventory modeling of perishable goods. Dealing with perishable goods, 
especially in the food industry, appears to be a significant problem. Outdating in the food 
industry occurs on a very broad spectrum of products. On one hand there is canned food which 
is sometimes preservable for over two years, while on the other hand fish and vegetables perish 
in a few days. Obviously these two different types of products require different approaches and 
therefore different order strategies. For example, for products which expire rather quickly, the 

focus might be less on minimizing lost sales and more on preventing these products passing 
their expiration dates and minimizing the amount of thrown away goods.   

 
The main purpose of this paper is to identify  and quantify the factors influencing the optimal 
strategy to aid companies in their quest for the optimal replenishment strategy. The best order 
strategy uses all available information to calculate the optimal replenishment quantities. For 
instance, the theoretical optimal strategy will probably be influenced by the age distribution of 
the products, but it is impractical to count the number of items with a certain expiration date 
for every product on a daily basis. In practice, the optimal model is the one which satisfies best 

a certain set of constraints; demand should be met to a certain degree, the amount of perished 
goods should be small and stock levels should be manageable. Therefore, the goal of this thesis 

is to find an operable strategy for perishable goods. 
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2. The inventory model 

2.1 The topic of this thesis 

The goal of this thesis is to find a decent order strategy with practical value for a system 
containing perishable goods. Furthermore, this paper analyzes the parameters that might 
influence the order strategies of perishable products. But to find such a strategy a correct model 

has to be created first. Our model is based on replenishment in supermarkets. This means 
dealing with perishable goods in an environment with stochastic demand and periodic delivery. 

The chosen model is based on a few crucial assumptions, which are listed below. 

2.2 Assumption 1: Replenishment 

The first assumption regards the replenishment cycle. Deliveries are supposed to arrive at the 

start of every day, and orders for the next day need to be placed directly after the delivery. 
Furthermore, the product can only be ordered in batches of size B. For example, wine is usually 

shipped in boxes containing six bottles. Stock shelves are assumed to be abundant and 
backorders are not allowed. 

2.3 Assumption 2: Product lifetime distribution 

The second assumption has to do with the lifetime of these goods. In many cases lifetimes are 
deterministic. This implies that goods perish in exactly d days.  This is the case with all kinds of 
prepacked foods and applies to the regulation regarding donations in blood banks as well; blood 
has to be used within a certain number of days by law. In completely different cases exponential 
lifetimes are assumed. Exponential lifetime means an item has a certain probability to perish in 
a certain amount of time (at a certain rate r), no matter how long the item has been in the 
system. This applies for instance to radioactive decay, and this assumption makes computations 
a lot simpler. A lifetime assumption combining both properties is chosen; the so-called shifted 
exponential distribution. This way products are assumed to last at least d days, and then perish 
at a certain exponential rate r. Note that assuming r to be infinite or d to be zero leads to 

respectively the deterministic or exponential distributions mentioned above.  

2.4 Assumption 3: FIFO versus LIFO 

Most models assume the oldest goods to be purchased first, which is called First-In-First-Out 

(FIFO). In the context of supermarkets FIFO models are usually preferred over other models 
since they have less outdating than, for example, Last-In-First-Out (LIFO) models. In certain 

scenarios, the freshness of the products influences customer satisfaction. In those cases hybrid 
models are used to combine the advantages of the two policies. FIFO purchases cannot be 

guaranteed since customers in supermarkets are usually free to pick a product to their liking, 
and tend to choose the freshest products available. A fraction p of the customers is assumed to 

purchase their groceries FIFO and a fraction (1-p) to purchase LIFO. For quickly perishable goods 
such as meat and vegetables, up to sixty percent1 of the Dutch consumers explicitly choose 

products with the longest shelf life.  

                                                                 
1
 This percentage was taken from an online article from a research group from the University of Wageningen but is 

not available anymore.  
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2.5 Assumption 4: Demand 

There is supposed to be weekly pattern in sales, meaning the expected demands on day i and 
i+7 are equal. The effects of this weekly pattern was studied by Kahn et al [9]. They found a 

clear dependency between customer visits on a specific day and visits exactly  one week later, 
but this specific dependency is not included to reduce unnecessary complexity. The demand for 

the observed product is assumed to be a ‘stuttered’ Poisson process. Customer arrivals are 
alleged to be a time-dependent Poisson process with a known arrival rate (λi) which changes 
over time. The interpretation is that at Poisson moments, a customer buys n items (n≥1), where 

n is a geometric random variable with a given parameter q. The assumption of sales following a 
Poisson process could be sufficient. But for the Poisson distribution the variance is equal to its 

mean, whereas empirical data shows the variance of sales sometimes even doubles the mean. 
The geometric random variable is used to account for this additional variance, because we now 

deal with a random sum of random variables.  
 

Let X1,X2,... be a sequence of independent random variables where each variable has a  

geometric distribution with parameter q. It is well know that E      = 
 

 
 and Var(  ) = 

   

  . 

Then E   
   =  Var(  )  +  E    

2   =   
   

   +    
 

 
 
 

 = 
   

    

 

Let N be a Poisson variable with parameter λ, then E[N] = λ and Var(N) = λ. 
Now the expected demand is:  

E    
 
       = E      * E[N]  = 

 

 
  λ = 

 

 
 

Now the variance of the demand is:   
Var    

 
      = E[N]Var(  ) + E   

   Var(N)  

= λ 
   

   +   
   

   λ   

=  
      

  λ 

Apparently, the variance is linear in λ. The process simplifies to a regular Poisson arrival process 

when q=1. The variance increases exponentially with rate 
 

 
 as q moves to zero. There is a 

combination of λ and q possible for every situation where variance ≥ mean > 0. Examples are 

given in table 1. 
 

 
q λ mean variance Variance-to-Mean 

1 25 25 25 1 

0.9 22.5 25 33.33 1.33 

0.8 20 25 43.75 1.75 

0.75 18.75 25 50 2 

0.5 12.5 25 100 4 

0.25 6.25 25 250 10 
Table 1: Different variances with the same expected sales  
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Figure 1 contains the Variance-to-Mean ratio for different values of q. This ratio reflects the 

effect of q on the variance. Note that when q decreases, λ has to decrease as well to keep the 
mean constant. Finally, we assume that Friday and Saturday have twice as customers as the 
other days of the week. 

 

 

2.6 Assumption 5: External influences on demand 

The product itself is homogenous and is assumed to have no complementary or substitute 
goods. The effect of substitution is studied by Smith and Agrawal [11]. They conclude that 
computation is rather complex and requires many substitution probabilities which might be 

difficult to obtain, but that substitution effects can have a significant effect on cost reduction 
and the optimal order policy. Chen and Plambeck [7] show that the usage of substitute goods 
could lower total stock levels by using hybrid safety stock. The effects of price changes on the 
optimal inventory policy for perishable goods are studied by Shah [18] and [19]. All of these 
effects are neglected here for computational reasons. 

2.7 Assumption 6: Costs 

Another important assumption deals with the costs involved. Most inventory models only 
include costs for holding inventory to minimize stock, and costs for lost sales to obtain a certain 

service level. Our model obviously includes costs for perished goods as well. Costs for delivery 

are neglected, since in nearly all cases a single product does not affect the decision of the store 
to receive a delivery. Also, the costs of placing the product on the shelves will never have a 

significant effect on the replenishment policy.   
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Figure 1: The curve of the variance-to-mean ratio depending on q  
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3. Literature review of order policies 

3.1 The history of order policies  

Inventory modeling is an important topic in Operations Research and has made great progress 
during the twentieth century. Basically, inventory theory deals with two questions:  

 How many units should be ordered? 

 At which time should the order be placed? 
 

This is a brief overview of the development of inventory theory. Listing all models could be a 
thesis on its own, as shown in [6] and [8], therefore only the more important ones are noted. 

Inventory theory started being fully deterministic, and over the years expanded to dealing with 
stochastic demand and perishability. 

 

3.2 The Economic Order Quantity 

The EOQ-model was the first mathematical inventory model and was developed in 1913 [22]. 

The model calculates the optimal order quantity (Q*) using the demand per time unit (D), order 
costs (S) and holding costs (H). The change in the amount of stock over time is shown in figure 2. 
 

 
 
 
 
 

Q* =          
 

 
 

 
 

 
 

 
 
 
The lead time (L) needs to be fixed, and demand and costs have to be constant for this model to 
work properly. Q* is the amount of stock ordered when the stock level equals the expected 
sales during the lead time. Over the years, the model has been expanded to deal with quantity 
discounts, backordering and multiple items. If items have a fixed lifetime of m, then the optimal 

order size is min(Q*, Dm). It is easy to see that this way no units expire.   
 

 
 
 

Figure 2: stock build-up in the EOQ-model 
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3.3 The (s,S)-type replenishment policy. 

A new inventory policy dealing with stochastic demand over multiple periods was introduced by 
Arrow, Harris and Marschak in 1951 [21]. This (s,S) policy states that stock should be 

replenished to a certain level S at the moment it reaches level s, with s < S. The lead time is 
considered to be zero and the amount to be replenished is obviously S-s. This type of policies 

are called continuous review models. This policy was proven to be optimal for most models with 
non-perishables and a linear cost structure. Fries [4] proved that the (s,S) policy is not optimal 
for multi-period models with perishables. 
 

