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CHAPTER 1 – INTRODUCTION 

Many of today’s problems can (in adapted or simplified form) be modeled as a Markov Decision 
Process. Markov Decision Processes (MDPs) were created to model decision making and optimization 
problems where outcomes are (at least in part) stochastic in nature. The Markov in the name refers to 
Andrey Markov, a Russian mathematician who was best known for his work on stochastic processes. 
MDPs are a subclass of Markov Chains, with the distinct difference that MDPs add the possibility of 
taking actions and introduce rewards for the decision maker. A Markov Decision Process is commonly 
used to model discrete time stochastic control processes, such as queueing systems or planning 
problems. 

In short, the process moves through time one time step    at a time, resulting in the process residing in 
some state  . The decision maker can then choose any valid action   that is currently available in  , 
and the process moves stochastically to a new state    in the next time step. The decision maker is 
rewarded based on the current state and action taken, and the next time step can be modelled.  

The largest obstacle in solving a Markov Decision Problem is the explosion of the state space. In order 
to solve an MDP, the transition matrix needs to be computed. The transition matrix consists of a row 
and column for each (state, action) pair. This means that the number of matrix elements is of     
  , where   is the number of distinct actions the decision maker can take, and   is the number of 
states in the model. To illustrate the sheer size of the transition matrix, even for small systems, we will 
show the ramifications of the state space explosion in a simple system throughout this paper.  

Let us consider a queuing system where F arrival flows combine into a system that can only serve one 
customer at a time. Time is modeled as             per time step to discretize the system. We 
consider a cyclic policy, where each queue is served in a set order. The policy is determined as when 
to switch over from one queue to the next. The complexity of this very basic system is mostly 
determined by the number of places in a queue; if we bound the system at   customers per flow, the 
transition matrix contains        queue states. Setting aside additional transition states, this means 
for a small system with 12 flows and 9 customers per queue line, we have      queue states. The 
actual number of states will be larger still when considering additional modelling requirements, which 
will be discussed later. In any case, it is far too high to solve the corresponding MDP in any 
reasonable amount of time. This is known as the curse of dimensionality. 

A number of methods have been devised that aim to solve an MDP without computing the full 
transition matrix. This paper will explore a method of solving MDPs by means of an artificial neural 
network, and compare its findings to traditional solution methods.  
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CHAPTER 2 – MARKOV DECISION PROCESSES 

In order to understand how real-life problems can be modelled as Markov Decision Processes, we first 
need to model simpler problems. The first such technique used to model these types of stochastic 
problems is the Poisson Process. 

THE POISSON PROCESS 

A Poisson Process is a mathematical random process in which points are randomly located on a certain 
space [1]. In other words, a Poisson Process is a process that defines events happening randomly over 
time, with a number of useful mathematical properties. These properties make it exceptionally useful 
to model seemingly random processes in a variety of fields; biology, geology, physics, and most 
importantly for us: queuing theory.  

The most important property of a Poisson Process is that each point that is drawn (i.e. each event that 
occurs) is stochastically independent to all the other points in the process. Stochastic independence is a 
term in probability theory that defines the independence of event   occurring regardless of the 
occurrence of event   .; i.e. the probability of both events occurring is equal to the product of the 
single occurrence probabilities. In formulae:  

                  

or 

     
        

    
 
      

    
         

Similarly,  

             

What this effectively means is that the occurrence of   does not affect the probability of   occurring, 
and vice versa: the events are independent. This independence is heavily used in the application of 
Poisson Processes. The next event occurs at a time randomly drawn from the exponential distribution, 
which has a memorylessness property: 

                      

We denote   as the time until the next event occurs. The memorylessness of the exponential 
distribution states that the time until   is independent of the time we have waited thus far; the 
probability of   occurring after     given that it has not occurred before   is equal to   occurring 
after   with no such conditional information. Note that this is exactly the stochastic independence 
discussed above. A Poisson Process is characterized by its rate: the Poisson Process with rate   has 
interarrival times that are exponentially distributed with parameter  .  