3.4 The Newsvendor problem 

The first model regarding perishable goods with stochastic demand was the classical single 

period problem [20]. This model is also known as the Newsvendor problem, Newsboy problem 
or Christmas tree problem. It models a newsvendor who has to decide how many copies of the 

papers to stock, knowing that leftover newspapers are worthless and that demand is uncertain. 
There are two possible types of costs in this situation: the costs of having leftovers (h) and the 

costs of having lost sales (k). If the demand distribution D is known, then the optimal order is 
  

       
   

 

   
   .  

 

Here   
   denotes the inverse distribution of the demand. For example, if 

 

   
 = 0.75, then the 

optimal order quantity states there should be shortages in 25 percent of the cases. This is an 

inventory policy which deals with single-period perishable goods and probabilistic demand.  
However, the scope of this thesis could be classified as a multi-period newsvendor problem 

which appears to be much more complicated. Fries [4] has extended the newsvendor problem 
to l≥2 days, and assumes zero lead time and a FIFO policy. 
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3.5 Stochastic multi-period models for perishables 

Liu and Lian [17] extended the (s,S) replenishment policy to perishables. They assume 
immediate replenishment and choose s ≤ -1. This means that a new order will not be made until 

at least one customer arrives as soon as the entire stock has been depleted. So they not only 
allow backorders, but actually encourage it. Schmidt and Nahmias [2] use a special case, fixing s 

= S-1. This (S-1,S) model deals with items with fixed shelf life, disallows backordering and places 
an order as soon as an item has perished or is sold. They use it in context of functioning 
machines that either brake down or are removed for maintenance. Lian and Neuts [15] adapted 

the (s,S)  model to a discrete time model by rewriting states to a Markov Chain. Nahmias and 
Wang [1] on the other hand model a (Q,r) system, which is basically an (s,S) policy with positive 

lead times. Ravichandran [3] shows how complex the (s,S) model is for more realistic 
assumptions, like non-instantaneous lead times, constant shelf life and stochastic demand. He 

concludes such models to be quite complex and intractable, and meaningful analysis can only be 
obtained by simulation. Tekin et al. [14] propose a (Q,r,T) model, in which Q units are ordered 

when stock levels drop below r or when T units of time have passed since the last order.  This 
way, the order policy is not only based on the current stock levels but indirectly on the 
remaining shelf life of the items as well.  This is a periodic review model, just like the 
newsvendor problem, where the other models assume continuous reviewing. This policy is 
observed to outperform the regular (Q,r) system. 
 

3.6 The topic of this thesis 

Apparently, a multi-period, perishable inventory model without backorders and non-stationary 
probabilistic demand seems to be intractable and too complex to solve analytically. Therefore 
resorting to simulation is required to find a suboptimal heuristic. 
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4. Order strategies 

4.1 The complexity of perishables 

The truly optimal inventory strategy takes every possible piece of information into account, 
including the weather forecast, upcoming social events, the age distribution of the customers 
and inflation. But due to computational limitations and a lack of data, a trade-off between 

completeness and simplicity has to be made. This trade-off is acceptable because the vast 
majority of the variation lies within the nature of the demand process itself.  For example, an 

adequate strategy for non-perishable goods basically needs just three pieces of information; the 
current amount of stock, information about the lead time and the distribution of the demand 
for the following period. The ratio between lost sales and overstocking depends on their 
respective costs.  

For perishables, the policy becomes more complex. Because costs for outdating are usually 

much higher than holding costs, limiting outdating becomes crucial, especially in a non-FIFO 
environment. Intuitively, products with longer expected shelf lives should be allowed to have 
more safety stock than their quickly deteriorating counterparts. In non-FIFO environments, 
when the current stock approaches its expiration date, less safety stock should be held to 
decrease outdating. So the perishable order strategy not only depends on the current stock and 

expected demand, but on the expected shelf life, the expected fraction of FIFO sales and the 
age distribution of the stock as well. In the following subsections different order strategies are 

discussed that try to deal with this complexity. 

4.2 A non-perishable approach (up-to-S) 

The first policy is a control group model. It does not take into account any of the perishable-
specific information and only depends on current stock level and the expected sales  during the 
lead time. If D is the expected demand per time unit and the single lead time is T, then DL equals 

2*D*T in most cases. Note that with this lead time the time between the placement of this 
order and the arrival of the next order is meant. So it is not just the time until this order is 

delivered, but the time until the next order could arrive. The system is replenished with a 
certain order quantity Q given by: 

Q = α * DL    -  S ,   (1) 

where DL is the expected demand during lead time, S the current stock level and α ≥ 0.  
 

If α = 1, then no safety stock is held. To effectively deal with the stochasticity, α might range 
from 1.0 to 2.5 depending on the expected sales, and the cost of outdating and lost sales. Take 

α = 1.5 for example. Note that if we are dealing with regular Poisson sales with λ = 4, P(X ≥ 6) ≈ 
0.21, whereas if λ = 40, P(X ≥ 60) ≈ 0.002.  This shows that for higher expected demands, a 

smaller fraction of safety stock is needed and a lower α can be taken. It is trivial that α < 1 is not 
optimal in any practical scenario. Instead of using safety stock with a linear dependency on the 

expected demand, a safety stock function with a root or a logarithmic function could also be 
used, but that is beyond the scope of this thesis. 



Inventory modeling of perishable goods – Jan-Willem Arentshorst 
 

~ 9 ~ 
 

4.3 Age-dependent policies 

The age-dependent policy also takes into account the information regarding possible outdating. 
There is very little literature regarding such policies  in a practical setting, i.e. non-instantaneous 

lead times and not fully FIFO sales. When sales are assumed to be fully FIFO, the amount of 
safety stock is only a little less than its non-perishable equivalent. The difference in safety stock 

depends on the expected lifetime of the items. As the expected lifetime of goods increases, the 
stock level starts to behave more similar to non-perishables. 

The policy for LIFO sales is more sensitive to outdating since the freshest products are sold first.  

Finding the right balance between minimizing lost sales and minimizing outdating is more 
difficult. Much less safety stock is held, since the risk of outdating is more imminent. Define    
as the amount of stock with i remaining days of shelf life. This creates a total of m age 
categories. 
 

Now remember the non-perishable order formula: 

Q = α * DL    -  S    (1) 

where DL is the expected demand during lead time, α ≥ 0  and S =    
 
   ; the current stock 

level. We can make (1) age-dependent by changing S into a weighted function: 

Q = α * DL   -      
 
     (2) 

Adding more or less weight to certain classes of stock might cause the system to order more 

when the stock is relatively young, and order less when the stock is relatively old. Also, if the 
system expects a significant amount of items to be outdated at the end of the day, it might want 
to increase the order for the following morning. These weights can be more influential in LIFO 

situations than in FIFO situations. This is because having an old stock is much more troublesome 
in LIFO situations, since getting rid of the old stock before outdating gives a high exposure to 

lost sales. Note that in (1) all    are equal to 1. 
 

If goods have a shelf life of five days, one could understand that orders which arrive on 
Thursday can safely be somewhat increased, since the Friday and Saturday are coming up and 

any leftovers from Thursday should be easily sold during the weekend. On the other hand, 
placing a massive order on Sunday might be risky. This is why we introduce α j to the order 
formula, with j being the day of the week. The utility of this variable heavily depends on the 
expected lifetime of the goods. This variable is for example more useful in LIFO than in FIFO 
systems.  
 
All of these additions lead to the following formula: 

Q = αj * DL    -       
 
     (3) 
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4.4 Policy using previous order information 

Using weights for different ages of stock mentioned earlier is not very practical. It would require 
optical inspection of all inventory on a daily basis  to know exactly how much of each type is in 

stock, which is not practical at all. This means we will need to find another way to add 
information about the age distribution of our stock.   

 
As stated before, Tekin et al. [14] proposed a (Q,r,T) policy. This policy orders Q units when 
stock levels drop below r or when T units of time have passed since the last order. The last part 

makes sure the order policy is not only based on the current stock levels but on the remaining 
shelf life of the items as well. The model was proven to outperform models lacking that addition 

in the area of reaching a certain service level. So information is needed that could be an 
indicator for having rather young or old stock. We could add something similar here as well. We 

can use any information about daily sales and order quantities, since these are usually digitally 
available and often easy to obtain.  

 
For example, it could be an indication of old stock, if order quantities have been rather low for a 
few days. Having placed a gigantic new order could indicate rather young stock.  So the 
weighting of stock is removed and a new variable β is introduced, which value decreases an 
order if orders have been low enough for a certain amount of time. The optimal parameters of β 
can be determined by extensive simulation.  

Q = β * αj * DL - S     (4) 
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5. Simulation: settings and programming 
 
The policies from chapter 5 were tested in the model specified in chapter 3 by means of 
simulation. A program was written in JAVA which simulated the stock levels for a series of n 
days, using the expected demand for each day. Most parameters were varied to give a 
sensitivity analysis of the order strategies.  
 