KENDALL’S NOTATION FOR QUEUING MODELS 

Before we can apply this theory to a queuing model, we need to define the queue itself. To do this, we 
will be using Kendall’s notation [2]. This notation describes queuing models with three factors:     
 . Here,   denotes the time between arrivals in the queue,   denotes the service time of a job and   the 
number of servers. A number of different symbols are possible for each factor; we will be using the 
simplest model: 

    M – a memoryless (or Markovian) arrival process: a Poisson Process for arrivals. 
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    M – a memoryless (or Markovian) service time distribution; an exponential service time for 
each job. 

    1 – a single server to process jobs. 

Combining the factors above results in the most basic queuing model: the M/M/1 queue. 

QUEUING MODEL PARAMETERS 

As stated above, the arrival process is a Poisson Process. This Poisson Process depends on one 
parameter, the intensity of the process, or the density of arrivals in the process. We will be looking at a 
homogeneous Poisson Process, that is to say the intensity is a fixed value   over time. The service 
duration also takes one parameter, the rate of the exponential distribution μ. Note that this process is 
well-defined if and only if the queue is stable [3]. The queue is stable when    , i.e., when arrivals 
happen slower on average than the time it takes for a job to complete. When they happen faster, 
queuing times grow indefinitely and no limiting distribution can be found for the number of people in 

the queue. We denote the load     

 
 as the average fraction of time the server is occupied. If    , 

the system is stable. 

MARKOV CHAINS 

So far, we have been looking at the mathematical properties of the queue itself.  Let us now examine a 
modelling technique to analyze the system’s properties and performance, the Markov Chain. We 
divide time into small discrete time steps   , and model transitions at each time step. We denote    as 
the number of people in the system at time i. The evolution of the number of people in the system is 
then a sequence of random variables or states            . For this system to be a Markov Chain, 
these variables need to satisfy the Markov property: the probability of transitioning to the next state 
depends only on the current state [1]. Since arrivals are being drawn from the exponential distribution 
and are thus independent, the transition probabilities do not depend on the history of the system, but 
only on the current state. We want to compute the stationary distribution; the time-limiting distribution 
that the DTMC is in a certain state. In order to be able to compute such a stationary distribution, there 
are a number of assumptions that we need to satisfy [1]: 

 Let all the states            be called the state space  . We need to restrict      . Of 
course, since the number of possible customers in a queue is not bounded by any real number, 
we need to create an artificial bound on the queue length to model it as a DTMC. We will call 
this bound  . 

 There exists at least one recurrent state    . A recurrent state is a state that can be reached 
from any other state    . The sequence of states visited between   and   is called the path 
from   to  . 

 The greatest common divisor of all possible paths from   to   is 1 for at least one recurrent 
state    . This means the shortest path from   to   is not a fixed length cycle, as that would 
imply an unstable stationary distribution. 

If these assumptions are satisfied, we can use a Markov Chain to model the       queue and 
analyze it [3]. We can draw a transition graph to show the modelling of the M/M/1 queue as a Discrete 
Time Markov Chain (DTMC). The states      correspond to the number of people   in the system. 
With rate  , another customer enters the system, and with rate   a customer leaves the system. The 
transition graph then looks as follows: 
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The big advantage of modelling the       as a DTMC is that we can use the following equations, 
assuming we have a stationary distribution  : 

                
   

 

Here,      is the probability of the process residing in state x, or x people currently being in the 
system.        is the probability of moving from state y, given it is in state x. Recall that both the 
arrival process and the departures from the system follow an exponential distribution with rates   and 
 . For such a simple queue, the above equation translates to ‘rate in = rate out’: the sum of all rates 
into each state is equal to the sum of all rate out of that state. Intuitively, this makes sense: we must 
make a transition at each time step (even if it is to the same state), so the total probability of 
transitioning is always 1. It easily follows that whatever rate goes into a state must also go out of that 
state again during the next time step. For the       queue, this means the following for any state   
between   and N customers: 

                                                 

Another important property of the stationary distribution in a Markov Chain that can be shown 
intuitively is the following equation. The intuition here is that all states in the stationary distribution 
(since it is a probability distribution) must sum to 1: 

 

     
   

   

MODELLING THE M/M/1 AS A DTMC 

Let us show the significance of the properties listed above by modelling an       queue, bounded at 
an arbitrary   customers. This gives us the following equations for the stationary distribution: 

              

                         

                           

                             

                           

                

     
 

   
   

These equations can be rewritten in matrix form, creating the transition matrix P shown below: 

 
 
 
 
 
 
 
 
   

        

        

   
        

   
       

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

 

We can now use a simple solving tool to find the stationary distribution  : 
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It can also be empirically shown through simulation that the average number of people follows the 
following formula: 

             

for the       queue. We will come back to the transition matrix P and stationary distribution   of 
the       queue in the next chapters. 

EXTENDING THE MARKOV CHAIN TO A MARKOV DECISION PROCESS 

Since Markov Decision Processes (MDPs) are a subclass of Markovian problems that have to do with 
decision making, we need to extend the DTMC model with decisions. This is done by introducing a 
policy: a vector with a length equal to the number of states in the Markov Chain, where each element 
in the vector indicates the decision that will be made in that particular state of the Markov Chain. 
Naturally, if there are decisions involved, we need to define a measure that rates the quality of a 
decision. Therefore, we also introduce rewards in each state with the aim of determining the quality of 
a given policy. Hence, we now have the following properties of the problem: 

  , the set of states. 
  , the set of actions available in each    . 
  , the transition matrix that defines the transition probabilities between states. 
  , the vector of rewards obtained in each state. 
 R, the policy vector defining which action to take in which state. 

We aim to maximize the sum of rewards we obtain over time by using a certain policy. That is, we call 
the total reward that we obtain by using a policy R for each           when starting in state x, 
  
    . We are interested in two things specifically: 

 The long term average reward, or the expected value of the rewards for the stationary 
distribution:  

                   
   

             
     

 
  

 The total expected difference between starting in a state x and starting in stationarity: 

               
         

The following relationship exists between these two measures. This equation is commonly known as 
the Poisson Equation, and is used heavily in the computations behind Markov Decision Processes [3]: 

                       
   

 

     is commonly known as the value function of a problem,       is the value function of a 
decision problem given a policy R. The Poisson Equation is of particular interest to us because it 
provides us with a method to solve for   once we have a solution for     . Note, however, that      
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need not be unique because of this equation alone. If      is a solution to this equation,       

       is also a solution, where c is any constant factor. Therefore, we always set         so 
policies can be compared to each other. Extending the Poisson Equation to include actions gives 

                           
   

  

This equation can be used to model an MDP and evaluate a given policy [3].  

THE M/M/1 QUEUE WITH ADMISSION CONTROL 

We will now show the application of the theory outlined in the previous sections by modelling the 
M/M/1 queue with admission control. We model an M/M/1 queue with   places for customers. For 
each customer that arrives at the queue, we decide whether we accept that customer and add it to the 
queue, or if we reject the customer. If we reject it, we incur a one-time penalty cost  . We aim to 
minimize the number of customers in the queue, as well as to minimize the penalty costs. We model 
this by incurring a ‘penalty’ of 1 for each customer in the queue at every time step, on top of the 
rejection costs. Customers arrive at the queue according to a Poisson Process with   and the server 
handles customers according to an exponential distribution with  . This process with parameters 
                     has the following properties: 

 This system is stable, as    

 
 

   

    
  . 

          . There can be     customers in the queue, one customer can be served at a 
time, and the system can be empty, so there are 3 different states. 