5.1 Parameter settings 

 λi ≥ 0 The expected number of customer arrivals for day i.   
Statistics from two local supermarkets showed that total sales on Monday, Tuesday, 
Wednesday, Thursday and Sunday are roughly the same (λ). Sales on Friday and 
Saturday are roughly twice as much as on the other days (2λ). Note that this weekly 
pattern was used for convenience only, but other values can be given as input as well.  
 

 q ∈ (0,1]  The variance in total sales 

In some cases the variance is nearly twice as much as the average sales. According to 
Figure 1, q has to be around 0.75 in these cases.  

 
 p ∈ [0,1] The fraction of customers buying FIFO 

The (expected) fraction of FIFO sales has a major influence on the probability of 
outdating. Scenarios with FIFO (p=1), LIFO (p=0) and hybrid sales (p=0.4) were simulated.  

 

 d ≥ 0  The minimum (deterministic) lifetime of the goods 

The standard minimum lifetime was chosen to be d = 5 days. 
 

 r ≥ 0 ∈ [0,1]  The exponential decay rate 
For convenience, we choose r as the expected percentage of the population to perish 
after d days. We neglect this exponential decay in the standard situation, but this will be 
part of the sensitivity analysis. 
 

 B ≥ 1  The number of items per batch 
Most simulations were run with B=1, since other values for this parameter did not seem 
to have a significant effect on the optimal settings, but only seemed to blur the results. 

For completeness, a sensitivity analysis was done with B=4.  
 

Default settings: 
During simulation we chose “default settings” to make comparing easier: 

λ = 5, q = 0.75, p = 0.4, d = 5, r = 100%, B = 1 
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Furthermore, we assumed the lead time to be exactly one day, which is quite realistic for 
supermarkets. It is convenient to assume delivery arrives “between days”; either after closing or 
just before opening. By organizing the replenishment and outdating outside of the sale window,  
there is no need to make a distinction between the daily sales before and after delivery. This 
assumption makes calculations simpler, and the application of the theory more practical. 
Moreover, it is not unusual for supermarkets to receive their deliveries either late in the evening 
or early in the morning. In many of these cases, the expected sales after or before delivery can 

be neglected and therefore fit our assumptions. 

5.2 Batch-means and statistical significance 

One long simulation run of n days is simulated to obtain the number of outdated items D1,....Dn 

for a large n. An obvious estimator for the expected percentage of thrown-away items would be 
the sum of these values divided by the total number of items held in stock. 

 

       = 
   
 
   

            
 

 
Unfortunately the corresponding confidence interval is not as accurate as it should be, because 
these values are strongly correlated. The batch-means method is used to solve this problem. In 
the batch-means method, the simulation is divided into k smaller subruns. Each subrun covers a 

period of b = 
 

 
 days. The averages of each subrun are nearly uncorrelated as long as b is large 

enough. These subrun averages are used to create reliable confidence intervals. Another 

advantage is that because the subruns are uncorrelated, only one period of warm-up data has 
to be thrown away. For this simulation, b = 25000 days and k = 41. b is chosen such that the 

confidence interval around the average is negligible. The warm-up period is arbitrarily chosen to 
be nearly a year; that is 52 weeks. 
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5.3 Pseudo code 

Pseudo code of the three main methods is shown below; the full code is available in the 
appendix. Basically, each day consists of four functions: replenishing, ordering, outdating and 

selling. The order of the first three functions is interchangeable. This particular order is chosen 
because it is intuitive. Replenishing and ordering might as well be the final tasks of the day 

instead of the first. 
 
program start(): 

 do_warmup_period (); 
for (1 to r subruns) 

  for (1 to b days) 
   simulateDay(); 

} 
} 

end program 
 
method simulateDay(): 
 replenish_stock(); 
 place_order(); 
 double lambda = expectedArrivals(current_day); 

int customers  = simulatePoisson(lambda) 
  for (1 to customers){  
                 processCustomer();   

             }  
age_stock_and_outdate(); 

end method 
 
method processCustomer(): 
 int sales = geometricDrawing(q); 
 lostsales = max (sales – stock, 0) 
 sales = min (sales, stock) 
 stock –=  sales; 
 double random = new Random(0,1); 
 if (random < FIFO-fraction)  -> takeOldest(sales); 
 else     -> takeNewest(sales); 

end method 
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5.4 Performance measures 

The inventory strategy only has to deal with three measures; the  amount of lost sales, the 
amount of outdating and holding costs. Holding costs seem less important in the context of 

supermarkets, since the risk of outdating usually has much more influence on the orders than 
holding costs. Outdating costs can be difficult to calculate. For example, what are the material 

values and what is the price of eliminating the items? The costs of lost sales are even more 
difficult to  determine. In certain cases, customers tend to buy a similar good instead if the good 
is out of stock. So what is the cost of lost sale then? And what if the substitute good is more 

expensive? And what is the value of having a high customer satisfaction level? Anyway, finding 
the right balance between these two measures is a vital as it is arbitrary.  Some managers focus 

on customer service; everything has to be perfect for the customer and not a single product 
should be out of stock. For these managers, outdating is just a necessary evil. Other managers 

prefer to minimize outdating, for both economical and ecological reasons. They accept lost sales 
more easily, since customers tend to buy substitution goods instead. So finding the right 

balance depends on how heavily each measure is supposed to be weighted.  
 
In this thesis, both measures are weighted equally. After all, both lost sales and outdating can 
be seen as a wrong order in some sense. In the results section, percentages of outdating and 
lost sales are listed. Both of these values are compared to the total amount ordered instead of 
the total demand, since the emphasis in this thesis lies in finding the correct order amount and 
not on optimizing sales. This implies that if one hundred products are in stock, and there has 

been a total demand of 105 items, then the total lost sales are considered 
       

   
 5% (of the 

ordered amount) whereas usually this percentage would be 
       

   
  4.8%. So in our cases, lost 

sales are not the percentage of demand which could not be fulfilled, but the percentage that 

the ordered amount should have been bigger. After all, we need to optimize our orders and not 
our sales. Note that for long-term simulation, this gives nearly the same result. 
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6. Simulation:  results 

6.1 Understanding stock behavior using the basic policy 

The first inventory strategy simulated was the non-perishable approach explained in Section 5.2. 
The effect of this strategy depends on finding the optimal alpha, which is a measure for the 
safety stock: 

Q = α * DL    -  S ,   (1) 

where DL is the expected demand during lead time, S is the current stock level and α ≥ 1.  

All the other policies are based on this type of policy strategy. Alpha is also the most influential 

variable in our policies. Before expanding the complexity of our order policies, we first need to 
understand which model parameters influence alpha the most and what the effects of alpha on 

the optimal results are. 
 

The optimal value of alpha depends on the perishability (d and r), expected s ales (λ and q) and 
the fraction of customers buying FIFO (p).  
 
Main findings: 

 A low alpha leads to less outdating and more lost sales, while a high alpha leads to more 

outdating and less lost sales.  
 The optimal value of alpha depends on the balance between lost sales and outdating 

caused by the characteristics of the system.  

 Systems with higher alphas have much more safety stock and a higher average stock age. 

 Larger batch sizes (B) slightly decreases performance, but has no effect on the optimal 
alpha. 

 Higher expected sales (λ) cause relatively less fluctuations in demand, which leads to less 

outdating. These systems perform better and can afford lower alphas. 
 If sales are spread over more customers (q increases), sales fluctuate less and therefore 

the system performs better.  
 Higher FIFO-probabilities (p) increases performance and have a higher optimal alpha. 

 Longer lifetime (d) increases performance and has a higher optimal alpha.  

 Exponential decay (r<100%) instead of deterministic decay with the same average shelf 
life (r=100%) performs worse and has a lower optimal alpha. 

 Systems with higher alphas have larger average orders placed on peak days, and smaller 
average orders placed after peak days. 

 Most outdating happens on d days after peak days, which leads to higher lost sales on 
days d+1 after the peak days. 

 Severely minimizing lost sales leads to much more outdating, and vice-versa.   
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The higher the expected sales are, the larger the difference between the optimal LIFO strategy 

and the optimal FIFO order strategy. For example, the difference in average stock is over sixty 
percent for λ=20 but only twenty percent for λ=2. Every scenario has a specific optimal value for 
alpha. An example of parameters and their optimal alphas are shown in table 2. Some 
simulations were done for three different arrival intensities; 2, 5 and 20 customers per day. The 
first entry is always the standard situation. In the other five cases, parameters (printed in bold) 
are changed to show their effects on the results. 

 Table 2: optimal settings. all percentages have 95% confidence interval within less than ±0.05% accuracy  

The line with the asterisk shows the standard setting, which has a result of 5.35%. 

 
Take for example the scenarios with λ=20, q=0.75, d=5, r=100% and three values for p: 0, 40% 

and 100%. These scenarios have the following alphas: 1.14, 1.31 and 1.55 respectively. 
Remember that all of these scenarios are dealing with the same demand and that only 3% of the 

sales is lost in the worst case. This means that in all of these scenarios roughly the same amount 

is ordered. So if alpha is supposed to correlate with the amount of stock ordered, but the total  
order is roughly the same for every alpha. This raises questions about the ordering behavior.  