        . Accepting a customer translates to    , rejecting it gives    . 
 The actual transition matrix P naturally depends on the policy R chosen. For completeness, we 

will list the transition matrices for both actions in every state: 

        

 
        
            

        

  

        

 
 

        
        

  

 The reward vector r is again dependent on the policy R. Since we do not get any rewards, but 
rather incur penalties, the reward vector is mostly negative: 

        
   
   
    

  

 The policy vector R will be initialized as           : always accept new customers. 

The Poisson Equations that correspond to this problem are then: 

                           

                                    

                            

       

Recall that we explicitly state        to obtain a unique solution to this problem. We can solve 
these equations using matrix algebra and find the best policy. In this case, we find 

                                             

giving us: 
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Overall, we expect to incur a cost of roughly 2.192 per time step following this policy. For reference, 
if we were to always block customers, this would be exactly 2 per time step. We can determine the 
optimal policy by simply evaluating all policies and selecting the one with the highest  . For this 
example, the optimal policy would be           : if the server is currently occupied, we reject 
all incoming customers, so the queue length will never exceed 0. Such a policy is an example of a 
threshold policy: we take a certain action in all states up until a threshold, and for all states after this 
threshold we take another action.  

THE CURSE OF DIMENSIONALITY 

The example model we just discussed is hardly a realistic model. Real-life applications of Markov 
Decision Processes often encompass vast numbers of possible states. In the M/M/1 model, the number 
of distinct states     is given simply by the queue size N, plus one state for the server, and one for the 
empty system: 

        

The number of states grows linearly with the queue size. The number of policies, however, grows 
significantly faster, as this is given by     to the power of    : 

                  

In the simple example, this means that there are      unique policies, easily computable by hand. 
The graph below shows how the number of policies and states grow as we increase    , keeping 
      fixed:  

 

This is the largest problem currently facing the customary solution methods for MDPs at this time: the 
so-called ‘curse of dimensionality’ [3]. Imagine, for instance, a queuing model where customers arrive 
and are assigned to one of 8 queues, each with a maximum capacity of 10 customers. Then,         
and the number of distinct policies is     , a number with            decimal digits (!). This 
number is so large, it becomes wholly impossible to compute the optimal policy by brute force: 
evaluating all possible policies is no longer feasible. As a result, a number of algorithms and solution 
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methods have been devised to determine the optimal policy. We will be looking at the one-step policy 

improvement in the next section. 

ONE-STEP POLICY IMPROVEMENT 

Since we are unable to evaluate all policies, we will improve upon a given policy (usually picked at 
random) and evaluate the process with the improved policy iteratively. We aim to optimize the actions 
taken in each state, i.e. maximize the reward. The corresponding equation is known as the Bellman 
Equation [4]: 

                                  
   

  

We can iteratively apply this equation to obtain the optimal policy       with corresponding       
and      . Computationally, the most challenging step in this equation is computing      for a given 
policy  , this needs to be done a large number of times while searching for the best action. Therefore, 
this action is usually done online: in the improvement step we simply compute      only if 
          . For most MDPs of a reasonable size, this is (though still computationally expensive) a 
feasible solution method. However, as we increase the state and action spaces, we will again run into 
performance issues. The next chapter will cover a different method of finding the optimal policy for 
MDPs that will reduce or even completely eliminate the issues brought forth by the curse of 
dimensionality. First, however, we will take a closer look at neural networks as a modelling technique. 