  

λ q p d r Alpha that 
minimizes the 

unweighted costs 

Lost 
sales 

Outdating Sum 

2 0.75 0.4 5 100% 1.61 5.13% 8.50% 13.64% 

2 0.75 0.4 9 100% 2.00 1.36% 2.70% 4.06% 

2 0.75 0.4 5 50% 1.61 4.78% 6.18% 10.87% 

2 0.75 0.4 2 25% 1.60 4.88% 15.21% 20.10% 
2 0.75 0 5 100% 1.44 8.68% 10.55% 19.19% 

2 0.75 1 5 100% 1.64 4.72% 3.50% 8.22% 

*5 0.75 0.4 5 100% 1.40 2.95% 2.40% 5.35% 

5 0.75 0.4 9 100% 1.78 0.32% 0.27% 0.59% 

5 0.75 0.4 5 50% 1.47 1.83% 2.39% 4.23% 

5 0.75 0.4 2 25% 1.32 4.49% 6.85% 11.34% 

5 0.75 0 5 100% 1.32 4.96% 6.54% 11.50% 
5 0.75 1 5 100% 1.63 0.83% 1.02% 1.84% 

20 0.75 0.4 5 100% 1.31 0.38% 0.32% 0.70% 

20 0.75 0.4 9 100% 1.71 0.000% 0.001% 0.001% 
20 0.75 0.4 5 50% 1.33 0.23% 0.29% 0.51% 

20 0.75 0.4 2 25% 1.21 1.30% 2.84% 4.13% 
20 0.75 0 5 100% 1.14 2.85% 2.61% 5.46% 

20 0.75 1 5 100% 1.55 0.01% 0.01% 0.02% 
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Basically, the alpha correlates to the amount of movement around the expectations. For 

example, figure 3 shows that with higher alphas larger deliveries arrive at Friday and Saturday 
mornings (or the evening before), which often causes a surplus on Sunday and Monday. 
Situations with smaller alphas tend to have less difference between the orders on Friday and 
Monday. Notice that the higher alpha, the higher the impact of the weekend-bulk. This could be 
troublesome for systems that are LIFO or have low expected sales. As we have seen before, LIFO 

systems perform better with low alphas, since ordering less exuberantly leads to fewer old 
products. 

 
The optimal value for alpha depends on the situation. Situations that allow more safety stock, 

like high demand and longer lifetimes, perform better with higher alphas. Situations which are 
more prone to outdating, like LIFO systems and situations with exponential decay perform 

better with lower alphas. Figures 4, 5 and 6 show the correlation between different parameters 
and the optimal alpha. These figures show, for example, that the FIFO percentage influences 

alpha much less than the expected shelf life of the product.  
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Figure 5 shows a nearly linear correlation between optimal alpha en the shelf life of a product. Note that 
since our policy does not contain any holding costs, the tangent in real life might not be so steep after all. 
Still, the length of the shelf life obviously has a great impact on the risk of outdating and therefore on the 
optimal value of alpha.  
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Figure 4: Impact of expected sales on the optimal alpha  
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Figure 7 shows the trade-off between lost sales and outdating. In our case, outdating and lost 
sales are treated equally. Finding the optimal alpha can be done by moving the red tangent line 

until it touches the blue curve, which is here between α= 1.4 and 1.5. The angle of the tangent 
line depends on the manager’s interest. For instance, a manager finding lost sales twice as 

import as outdating should move the green tangent line to find the optimal value, which is 
around α=1.35. This particular graph also shows that tight constraints on the maximum amount 
of lost sales (or outdating) lead to significant outdating (or lost sales). For example, to guarantee 
99% availability (and therefore less than 1% lost sales) an alpha around 1.25 has to be chosen 
and one would need to accept nearly 6% outdating. Guaranteeing that less than 1% of the 
ordered goods is outdated requires an alpha around 1.65 and leads to over 7% lost sales. 
Appendix B contains two tables similar to table 2 with constraints on outdating or lost sales and 

gives interesting examples of the trade-off between outdating and lost sales for various model 
parameters. 
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Figure 7: The trade-off between outdating and lost sales under standard settings  
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Figure 8 shows the performance for different values of alpha under the standard settings. The 

curve seems to resemble a parabola with minimum around α=1.4, which corresponds to the 
optimal value found before.  
 
 
 
 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

The simulation shows a clear weekly pattern in outdating as can be seen in figure 9. The 
outdating on Tuesday correlates to orders arriving on Friday morning, and the Wednesday 

outdating is caused by the goods that arrived on Saturday morning. So most outdating is caused 
by leftovers from the weekend. As figure 3 showed, the orders on Friday and Saturday are much 

higher than on the other days, which appears to cause high outdating in certain cases.  
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Figure 9: The weekly pattern of outdating under standard settings 
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Lost sales do not have such a significant pattern as outdating does, which is shown in figure 10. 

The somewhat higher Wednesday and Thursday lost sales could be caused by the high amount 
of outdating the days before. Saturday outperforms the other days because the order quantities 

of Friday and Saturday are quite large. For example, according to figure 3, having α=1.31 and an 
expected sales of 50 on those two days, causes the average order to be around 60 on both days.  

 
Let N and M be Poisson variables with parameters λ1 and λ2. Then N + M is also a Poisson variable, 

but with parameter λ =λ1+λ2. So the combined sales of Friday and Saturday is a Poisson variable 

with expectation 50+50=100. The probability that over 120 items (twice the average order) are 
sold is approximately 2.8%. Now suppose there still were 10 old items on Friday morning. The 

chance of selling over 130 items is less than 0.3%. That explains why Saturday performs so well. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: The weekly pattern of lost sales under standard settings 
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Figure 11 shows the average stock buildup for different values of alpha under standard settings. 

The difference between start and end of the day increases slightly as alpha rises because a 

higher alpha correlates with less lost sales. 
 

 
 

 
 

 
 

 
 
 
 
 
 
 

 

 
 

Figure 12 shows the average stock age. Items are tagged as being 0, 1, 2, 3 or 4 days in stock and 
the average of these value is measured. The values are measured in the morning right after 

delivery and before opening. The end-day values are measured right before the products age 
and expire. The average age at the end of the day is slightly older than the one at the beginning 

because only 40% is FIFO, so most sales are LIFO. 
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Figures 13 to 16 show the stock build-up of three systems with standard settings at the 

start (upper) and end of the day (lower), but with different FIFO percentages. The values 
are shown as a percentage of the total stock (left) and as average number of items 

(right). 
 

As you can see in figure 16, LIFO systems have way less safety stock. Since all three 
systems have nearly the same amount of sales (they only differ a few percent due to lost 

sales and outdating), they have different optimal alphas but nearly the same average 
order, and therefore nearly the same average new stock at the start of the day as can be 
seen in figure 14. It is remarkable to see how LIFO systems behave differently than their 
FIFO counterparts. LIFO systems seem to keep less older stock. Comparing figures 14 
and 16 shows that LIFO systems indeed sell much less older products than FIFO systems, 
as one would expect. For example, the LIFO system starts the day with on average 1.2 
final-day products and only sells around 0.3 of them. The remaining 0.9 items are 
outdated and thrown away. This means LIFO systems are discouraged to order a lot of 
safety stock and therefore tend to have much more lost sales than their FIFO 

counterparts.  
 

  

Figure 10 
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6.2 Policies dealing with perishability 

The second policy implemented was a policy with different weights for different stock 
ages. The formula from section 4.3 was used, that is 
 

Q = α * DL   -      
 
    .  (2) 

 
Prolonged simulation of this policy resulted in the optimal combination of    and α. The 
non-weighted solution of the system with standard settings had an optimal result of 
5.35%, as shown in table 2. Remember that the result is the sum of the lost sales and 
the amount of outdating. By adding weights to the current stock, a result of 5.06% was 
obtained, which is significantly better. The optimal alpha stayed the same. The 
difference in result was mostly found in a decrease in lost sales; the decrease in 
outdating was less than 0.03%. Table 3 shows the optimal weight values. 

 
Remaining lifetime Optimal weight 

4 days  1.08 

3 days 1.04 

2 days 1.00 
1 day 1.00 

0 day  0.42 
Table 3: Optimal weights for different stock age categories 

 
Products with only one day remaining are weighted a lot less than the others, since 
these products might be outdated at the end of the day and therefore cannot be sold 
tomorrow. As figure 5 showed, outdating is high on Tuesday and Wednesday, which 
leads to increased lost sales on Wednesday and Thursday, as can be seen in figure 6. By 
giving older products less weight (only 0.42 instead of 1.00), we reduce the amount of 
lost sales tomorrow due to excessive outdating today. The optimal weights heavily 
depend on factors that increase the risk of outdating. For example, in LIFO systems the 
risk of outdating is higher, and the weights of the oldest products will be even less, 
whereas FIFO-systems will have a much smaller difference between the different 

product age groups.  
 

The next policy uses the weights from the previous paragraph but adds the concept of 
having a different alpha for each day of the week.  
 

Q = αj * DL    -       
 
      . (3) 
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Orders arriving at Adjusted Weight Optimal weight (αj) 

Monday +0% 1.40 
Tuesday +10% 1.54 

Wednesday +10% 1.54 
Thursday +10% 1.54 

Friday +5% 1.47 

Saturday +0% 1.40 
Sunday -5% 1.33 

Table 4: Optimal weights for different days  

Mainly, the alpha before the weekend is increased and the alpha in the weekend is 
decreased in the optimal situation. This is because the absolute amount of safety stock 
is smaller on weekdays than on the busy days. Furthermore, the chance of selling old 
leftovers is higher when the weekend is only a few days away. This leads to an optimal 
result of 4.89% in lost sales and outdating. 
 

6.3 A policy using previous order information 

The next policy is a more practical one. It does  not require information about the age 
distribution of the stock, which is traditionally hard to obtain in non-FIFO environments. 

Instead it uses a variable β which decreases stock orders by a certain fraction if orders 
have been low for a specific amount of time. The ordering amount is give by: 
 

Q = β * αj * DL - S      (4) 

where β=                                               
                                                                                      

 

 

The parameters 0.55, 3 and 6 were found after exhaustive optimization. 
Low orders for three days in a row might indicate aging stock. To decrease outdating an 

even lower order is placed to get rid of more old stock. Note that this is only favorable in 
not fully-FIFO systems, since ordering smaller amounts of new stock does not increase 

the chance old stock is sold for FIFO systems. The optimal value was 4.83% which is the 
best result so far. Using β as an additive parameter instead of a multiplicative effect was 
tried as well but gave worse results.  
 
Finally, when re-adding the weights for stock age groups from table 3 the optimal result 
further decreased even further to 4.75%.  

 

Q = β * αj * DL -       
 
       (5) 

 

An overview of all policies, their formulas and best results for the standard settings is 
shown below in table 5. 
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Policy number Order policy formula Optimal result: 

(1) Q =        α * DL   - S     5.35% 

(2) Q =        α * DL    -      
 
     5.06% 

(3) Q =       αj * DL    -       
 
     4.89% 

(4) Q = β * αj * DL    - S   4.83% 

(5) Q = β * αj * DL    -       
 
     4.75% 

Table 5: Summary of the policies and their optimal results  
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7. Comparison to a real life situation 
 

To compare the practical use of the model, information from a local s upermarket was 

used to evaluate the order strategy. For a period of six weeks, stock levels, outdating, 
sales and deliveries for twelve different products were registered and afterwards 

inserted into the computer program to compute how the order strategy would have 
scored in practice.   The data was obtained from June 4th until July 15th 2011.  

7.1 Supermarket information 

The chosen supermarket is located in a Dutch village with approximately 15,000 

inhabitants and has a weekly turnover of over €200,000. It is part of a multinational 
supermarket chain with a prominent position in the Dutch supermarket sector.  

 

7.2 Product selection 

A wide range of products was chosen, each with different average weekly sales and 

minimum lifetime (d). In consultation with the local supermarket only products from the 
ready-to-cook vegetable department were chosen. The products in this department 
range from prepacked vegetables, like spinach and broccoli, to stir-fry vegetable mixes, 
mushrooms and prepacked lettuce and salads. This department is of interest because it 
is traditionally dealing with lots of outdating due to a rather short shelf life and has a 
somewhat larger profit margin than other products. A total of eighteen products were 
tracked, but not all could be used for the experiment, because during the interval, five 

products were on sale. This dramatically boosted sales that week, which is not 
incorporated in the model and makes forecasting and parameter estimation even more 

delicate. Furthermore, one product became unavailable due to shortages at the 
distribution centre. In the end, twelve products which are shown in table 6, were left for 
the real life analysis. 
 
It should be noted that the precision of the stated “minimum lifetime in days” is not 
accurate. This value was obtained from the computer system but it is not very accurate. 
For instance, the Parisian Carrots are supposed to last a minimum of 3 days, but as the 
data set shows, carrots arriving Friday evening are not thrown away until Thursday, 
which is five and a half to six days after arrival. Therefore, a sample was taken from the 
supermarket to obtain the correct life times. In nearly all cases, the expected life time 
after delivery was five days instead of three, except for the Spinach Stew which did last 
ten days. In the simulation, the “sampled” life times were used instead of the “official” 

life times.  
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Product   
description 

Weight or 

volume 

Order 

quantity 

“Official” 

minimum 

lifetime 

in days 

Average 

daily 

sales 

Total 

products 

outdated 

outdating 

percentage 

of sales 

Variance 

of sales 

Variance-

to-mean  

number of 

days with 

low stock         

(<average/2) 

1 Broccoli 300 grams 4 3 1.23 1 1.9% 1.5 1.18 7 

2 Diner Caesar Salad 450 grams 4 3 2.88 0 0% 4.15 1.41 3 

3 Spinach Stew 500 grams 4 10 1.64 3 4.3% 1.97 1.17 1 

4 Soup vegetables 250 grams 6 3 4.39 8 4.3% 17.90 3.98 6 

5 Raw beet salad 250 grams 1 3 0.64 3 11.1% 0.53 0.81 2 

6 Parisian Carrots 300 grams 8 3 2.26 29 30.5% 4.77 2.06 2 

7 Shii take mushrooms 100 grams 2 3 0.93 6 15.4% 1.05 1.10 7 

8 Mushrooms 250 grams 12 3 42.98 0 0% 383 8.70 1 

9 Sliced Leek 200 grams 4 3 3.21 4 3.0% 5.16 1.57 2 

10 Italian Salad 250 grams 6 3 12.26 53 10.2% 28.33 2.24 4 

11 Wok vegetables with mushrooms 400 grams 1 3 1.19 3 6.0% 1.13 0.92 0 

12 Biological onion flakes 175 grams 4 3 2.71 3 2.6% 3.18 1.14 5 

Table 6: Products selected from the supermarket with some of their statistics 
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7.3 Data analysis 

A few points have to be noted before discussing the results of table 6. First of all, the 
column “outdating” might also include some items thrown away for being accidently 
opened or damaged. Furthermore, all of these items do have substitute goods and 
sudden increases in sales might be caused by unavailability of those goods or by their 
price changes. Furthermore, the number of lost sales is unknown and is not easily 
deducted from the data. Knowing exactly how long the shelves have been empty would 

be a decent indicator for lost sales, but unfortunately that information is not available. 
Still, the data shows whether there are days starting with an amount of stock lower than 

half the average sales or no stock at all. Table 7 shows the lost sales and Friday seems to 
perform quite well, as predicted before. On the other hand, Mondays and Tuesdays 

perform much worse. 
 

mo tu we th fr sa su 

Biological onion flakes 0 1 2 2 0 0 0 

Wok vegetables with 
mushrooms 

0 0 0 0 0 0 0 

Italian Salad 1 2 1 0 0 0 0 

Leek 1 0 0 0 0 0 1 

 Mushrooms 0 1 0 0 0 0 0 

Shii take mushrooms 1 0 0 2 1 2 1 

Parisian Carrots 1 0 0 0 0 0 1 

Raw beet salad 0 1 1 0 0 0 0 

Soup vegetables 2 2 0 0 0 1 1 

Spinach Stew 0 1 0 0 0 0 0 

Dinner Caesar Salad 1 0 0 0 0 1 1 

Broccoli 1 2 1 0 1 2 0 

0 

2 

4 

6 

8 

10 

12 

Number of days started with stock levels less 
than half the average sales 

Table 7: Days with possible lost sales during the observation period 
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One of the first things to notice in table 8 is the significant amount of outdating. Even 

though six weeks is a rather short period of time, four out of twelve products had 
outdating percentages of over ten percent. The data showed that the Parisian carrots 

appeared to have a weekly pattern with major outdating on Thursday followed by a 
somewhat larger order on Friday. The Italian salad had peaks in outdating on Mondays 

and Thursdays, which were probably caused by large orders on Wednesdays and 
Saturdays, respectively. One thing to note is the large fluctuation in weekend sales for 

this product. Some Fridays and Saturday had over 25 sales but were followed by 
weekends with only half as much sales, apparently leading to piles of leftovers from the 
weekends resulting in outdating bulks. 

Mo Tu We Th Fr Sa Su 

Parisian Carrots 0 0 0 23 1 5 0 

Italian Salad 27 3 0 23 0 0 0 

Biological onion flakes 0 2 0 1 0 0 0 

Wok vegetables with 
mushrooms 

0 0 2 1 0 0 0 

Leek 0 0 0 0 3 0 1 

Shii take mushrooms 0 0 3 3 0 0 0 

Raw beet salad 1 0 0 0 0 1 1 

Soup vegetables 0 2 3 1 0 0 2 

Spinach Stew 0 0 1 0 2 0 0 

Broccoli 0 0 1 0 0 0 0 

0 

10 

20 

30 

40 

50 

60 

Outdating distribution 

Table 8: Outdating during the observation period  
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Also, the supposed week pattern in sales seems to exist, but not as distinct as previously 

assumed. The distribution is shown in figure 17. Sales on Mondays to Thursdays seem to 
be nearly equal, sales on Sundays seem to be a little less and sales on Fridays and 

Saturdays seem to be about 1.4 times as large as Monday to Thursdays, instead of 
double the other days. The data was gathered in June and July, and this gradual 

spreading could be caused by the summer vacation period. People tend to have more 
time during these weeks to do their groceries on days, which normally would have been 

working days. It is also possible that it might depend on the product selection. For 
example, luxurious products like sushi are typically sold during the weekend and 
opposite could apply for some of our products. 
 