NEURAL NETWORKS 

1 Artificial Neural Networks (ANNs) are machine learning 
systems where a large collection of simple units work together 
to model complex problems by simulating the way the human 
brain handles inputs using neurons. The units in the model are 
heavily interconnected, allowing for the modeling of precise 
patterns without specifying the exact pattern itself [4]. The main 
advantage of ANNs is that very little information is required 
about the structure of the problem beforehand, as the model 
learns the structure of the problem on-line during training. The 
main disadvantage of using neural networks in this setting is 
that the model behaves as a black box; that is, it is nearly 
impossible to determine the root cause of the success of the 
model. Since very little can be said about the cause of a model performing exceptionally well or badly, 
it is relatively hard to make improvements to said model. An example of an ANN can be found to the 
right. Each node in the network processes input through its activation function   to produce its output: 
if the inputs of the ANN are given by             , the next node can be computed as       , 
with              

  the weights of each input. A common activation function for classification 
problems is the sigmoid activation function [6]: 

       
 

            
 

                                                      
Credit image: https://upload.wikimedia.org/wikipedia/commons/thumb/e/e4/ 
Artificial_neural_network.svg/2000px-Artificial_neural_network.svg.png 

https://upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Artificial_neural_network.svg/2000px-Artificial_neural_network.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Artificial_neural_network.svg/2000px-Artificial_neural_network.svg.png
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Output can be classified as one of two classes, each belonging to an output of either 0 or 1. Since in 
this paper an ANN was used to model regression, a linear activation function was more appropriate:  

                

The model learns by adjusting the weights of nodes using a method called backpropagation for a set 
number of repetitions or until a (near) optimal set of weights has been found [5].  The exact process of 
backpropagation lies outside the scope of this paper; as such, it will not be further discussed here. 
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CHAPTER 3 – MODEL 

Neural networks are a good choice for this type of problem for several reasons. 

First, neural networks are fairly robust, in that they can deal with a variety of different problem 
structures and sizes while preserving their prediction accuracy. Thus, we can develop a single solution 
method that makes use of a neural network which can solve specific MDPs, and generalize this 
method to solve any MDP in a similar fashion. 

Moreover, neural networks require no prior knowledge about the problem or solution structure. For 
example, we know that the optimal policy for the M/M/1 with admission control is a threshold policy. 
In theory, the neural network should ‘learn’ this property of the optimal policy by itself, so by simply 
feeding random policies (and their evaluation) into the neural network; the network should return a 
threshold policy as its optimal policy. 

Finally, neural networks may be faster than the traditional solution methods for MDPs. Although 
training a neural network is relatively time-consuming, testing policies using a neural network should 
be orders of magnitude faster than simulating for a high number of time steps or using a different 
method of policy evaluation. 

MAIN LOOP 

The model was initialized by creating a single hidden layer neural network with     input nodes, 
    hidden nodes and 1 output node. The transition matrix  , a 3-dimensional matrix with the 
transition probabilities for each action  , and the reward matrix R, a 2-dimensional matrix with the 
rewards for each station/action pair were created. For   iterations, the following actions were 
performed. 

A random policy    was generated by sampling a random action for each state.    and    for this 
policy were computed as follows: 

1. Simulate     for        . 
2. Obtain    by solving the following equation, where    is the transition matrix specific to this 

policy: 
         

3. Obtain   by computing:  

  
        

       

 
 

4. Train the neural network with this example, using       at the input nodes and    at the target 
output. 

After these iterations, for another   iterations the following actions were performed: 

1. Another random policy    was generated by sampling a random action for each state, and    
and    were computed for this policy as before.  

2. Subsequently, the   found by the neural network,    , from the trained neural network was 
obtained.  

3. If the policy    provided the best     at that time, this policy was saved as the best found 
policy   . 

After these   iterations, the current best policy was contained in        then had the following 
algorithm applied to it: 



 

Job Ammerlaan 
2178729 – jan640 

1. We start with the policy   . 
2. We loop over all the states    : 

We set the action in state x to: 

                 
        

3. If any action has been changed, start at step one with    as the new   . 

In words: the action of    performed in state x was set to the action that results in the maximum   
found by the neural network. Since we started in the empty system, this algorithm should result in a 
better policy than the one we started with. If after visiting all states an action in any state was changed, 
the algorithm was applied again to ensure we take the optimal actions starting from the empty system. 
The resulting policy    was the optimal policy found. 