 
 

 
 
 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

mo tu we th fr sa su 

Sales distribution 

Figure 17: Distribution of the realized sales compared to Monday  
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8. Simulation results compared to the real life situation 

8.1 Settings and assumptions 

Simulations were run using the store’s data to see if the strategies mentioned in chapter 
4 perform properly. The data comprises a total of six weeks. We simulated cycles of 42 

days, and did this for each product 100,000 times to obtain accurate results. One should 
note that we have a significant advantage since the realization of the demand is already 

known, whereas the store had to estimate it using historic data of hundreds of stores 
throughout the Netherlands.  

 
Figure 17 showed a rather different week pattern, with Friday and Saturday only 40% 

above most of the other weekdays. To simplify the comparison between our policy and 
the real-life situation, we adjusted the weekend factor to 1.4 instead of using the 2.0 

used before. Let us take the broccoli for example. The weighted average daily sales of 
broccoli was 1.03. This means that the average sale was 1.03 on weekdays, and 1.4*1.03 
= 1.442 on Fridays and Saturdays. The average daily sales and weighted average daily 
sales of each product is shown below in table 9. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9: Products and their (weighted) average daily sales 

product total 

sales 

average daily 

sales 

Weighted 

average daily 

sales 

1 Broccoli 52 1.23 1.03 

2 Diner Caesar Salad 121 2.88 2.40 

3 Spinach Stew 69 1.64 1.37 

4 Soup vegetables 184 4.39 3.65 

5 Raw beet salad 27 0.64 0.54 

6 Parisian Carrots 95 2.26 1.88 

7 Shii take 
mushrooms 

39 0.93 0.77 

8 Mushrooms 1805 42.98 35.81 

9 Sliced Leek 135 3.21 2.68 

10 Italian Salad 515 12.26 10.22 

11 Wok vegetables 
with mushrooms 

50 1.19 0.99 

12 Biological onion 
flakes 

114 2.71 2.26 
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Using the results from table 8 as input variables, simulations were carried out for each 

of the specified products. The supermarket had a certain stock build-up at the begin of 
the measurements. The age distribution of the stock was unknown, but has a significant 

effect on simulation results. Starting with a clean sheet, i.e. entirely young stock, makes 
it easier for the system to keep outdating to a minimum than if the stock was randomly 

divided over all stock ages. Each simulation cycle starts with the same pre-specified 
amount of initial stock. The age distribution of the stock at the start of a new cycle is 

made to resemble the age distribution at the end of the previous cycle. Otherwise, the 
system would always start out with only fully fresh items, which would not be realistic. 
For the comparison, the forth policy was used, since this thesis is mainly interested in a 
practical policy and this policy does not use ‘uncommon’ information like the age 
distribution of the actual stock. The policy is given by: 
  

Q = β * αj * DL    - S ,    (4) 
 
where αj and β were optimized by simulation.  

8.2 Comparison on lost sales 

Since no information is known about lost sales in the supermarket, we use ‘the number 
of days with rather low stock’ as a performance measure. The number of days were 
counted on which the stock at the start of the day was less than half the expected sales 
of that day. Although it does not give an indication of the total number of lost sales, it 
does give some insight in how frequent orders are insufficient. We cannot compare our 
policy with the supermarket using the sum of the percentage of outdating and of lost 
sales, since we have no information on the amount of outdating. What we can do is 
fixing one of the two values and determine if our policy performs better. So the 

simulated policy tries to accomplish approximately the same number of days with low 
stock, but with less outdating. 

 
Table 10 shows the comparison between de supermarket and our simulations. 

Especially the Parisian Carrots (6) and the Shii take Mushrooms (7) did far better than in 
practice. The four products listed in red in table 10 are the ones in which our policy 

performs worse. Note that the required alpha to match the supermarket is less than one 
for the Soup vegetables (4), Mushrooms (8) and Italian Salad (10). This means they 
actually deliberately have lost sales to match the low stock levels, which obviously 

decreases the outdating percentages. In real life, this is obviously never an optimal 
solution.  One of the reasons why the mushrooms achieved such low outdating rates is 

that they are placed on the bottom shelf in a corner, which makes it very hard for 
customers not to buy FIFO, achieving no outdating at all. The Italian salad had rather full 

shelves but had terrible outdating as can be seen in table 10. This might be caused by an 
incorrect administrative stock level, i.e. the system contained more products than it 

knew about, which rarely happens. 
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Product 
description 

Realized low 

stock in days 

Simulated low 

stock in days 

Realized 

outdating 

Simulated 

Outdating 

Simulated 

Lost sales 

Optimal 

alpha 

1 Broccoli 7 6.97 1.9% 4.18% 25.15% 1.28 

2 Diner Caesar Salad 3 3.31 0% 1.22% 13.81% 1.2 

3 Spinach Stew 1 1.2 4.3% 0.62% 8.94% 1.66 

4 Soup vegetables 6 6.19 4.3% 0.46% 26.79% 0.98 

5 Raw beet salad 2 2.31 11.1% 16.07% 10.76% 2.04 

6 Parisian Carrots 2 2.47 30.5% 7.02% 12.80% 1.7 

7 Shii take mushrooms 7 6 15.4% 4.94% 25.82% 1.19 

8 Mushrooms 1 0.54 0% 0% 51.52% 0.47 

9 Sliced Leek 2 2.16 3.0% 1.09% 12.67% 1.19 

10 Italian Salad 4 3.68 10.2% 0% 49.46% 0.45 

11 Wok vegetables with 

mushrooms 
0 0.44 6.0% 9.45% 6.72% 1.75 

12 Biological onion flakes 5 5.36 2.6% 0.77% 21.63% 1.17 

Table 10: Comparison between the supermarket and simulation for a fixed amount of low stock  
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8.3 Comparison on outdating 

The same comparison was done with outdating. Similar to the previous section, we fixed 
the amount of outdating and compared the difference in days with low stock. The five 
products colored red are the ones in which our policy performs worse. 
 
Table 11 shows that seven out of twelve items would have performed better using our 

policy. Note that the alpha of the first two products are below one. Especially the 
broccoli results were difficult to obtain, since it has a rather low average daily sales and 

it is very hard to keep outdating to a minimum under our assumptions of not-fully FIFO. 
That is why the simulated lost sales are so high for that product. One of the reasons why 

the other ‘red’ products performed so well is that the supermarket had an active policy 
giving a significant discount to all items with one day until expiry, actively increasing the 
chance customers will take an old item over a younger one.  
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  Table 11: Comparison between the supermarket and simulation for a fixed amount of outdating  

Product 
description 

Realized 

outdating 

Simulated 

Outdating 

Realized low 

stock in days 

Simulated average 

low stock in days 

Simulated Lost 

sales 

Optimal 

alpha 

1 Broccoli 1.9% 3.31% 7 20.98 51.14% 0.83 

2 Diner Caesar Salad 0% 0.1% 3 12.31 37.11% 0.77 

3 Spinach Stew 4.3% 4.06% 1 2.51 14.52% 1.46 

4 Soup vegetables 4.3% 4.18% 6 0.09 1.18% 2.41 

5 Raw beet salad 11.1% 9.93% 2 3.34 18.65% 1.57 

6 Parisian Carrots 30.5% 30.21% 2 0.17 0.88% 3.29 

7 Shii take mushrooms 15.4% 15.17% 7 1.2 6.50% 2.07 

8 Mushrooms 0% 0.04% 1 0.02 8.05% 1.1 

9 Sliced Leek 3.0% 3.07% 2 0.78 5.78% 1.5 

10 Italian Salad 10.2% 10.22% 4 0 0.00% 2.1 

11 Wok vegetables with 

mushrooms 
6.0% 5.84% 0 1.12 12.23% 1.59 

12 Biological onion flakes 2.6% 2.52% 5 1.43 7.27% 1.41 
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8.4 Analysis on the constraint that outdating < 2% 

Of all the products sold over those six weeks, more than 3.5% was outdated. Table 12 
shows the effects if the amount of outdating should be strictly below 2%. Observe that 
the higher the daily demand, the lower the amount of lost sales.  
 

Product 
description 

Simulated 

Outdating 

Simulated 

average low 

stock in days 

Simulated 

Lost sales 

Optimal 

alpha 

2 Diner Caesar Salad 1.96% 1.69 9.31% 1.33 

3 Spinach Stew 1.84% 0.34 3.35% 2.08 

4 Soup vegetables 1.95% 1.8 12.25% 1.32 

8 Mushrooms 1.99% 0 0.49% 1.59 

9 Sliced Leek 1.76% 1.47 9.18% 1.35 

10 Italian Salad 2% 0 0.13% 1.64 

11 Wok vegetables with mushrooms 1.76% 4.53 29.02% 1.09 

12 Biological onion flakes 1.8% 2.06 9.52% 1.4 

Table 12: Amount of lost sales for items that can achieve outdating < 2% 

But not all of these products can achieve 2% outdating, since they arrive in batches. For 
example, broccoli cannot achieve less than 3.68% outdating even if it is only ordered as 

soon as the stock is depleted. This is because the average sales are only 1.03 per day 
and the probability that less than 4 items are sold in 6 days is either 8% or 11%, 

depending on the day of the week, i.e. P[6X≤4]≈0.08. So bigger batch sizes increase the 
chance on outdating. There are four missing products which could not achieve the two 
percent outdating target. The effect of batch sizes was examined for these products. For 
example, by reducing the batch size of Broccoli from 4 to 3, we could obtain outdating 
below 2%. Only the Raw beet salad could not achieve that limit. Even if the product can 
be ordered one at a time, the average daily sales (0.54 on a regular day) is too low to 
keep outdating to a minimum. Even if we only order as soon as the entire stock is 
depleted, having to wait a whole day before it arrives again, we get near the 2% but still 
not below it. 
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Product   
description 

Simulated 

Outdating 

Simulated 

average low 

stock in days 

Simulated 

Lost sales 

Optimal 

Alpha 

Old 

Batch 

Size 

New Batch 

Size 

1 Broccoli 1.86% 9.46 34.58% 0.96 4 3 

5 Raw beet salad 2.66% 13.28 48.53% 0** 1 1 

6 Parisian Carrots 1.84% 6.02 27.86% 1.13 8 6 

7 Shii take 

mushrooms 1.73% 11.7 45.73% 0.86 2 1 

** Policy: Never have more than one item in stock. Order a new one as soon as the old one is sold.  

Table 13: Amount of lost sales for outdating < 2% for products unable to have such low outdating  with their regular 
batch sizes 

 

8.5 Further discussion 

Where our policy had better results they were significantly better. Where our policy 

performed worse it did so only slightly. But our assumption of only forty percent FIFO 
sales might not be accurate. Especially the broccoli performed particularly well in real 

life, which might be caused by the fact that there is a discount on products with only 
one day until expiry. 
 

Finding the right order strategy can make a lot of difference but is more complicated 
than it seems. Generally speaking, the more information known about the system, the 
better the results can become. Unfortunately, some information is unavailable or can be 
pricy to gather. Still, the simulation showed that the order strategy  of the super market 
performed worse than our strategy in certain cases, while our best practical policy only 
used information which is easily obtainable for large corporations. Changing to our best 

practical order policy could not only increase revenues and customer satisfaction but 
might decrease outdating as well, which saves money  and leads to a cleaner 

environment as well. Still, one should note that conclusions on comparisons of a real life 
situation with a simulation afterwards should be taken with a pinch of salt.  More 
research should be done on order strategies for perishables since there is  still room for 
improvement. 
  



Inventory modeling of perishable goods – Jan-Willem Arentshorst 
 

~ 41 ~ 
 

9. References  
[1] Nahmias, Wang; A Heuristic Lot Size Reorder Point Model for Decaying Inventories – 1979 
[2] Nahmias, Schmidtl; (S - 1,S) Policies for Perishable Inventory – 1985 
[3] Ravichandran; Stochastic analysis of a continuous review perishable inventory 
system with positive lead time and Poisson demand  – 1995 
[4] Fries; Optimal Ordering Policy for a Perishable Commodity with Fixed Lifetime – 1975 
[5] Graves; The Application of Queueing Theory to Continuous Perishable Inventory Systems – 
1982 
[6] Nahmias; Perishable Inventory Theory: A Review – 1982 
[7] Chen, Plambeck; Dynamic Inventory Management with Learning About the Demand 
Distribution and Substitution Probability – 2008 
[8] Raafat; Survey of Literature on Continuously Deteriorating Inventory Models – 1991 
[9] Kahn, Schmittlein; Shopping Trip Behavior: An Empirical Investigation – 1989 
[10] Haijema; Solving large structured Markov Decision Problems for perishable inventory 
management and traffic control – 2008 
[11] Smith, Agrawal; Management of Multi-Item Retail Inventory Systems With Demand 
Substitution – 1996 
[12]Deniz, Karaesmen, Scheller-Wolf; Managing Perishables with Substitution: Inventory 
Issuance and Replenishment Heuristics – 2010 
[13] Nahmias; Higher-Order Approximations for the Perishable-Inventory Problem – 1977 
[14]Tekin, Gurler, Berk; Age-Based vs. Stock level control policies for a perishable inventory 
system – 1999 
[15] Lian, Neuts, Liu; A Discrete-Time Model For Perishable Inventory Systems – 1999 
[16] Cohen, Prastacos; Critical Number Ordering Policy For LIFO Perishable Inventory Systems  – 
1981 
[17] Liu, Lian; (s, S) Continuous Review Models for Products With Fixed  Lifetimes – 1995 
[18] Shah; A discrete-time probabilistic inventory model for deteriorating items under a known 
price increase – 1998 
[19] Shah and Shah; A lot size model for exponentially decaying inventory under known price 
increase – 1993 
[20] Khouja; The single-period (news-vendor) problem: literature review and suggestions for 
future research -1999 
[21] Arrow, Harris, Marschak; Optimal inventory theory – 1951 
[22] Hax, AC and Candea, D. (1984), Production and Operations Management, Prentice-Hall, 
Englewood Cliffs, NJ, pp. 135 
 
  



Inventory modeling of perishable goods – Jan-Willem Arentshorst 
 

~ 42 ~ 
 

Appendix A: Basic Java code 
 
import java.io.PrintStream; 
 
class Simulation { 
     
    static final int NUMBER_OF_SUBRUNS = 41;   
    static final int SUBRUN_LENGTH = 25000;     
    static final int WARMUP_LENGTH = 364;     // make sure it is a multiple of 7. 
    static final double T_DISTR = 2.021;     // t-distribution for r=41 -> df = 40 
     
        PrintStream out; 
        double[] demand;      // average customer arrival rate 
        int[] stock;           // stock levels for every value of m 
        double[] ageweights; 
        double[] dayweights; 
        int lifetime;         // days till the product outdates 
        int batch_size;        // 4 items in a single package. 
        double decayRate;     // parameter for exponential decay 
        double FIFO;           // percentage of customers that shops FIFO 
        double geometric;     // parameter of people taking multiple items. 
        double alpha; 
         
        int order;             // number of products to arrive the next day 
        int totalStock;        // current number of products in stock 
        int day; 
        int lowordercounter; 
             // variables for analysis: 
        double  totalOutdated,totalLostSales,totalOrder, 
                        orderinfoLimit, orderinfoFactor, 
                        subrunorders,subrunoutdate,subrunlostsales,outdatesq,lostsalessq, 
                        result; 
         
    Simulation(){ 
            init(); 
    }  
 
    final void init(){ 
            out = new PrintStream(System.out); 
            demand = new double[7]; 
            set_demand(5,2); 
            batch_size = 1;    // 4 items in one package 
            decayRate = 1000;      // see below 
            FIFO = 0.4;        // 40% of customers buys FIFO 
            geometric = .75; 
            set_alpha(1.4); 
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            setOrderInfo(6,0.55); 
            set_lifetime(4);    //guaranteed freshness for m+1 days 
            set_ageweights(new double[] {1,1,1,1,1}); 
            resetData(); 
            order = (int) demand[0];   //INITIAL_ORDER; 
            this.set_dayweights(new double[] {1.1,1.1,1.1,1.05,1,0.95,1}); 
    }  
 
    void set_ageweights(double input){ 
        ageweights = new double[lifetime+1]; 
        for (int i=0; i<=lifetime;i++){ 
            ageweights[i] = input; 
        } 
    }  
    void set_ageweights(double[] input){ 
        ageweights = new double[input.length]; 
        System.arraycopy(input, 0, ageweights, 0, input.length); 
    }  
   void setOrderInfo(double limit, double factor){ 
        orderinfoLimit = limit; 
        orderinfoFactor = factor; 
    }  
    void set_dayweights(double[] input){ 
        dayweights = new double[7]; 
        System.arraycopy(input, 0, dayweights, 0, input.length); 
    }  
   double get_result(){ 
        return result*100; 
    }  
   void set_lifetime(int input){ 
        lifetime = input; 
    }  
   void set_alpha(double input){ 
        alpha = input; 
    }  
   void set_demand(double input, double factor){ 
            demand[0] = demand[1]= demand[2]  = demand[3] = demand[6]  =  input; 
            demand[4] = demand[5]       =  factor*input; 
    }  
   void set_fifo(double input){ 
        FIFO = input; 
    }  
 
   int poissonDrawing(double mu){   
            int x = -1;   // draws from a Poisson distribution with parameter mu. 
            double a = Math.exp(mu); 
            while (!(a<1)){ 
                x+=1; 
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                a *= Math.random(); 
            } 
            return x; 
    }   
     
    int geometricDrawing(){   // draws from a geometric-distribution 
            double random = Math.random(); 
            return (int) Math.ceil(Math.log(random)/Math.log(1-geometric)); 
    }      
    boolean exponentialDecay(){       
        double test = -Math.log(Math.random())/decayRate;   // exponential drawing 
        return (test < 1);   

/* generates the remaining life length. if length < 1 then the item perishes. 
             