THE M/M/1 QUEUE 

The M/M/1 queue has an optimal policy that is a threshold policy for all (stable) model parameters. In 
all states before the threshold state    customers are always accepted. From the threshold state 
onwards, customers are always rejected. For the M/M/1 the intuition behind this is simple: if we have 
a service duration expectation of   time units, pay 1 unit of costs per time step for a customer in the 
queue, and have     customers currently in the system, we expect to pay     queueing costs for 
the   th customer. Thus, we start rejecting customers when      , and we can directly compute 
the threshold state from this formula. The goal for the neural network model is to determine this 
threshold state for several different parameters as accurately as possible.  

SPLIT SERVER MODEL 

Aside from the M/M/1, we will also be analyzing a slightly more complex 
queuing model with one server and two queues   and  . Each queue has its 
own arrival stream, with possibly different rates    and   . The queue costs, 
i.e. the reward in each state,        can be different for each arrival stream as 
well. To simplify the model somewhat, the server rate   will be fixed and equal 
for both queues. For this model, we aim to optimize the server position, i.e. 
which queue to serve for a given pair of queue lengths. The optimal policy for 
this model is no longer a simple threshold state. An optimal policy matrix for 
this queuing model might look like so: 

        

    
    
    
    

   

where a and b are the respective queue lengths for queue A and B, and each matrix item represents the 
queue to be served. In this example with     available spots in each queue, we serve queue B if and 
only if there are more customers in this queue than in queue A. This is of course a threshold policy of 
sorts – in fact it is simply a two-dimensional threshold – but encoded to an input vector for the neural 
network this policy is: 

                        

This type of pattern is more complex than a simple threshold state the neural network needs to find, 
which might lead to a lower accuracy for the policy quality predictions. Note that the action taken in 
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the first state is 0; for a completely empty system the currently served queue is obviously irrelevant, 
since we do not model switchover time or costs. The action taken in that state is entirely arbitrary. 
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CHAPTER 4 – RESULTS AND DISCUSSION 

Two different queueing models will be discussed here, as discussed throughout the paper: the M/M/1 
queue with admission control, and a split server model with two queues and one server. In the M/M/1 
model, the decision is whether to accept or reject an incoming customer. In the split server model, we 
aim to optimize the server position: which queue to serve at which times. 

THE M/M/1 QUEUE 

The simplest model, the M/M/1 model, yielded 
largely positive results. Results for different 
instances of the problem solved using of the 
algorithm can be found in Table 1. For all runs, 
the following parameters were used: 

                          

The average long term reward   for the found 
policy    is listed both as computed by the 
neural network and the value found using 
traditional solution methods. The overall 
optimal   is also listed, as well as the threshold 
state – above which we start rejecting all 
customers – and the Mean Squared Error 
(MSE) of all     computed by the neural 
network. The MSE over 5 runs was computed 
as well. 

From the graph to the right, we can see that for 
the instance with the system bounded at 
     customers, the neural network predicts policy qualities extremely accurately. This is 
confirmed by the high accuracy shown in Table 1 below. The MSE over all policies during 5 runs 
remains stable throughout the testing. When the rejection cost rises, lower-quality policies incur 
severely higher costs, and thus the MSE rises sharply to reflect this. While the policy that the 
algorithm declared optimal still attains a long-term average reward   that is close to the theoretical 
maximum, the optimal policy produced by the neural network shows no clear threshold: after the 
threshold, customers are still accepted in some (seemingly arbitrary) states. Therefore, the first 
alternative action is recorded as the threshold state. 

                                                   

Computed   
for    

0,0209 -1,1041 1,3209 2,0894 4,2645 

Actual   for 
    

0 -1,8264 -1,9038 -2,2462 -2,2647 

Optimal   
overall 

0 -1,6305 -1,8856 -1,8854 -0,0120 

Computed 
threshold state 

0 8 5 3 9 

Actual 
threshold state 

0 4 6 6 27 

MSE over all 
policies 

0,0134 0,0997 0,2769 1,2128 823,5715 
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SPLIT SERVER MODEL 

When not explicitly mentioned, the following parameters were used:  

                               

Table 2 shows the results for a variety of different parameters and models, using the same metrics as 
for the M/M/1 queue. As there is no longer a definitive threshold state, this metric was no longer 
recorded. 