     * decay = 0.28 -> fail = 25% 
     * decay = 0.41 -> fail = 33% 
     * decay = 0.70 -> fail = 50% 
     * decay = 1.10  -> fail = 67% 
      */ 
 
 
    }  
        
    void processDayEnd(){ 
            performOutdating(); 
            stock[lifetime] += stock[lifetime-1]; 
            for (int i = lifetime-1; i>0;i--){    // all stock levels shift one day further 
                stock[i] = stock[i-1]; 
            } 
            stock[0] = 0; 
            day++; 
    }  
     
    void performOutdating(){ 
        int numberOfOldProducts = stock[lifetime]; 
        for (int i = 0; i<numberOfOldProducts;i++) { 
            if (exponentialDecay()) { 
                subrunoutdate++; 
                stock[lifetime]--; 
                totalStock--; 
                 
            } 
        } 
    }  
         
    void processCustomer(){ 
            int sales = geometricDrawing();    // geometric number of products 
            if (sales > totalStock) { 
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                subrunlostsales += (sales - totalStock); 
                sales = totalStock;     // you cannot sell what you do not have 
            } 
            totalStock -= sales; 
            double r = Math.random(); 
            if (r < FIFO) {  
                takeFIFO(sales); 
            } 
            else takeLIFO(sales);   
} 
     
    void takeFIFO(int sales) { 
        int i = 0; 
        while (sales > 0) { 
            if (sales > stock[lifetime-i]) { 
                sales -= stock[lifetime-i]; 
                stock[lifetime-i] = 0; 
            } 
            else { 
                stock[lifetime-i]-= sales; 
                sales = 0; 
            } 
            i++; 
        }  
    }  
     
    void takeLIFO(int sales) { 
        int i = lifetime; 
        while (sales > 0) { 
            if (sales > stock[lifetime-i]) { 
                sales -= stock[lifetime-i]; 
                stock[lifetime-i] = 0; 
            } 
            else { 
                stock[lifetime-i]-= sales; 
                sales = 0; 
            } 
            i--; 
        } 
    }  
         
    void replenish(){    
            subrunorders += order;     
            stock[0] += order; 
            totalStock += order; 
    }  
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    void orderStock(){ 
            double d; 
            d = Math.max ( dayweights[day%7] * alpha*( demand[day%7] + demand[(day+1)%7] ) 
/geometric   - currentStock(),0); 
            order = (int) Math.round(d/batch_size)*batch_size;  // can only order multiple packages. 
            if (order < orderinfoLimit ) { 
               lowordercounter++; 
            } 
            else lowordercounter=0; 
            if (lowordercounter >= 3){ 
                d = Math.max ( orderinfoFactor*dayweights[day%7] * alpha*( demand[day%7] + 
demand[(day+1)%7] ) /geometric   - currentStock(),0); 
                order = (int) Math.round(d/batch_size)*batch_size; 
           }  
    }  
 
    double currentStock(){ 
       int som = 0; 
       for (int i=0; i<=lifetime;i++){ 
           som+= ageweights[i]*stock[i]; 
       }  
        return som; 
    }  
         
    void resetData(){ 
        totalOutdated = totalLostSales  = totalOrder  = day = totalStock = 0; 
        outdatesq = lostsalessq = subrunorders = subrunoutdate = subrunlostsales= 0; 
        lowordercounter =0; 
        stock = new int[lifetime+1]; 
        for (int i = 0; i<=lifetime; i++)   { 
            stock[i] = 0; 
        } 
         lowordercounter = 0; 
    }  
     
    void simulateDay(){ 
            replenish();               // process order of yesterday 
            orderStock();              // place order for tomorrow 
            double expectedArrivals = demand[day%7]; 
            int realisedArrivals= poissonDrawing(expectedArrivals); 
            for (int i =0;i<realisedArrivals;i++){  
                processCustomer();   
            } 
            processDayEnd(); 
    }  
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  void start() { 
        for (int k = 0; k<WARMUP_LENGTH; k++) {  
            simulateDay(); 
        } 
        resetData(); 
        for (int j = 0; j<NUMBER_OF_SUBRUNS;j++) {     
            for (int i = 0; i<SUBRUN_LENGTH; i++) {  
                    simulateDay(); 
            } 
            subrunEnd(); 
        } 
        printAnalysis(); 
    }  
 
void subrunEnd(){ 
      totalOrder += subrunorders; 
      totalOutdated += subrunoutdate; 
      totalLostSales += subrunlostsales; 
      outdatesq += subrunoutdate*subrunoutdate/subrunorders/subrunorders; 
      lostsalessq +=subrunlostsales*subrunlostsales/subrunorders/subrunorders; 
      subrunorders = subrunoutdate = subrunlostsales= 0; 
    }  
     
    void printAnalysis(){ 
            out.printf("Total days simulated: %d.\n", day); 
            double mean = totalOutdated/totalOrder; 
            out.printf("%.2f%% of the ordered amount gets outdated.\n", 100*mean); 
            double stderror = Math.sqrt(   (outdatesq - NUMBER_OF_SUBRUNS*mean*mean) / 
((NUMBER_OF_SUBRUNS-1)*NUMBER_OF_SUBRUNS) ); 
            out.printf("95%% confidence interval:   %.2f%% , %.2f%% .\n", (mean-
T_DISTR*stderror)*100 , (mean+T_DISTR*stderror)*100); 
            double mean2 = totalLostSales/totalOrder; 
            out.printf("%.2f%% of the ordered amount is a lost sale.\n", 100*mean2); 
            double stderror2 = Math.sqrt(   (lostsalessq - NUMBER_OF_SUBRUNS*mean2*mean2) / 
((NUMBER_OF_SUBRUNS-1)*NUMBER_OF_SUBRUNS) ); 
            out.printf("95%% confidence interval:   %.2f%% , %.2f%% .\n", (mean2-
T_DISTR*stderror2)*100 , (mean2+T_DISTR*stderror2)*100); 
            out.printf("SOM = %.2f \n",(mean+mean2)*100); 
            result = mean+mean2;            
    }  
     
    public static void main(String[] args) { 
        new Simulation().start(); 
    }  
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Appendix B: Additional graphs and tables 
 
  

 
 
 

 
 

In real life situations, optimization is 
usually more constraint-based than 

classic optimization. Therefore, tables 
B1 and B2 were added to give insight 

in the trade-off between lost sales 
and outdating. Table B1 shows the 

optimal values with a constraint on 
less than one percent outdating, and 
table B2 shows the optimal values 
with a constraint on lost sales being 
less than one percent. 
 
 

 
Table B1: Table of variables keeping outdating below 1% 

λ q p d r Minimal α Outdating 

2 0.75 0.4 5 100% 2.92 33.45% 

2 0.75 0.4 9 100% 2.16 4.09% 

2 0.75 0.4 5 50% 2.18 14.90% 

2 0.75 0.4 2 25% 2.18 25.00% 

2 0.75 0 5 100% 2.94 37.15% 

2 0.75 1 5 100% 2.54 21.36% 

5 0.75 0.4 5 100% 1.70 7.42% 

5 0.75 0.4 9 100% 1.62 0.07% 

5 0.75 0.4 5 50% 1.62 3.52% 

5 0.75 0.4 2 25% 1.68 13.83% 

5 0.75 0 5 100% 2.00 21.11% 

5 0.75 1 5 100% 1.62 0.98% 

20 0.75 0.4 5 100% 1.24 0.10% 
20 0.75 0.4 9 100% 1.24 0.000% 

20 0.75 0.4 5 50% 1.24 0.05% 

20 0.75 0.4 2 25% 1.26 2.96% 

20 0.75 0 5 100% 1.32 6.90% 

20 0.75 1 5 100% 1.24 0.000% 
Table B2: Table of variables keeping lost sales below 1% 

λ q p d r Maximal α Lost sales 

2 0.75 0.4 5 100% 0.92 32,72% 
2 0.75 0.4 9 100% 1.68 3.83% 

2 0.75 0.4 5 50% 1.06 25.00% 

2 0.75 0.4 2 25% 0.46 70.92% 

2 0.75 0 5 100% 0.80 53.84% 

2 0.75 1 5 100% 1.26 13.04% 

5 0.75 0.4 5 100% 1.22 5.87% 

5 0.75 0.4 9 100% 2.00 0.07% 
5 0.75 0.4 5 50% 1.32 3.78% 

5 0.75 0.4 2 25% 0.70 53.39% 

5 0.75 0 5 100% 0.94 19.85% 

5 0.75 1 5 100% 1.62 0.90% 

20 0.75 0.4 5 100% 1.40 0.14% 

20 0.75 0.4 9 100% 2.24 0.000% 

20 0.75 0.4 5 50% 1.46 0.05% 

20 0.75 0.4 2 25% 1.00 7.26% 
20 0.75 0 5 100% 1.04 6.38% 

20 0.75 1 5 100% 1.86 0.001% 