 

Again, as expected, the MSE over all policies rises sharply as the number of states grows. 
Judging solely be the MSE, the algorithm performs reasonably well. However, as the state 
space grows, the computed optimal policy moves farther and farther away from the actual 
optimal policy. Compare the optimal computed policy with the actual optimal policy for the 
last test case, with      and a distinct reward structure                for the queue. 

 

Intuitively, the actual optimal policy seems like a very good policy: we only serve queue B if there are 
no customers in queue A. Since queue A is 3 times as expensive, it is always more profitable to serve 
this queue first. However, the neural network retains nothing of this optimal strategy and creates a 
(seemingly) random pattern as its optimal policy. We observe the same problem in other cases. The 
bigger the state space gets, the more effort it takes the neural network to distuinguish the positive 
aspects of policies from the negative. 

 

 

       
       
      

      
       
      

       
       
      

    
      
         

     
               

Computed   
for    

-1,2602 1,3571 -0,4128 0,9440 5,8627 

Actual   for 
    

-1,2998 -3,5994 -6,3856 -5,7763 -7,0217 

Optimal   
overall 

-1,2520 -2,0857 -3,3848 -2,4900 -2,9202 

MSE over all 
policies 

0,0159 0,2268 1,4301 2,7746 27,9962 
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When plotting the  ’s computed by the neural network against the actual  ’s for those policies, the 
problem becomes even more apparent. We expect to see a figure like the first graph for each instance, 
where the actual   is highly correlated with the computed  . The higher the correlation, the more 
accurate the prediction is. However, as we increase the state space – which is still wholly reasonable, 
even for the largest instances – the correlation becomes weaker and weaker, until the algorithm 
degrades to the quality of trial and error. 

COMPLEXITY 

Finally, a note on complexity: note that to train the neural network, we compute the performance of a 
given policy at least        times, which in itself can be problematic. For large instances of each 
problem, training the neural network was several times slower than computing the optimal policy 
through one-step policy improvement. Since speed is one of our main concerns, having to compute 
     a large number of times is suboptimal at best. 

CONCLUSION  

Small instances of the M/M/1 problem with admission control are analyzed with relatively small 
errors. We obtain a near-optimal policy in most small instances of the problem. For a larger state 
space, we obtain policies that behave decently well, but do not show the desired threshold property: 
none of the obtained optimal policies show a definitive threshold, so the first action that serves the 
alternate queue is selected as the threshold. 

The results for both models overall show the same trend. The optimal policy for the model with one 
server for two queues has a significantly more complicated structure due to its two-dimensional state 
space (as opposed to the one-dimensional state space of the M/M/1 model). This is reflected in the 
model’s outcomes: we see that the computed policies diverge from the actual optimal policy more 
quickly than in the M/M/1 model. 

When observing graphs of the g´s computed by the model plotted against the true g of that policy, we 
see that the bigger the state space, the higher the spread is for these points. This is reflected in the 
MSE of those policies: an increasing MSE (even relative to the average g) shows that the results 
become less reliable for larger problems. Indeed, the graphs clearly show the correlation between the 
computed long-term average reward   and the actual   of a given policy decreasing. 

In conclusion, solving Markov Decision Processes with Artifical Neural Networks works seemingly 
well for extremely small instances. However, the more the state space grows, the less accurately the 
neural network predicts how well a given policy performs. Moreover, the computation time required to 
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train the neural network rises far above the time required for any conventional solution method. As 
such, training a neural network to find the optimal policy for an MDP is not a viable solution 
technique for any reasonably sized instance. 
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